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Background: Quantitative high-throughput data deposited in consortia such as 
International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) 
present opportunities and challenges for computational analyses.

Methods: We present a computational strategy to systematically rank and investigate a 
large number (210–220) of clinically testable gene sets, using combinatorial gene subset 
generation and disease-free survival (DFS) analyses. This approach integrates protein–
protein interaction networks, gene expression, DNA methylation, and copy number data, 
in association with DFS profiles from patient clinical records.

Results: As a case study, we applied this pipeline to systematically analyze the role of 
ALDH1A2 in prostate cancer (PCa). We have previously found this gene to have multiple 
roles in disease and homeostasis, and here we investigate the role of the associated 
ALDH1A2 gene/protein networks in PCa, using our methodology in combination with 
PCa patient clinical profiles from ICGC and TCGA databases. Relationships between 
gene signatures and relapse were analyzed using Kaplan–Meier (KM) log-rank analysis 
and multivariable Cox regression. Relative expression versus pooled mean from diploid 
population was used for z-statistics calculation. Gene/protein interaction network anal-
yses generated 11 core genes associated with ALDH1A2; combinatorial ranking of the 
power set of these core genes identified two gene sets (out of 211 − 1 = 2,047 combi-
nations) with significant correlation with disease relapse (KM log rank p < 0.05). For the 
more significant of these two sets, referred to as the optimal gene set (OGS), patients 
have median survival 62.7  months with OGS alterations compared to >150  months 
without OGS alterations (p  =  0.0248, hazard ratio  =  2.213, 95% confidence inter-
val  =  1.1–4.098). Two genes comprising OGS (CYP26A1 and RDH10) are strongly 
associated with ALDH1A2 in the retinoic acid (RA) pathways, suggesting a major role of 
RA signaling in early PCa progression. Our pipeline complements human expertise in the 
search for prognostic biomarkers in large-scale datasets.
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tABLe 1 | data used in this study.

database dataset PMId Platform

BIOGRID 
3.4

BIOGRID-ALL-3.4.138 25428363 Two-hybrid, affinity capture 
MS, and genetics

STRING 10 protein.link.detailed.
v10

25352553 Protein–protein interaction 
network and text mining

TCGA PRAD 26544944 RNA-Seq, DNA copy 
number, and clinical profile

EGA/ICGC EGAS00001000682 25066126 DNA methylation

Ingenuity® 
Pathway 
Analysis

Ingenuity Knowledge 
Base

24336805 Causal network and 
interaction network

NCBI GEO GSE35988 22722839 Gene expression

DAVID 6.7 DAVID Knowledgebase 19131956 Gene ontology annotation
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INtRodUCtIoN

Large volumes of cancer genomic data are being continuously 
generated via consortia such as The Cancer Genome Atlas 
(TCGA) (1) and the International Cancer Genome Consortium 
(ICGC) (2), and optimal use of this data promises improvement 
to patient care (3). In particular, better characterization of the 
smaller subgroup of patients with poor disease outcomes will help 
to develop risk-adjusted treatments and potential novel therapies 
(4), which should significantly improve treatment selection and 
outcomes for patients overall.

Many large-sized gene panels have been generated to classify 
cancer patients into subgroups, but frequently those gene sets 
have poor prognostic value (5). The lack of effective biomark-
ers, and the failure to appropriately stratify patients according 
to disease severity and prognosis, leads to an increased burden 
on both the patient and the health-care system, with inappro-
priate, under- and over-treatment of patients (6). With an ever-
increasing number of prognostic gene signature reports (~250 
yearly, based on a PubMed search with query [((“gene signature” 
OR “gene signatures”) AND “cancer”)]), the oncology research 
community would benefit from a systematic evaluation method 
to benchmark these diverse studies.

Recent studies of different cancer patient cohorts have incor-
porated some machine learning techniques such as decision trees 
(7) and Bayesian belief networks (8, 9). These techniques are 
computationally intensive, frequently rely on heuristics to explore 
the gene-set space, and commonly suffer from small-sized patient 
cohorts (10).

In our experience working with clinical oncologists/patholo-
gists, an important result of the computational method is to 
conclusively demonstrate the optimality of the discovered gene 
set based on standard clinical measures in an exhaustive search. 
As an example of non-exhaustive search, a recent high-impact 
study by Irshad et al. in newly diagnosed prostate cancer (PCa) 
examines only 3-gene combinations in a 19-gene set, i.e., 969 out 
of 524,287 possibilities (7). In our proposed pipeline, we use gene/
protein (from here onward referred to simply as gene) interaction 
network to generate a core gene set, then combinatorially gener-
ate and rank gene sets based on the standard Kaplan–Meier (KM) 
log-rank p-value, and finally examine the clinical relevance of the 
optimal gene set (OGS) using ANOVA of Cox proportional haz-
ard models. Valuable features of our pipeline are its deterministic, 
unbiased, and clinician-intuitive nature.

In PCa, the biology is complicated by a high degree of both 
intra-patient (11) and inter-patient heterogeneity (12), and 
progress in treatment has been hampered by a lack of predictive 
biomarkers (13). The current prognostic protocols, which com-
bine Gleason score, prostate-specific antigen (PSA), and clinical 
stage, have limited value in predicting outcome (14, 15). There is 
a pressing need for validated biomarkers that provide objective 
assessment of the prostate tumor biology and prognostic stratifi-
cation, especially in early PCa (14).

As a case study, we applied our pipeline to a potential biomarker 
candidate for early PCa, the retinoic acid (RA) ALDH1A2, which 
we have previously identified and experimentally validated as 
being worthy of further biological characterization (16). Vitamin 

A (retinol) is a lipid-soluble organic compound that plays essential 
roles in embryonic development, cell proliferation, differentia-
tion, and apoptosis (17). It is normally obtained either directly 
through diet or indirectly through the conversion of β-carotene 
in the body through oxidation. Within the cell, vitamin A 
undergoes multistep metabolic processing, to produce RAs such 
as ALDH1A2. The RA then binds to its nuclear hormone recep-
tors, forming active heterodimers that modulate expression of 
downstream RA target genes by binding to DNA regions named 
RA response elements.

The biology of ALDH1A2 is complex, and its roles in cancer 
are being increasingly explored (18–20). Even without the exact 
mechanisms being fully understood yet, we are able to use the 
putative role of ALDH1A2 in cancer to derive a core gene set 
from ALDH1A2-interacting partners, using available literature 
and curated databases. With our novel data-mining algorithm, 
we systematically evaluate combinatorial subsets of this gene 
signature, in relationship to disease-free survival (DFS) and other 
relevant clinical parameters including the subjective histologi-
cal grading called Gleason score. We arrive at an optimal gene 
signature that, when aberrantly expressed, is strongly associated 
with PCa relapse.

Methods

data Used in this study
This study was exempt from ethical review by Monash 
University Human Research Ethics Committee (MUHREC) as 
the research involved only de-identifiable data about human 
beings. De-identified PCa patient data were retrieved and pro-
cessed from TCGA database, specifically the “TCGA Prostate 
Adenocarcinoma” study, accessed using the application pro-
gramming interface from cBio Cancer Genomics Portal (21). 
Genomics data were downloaded the data from the European 
Genome-phenome Archive (EGA) through approved access, 
with accession number EGAD00001001329 (22). Gene expres-
sion data were obtained via the NCBI Gene Expression Omnibus 
(GEO) database with accession number GSE35988 (23). Table 1 
summarizes the data sources gathered and integrated in this 
study. All patient data were uniformly assessed in subsequent 
bioinformatics and biostatistical analyses.
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FIGURe 1 | Pipeline of the combinatorial ranking procedures, developed to systematically explore and evaluate gene sets based clinical relevance.  
A core gene set (Gcore) is derived in a two-phase procedure: (1) network expansion using Ingenuity® Pathway Analysis and (2) network contraction by verifying the 
individual network links in BIOGRID 3.4 and STRING 10 databases. Power set generation populates all combinatorial gene sets based on Gcore. Finally, disease-free 
survival analysis ranks all candidate gene sets based on prognostic values.
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Bioinformatics Analysis
RNA-sequencing data were normalized as previously described 
(21), with z-statistics calculated based on relative expression levels 
versus population mean: |z| > 1.96 (i.e., outside 95% confidence 
interval) indicates altered expression. Microarray analysis of 
Agilent platform data was performed as described previously (24). 
Genome-wide DNA methylation profiling from the Illumina 450K 
platform data was performed following the RnBeads processing 
pipeline (25). Subset-quantile normalization was performed using 
SWAN (26). Probes with missing samples or detection p-value 
below 0.01 or containing single nucleotide polymorphism were 
excluded. Beta values were used to represent methylation levels.

Clinical Association with dFs Analyses
Gleason score was used as a categorical variable. Other clinical 
covariates included counts of examined lymph nodes, most 
recent PSA score, and patient age. Outcomes were analyzed by 
KM analysis with log-rank test. Univariate analysis and multi-
variate analysis for determining prognostic association between 
gene signatures and clinical parameters were performed using 

Cox proportional hazards regression. KM and Cox regression 
analyses were performed using R version 3.2.3 via the “survival” 
package (27).

Gene set Generation and Ranking Based 
on Clinical Profiles
A comprehensive survey of all the available data from established 
public data repositories and published literature and abstracts was 
used to produce an unbiased assessment of the genes involved in 
the seed gene of interest (Figure 1).

In the network expansion phase, a preliminary interaction 
network was generated from the Ingenuity® Pathway Analysis 
[Ingenuity Pathway Analysis (IPA)—Qiagen] database using the 
seed gene as query. Using the “Export” option, a text (.TXT) file 
containing all interacting partners of the seed gene was obtained. 
Using Microsoft® Excel™ 2013 software, three columns were 
extracted: the official gene symbol (e.g., Tp53), gene description 
(e.g., tumor protein p53), and synonyms (e.g., Bbl, Bcc7, Bfy, Bhy, 
Brp53, and Brp53). The synonyms are then used for removing 
duplicate results in IPA output via R script.

http://www.frontiersin.org/Oncology/
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FIGURe 2 | Gene/protein interaction network of ALDH1A2. (A) Network expansion phase: Ingenuity Pathway Analysis tool gives 279 interaction partners of 
ALDH1A2. (B) Network contraction phase: BIOGRID 3.4 and STRING 10 databases reduce the 279-node ALDH1A2 network down to 11 nodes (genes/proteins), 
with a minimum of two lines of evidence (indicated with colored lines).
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In the network contraction phase, the preliminary network 
was first filtered through the BIOGRID 3.4 database (Table 1) 
(28). BIOGRID database snapshot in tab-separated text format 
was downloaded from https://thebiogrid.org (version 3.4.138, 
348  MB). Using Microsoft® Excel™ 2013 software, three 
columns were extracted: interactor A (e.g., Tp53), interactor 
B (e.g., Mdm2), and interaction types (e.g., affinity capture-
luminescence, two-hybrid, etc.). Custom R script extracted all 
data rows containing the seed gene and interacting partner 
found earlier from IPA. Next, the top interacting partners were 
extracted from multiple lines of evidence from the literature 
using the STRING v10 database (Table  1) (29). STRING v10 
data access was requested for academic use (http://string-db.
org). Upon approval, database snapshot in tab-separated text 
format was downloaded (protein.links.full.v10.txt.gz, 17.8 GB). 
A custom R script was used to extract all data rows containing 
the seed gene and interacting partners found earlier from IPA. 
Two sets of matching results from BIOGRID and STRING were 
combined, and the relationship between seed gene and interact-
ing partners was then labeled as co-expression, text mining, 
database interrogation, and experimental data. The interacting 
partners of the seed gene with only one evidence were filtered 
out to generate a stringent list of interacting partners (Gcore). 
A functional analysis of the genes in Gcore was conducted 
using DAVID v6.7 (30) based on pathway and gene ontology 
annotations [KEGG pathway (31), biological process, cellular 
component, and molecular function] to confirm the biological 
pathway relevance of Gcore.

Upon obtaining a curated set of genes, power set (i.e., set of all 
subsets) generation is performed using the R powerset package. 
For each set of gene, a validation pipeline was executed based on 
PCa patient data (TCGA, ICGC, and GEO) using the bioinfor-
matics analysis protocol described earlier (R code described in 

Data S1 in Supplementary Material and available on GitHub). In 
brief, genomic data from tumor and healthy tissue were down-
loaded. Patients were grouped according to altered expression 
(|z|  >  1.96) status, as defined earlier. For TCGA data, clinical 
parameters were also downloaded for DFS analysis. Based on the 
calculated KM p-values, the algorithm ranks all candidate genes 
based on prognostic probability in the TCGA early PCa patient 
cohort.

ResULts

ALDH1A2 is a key player in the RA pathway and retinoid metabo-
lism, both known to be important in homeostasis and cellular 
function (32, 33), the disruption of which leads to various health 
problems including PCa (34, 35). In our case study, we start with 
ALDH1A2 to generate our core gene set.

Generation of a Core Gene set via  
data Integration
Applying the pipeline using ALDH1A2 as the seed (Figure 1), we 
obtained a large gene interaction network (Figure 2A), which was 
then refined to a core gene set (Gcore) of 11 genes (Figure 2B). 
DAVID gene ontology analysis shows that all 11 genes are involved 
in both “retinol metabolism” (KEGG pathway) and “oxidation 
reduction” (GO biological process). We analyzed the expression 
and methylation levels of Gcore independently in two landmark 
PCa datasets: Grasso et al. (23) (Table 2) and Brocks et al. (22) 
(Table 3). The individual genes in Gcore were strongly associated 
with differential expression (Table 2) but not differential meth-
ylation (Table 3) between tumor and normal patients. However, it 
is possible that combinations of these individual genes may have 
prognostic value, so these were also further assessed, as described 
in the following.
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tABLe 4 | heteroscedastic unpaired t-test of 491 patients in the Cancer 
Genome Atlas cohort shows no difference between age, number of 
lymph nodes, and most recent prostate-specific antigen (PsA) results 
with reference to disease relapse.

Clinical parameters No relapse 
(n = 399)

Relapse (n = 92) p-Value

Age 60.877 (6.999) 61.554 (5.944) 0.343
Number of lymph nodes 11.538 (9.129) 13.095 (11.892) 0.265
Most recent PSA results 0.822 (3.605) 1.865 (5.301) 0.085

Means and SDs are shown.

tABLe 3 | differential methylation analysis between tumor and normal 
samples based on Brocks et al. dataset (22).

Gene symbol eNseMBL Id Adjusted p-value Log fold-change

ALDH1A2 ENSG00000128918 0.800930711 −0.033209504
CYP26C1 ENSG00000187553 0.800930711 −0.074378124
CYP26A1 ENSG00000095596 0.800930711 −0.035321392
CYP26B1 ENSG00000003137 0.800930711 −0.048280355
RDH10 ENSG00000121039 0.800930711 0.015297498
ADH5 ENSG00000197894 0.800930711 0.02746407
DHRS3 ENSG00000162496 0.800930711 0.06188264
ADH7 ENSG00000196344 0.887042456 0.004002081
ADH1B ENSG00000196616 0.800930711 0.085607147
ADH1A ENSG00000187758 0.800930711 0.116789434

tABLe 2 | differential gene expression analysis between cancer and 
normal samples based on Grasso et al. dataset (23).

Gene symbol Probe Id Adjusted p-value Log fold-change

ALDH1A2 A_24_P73577 2.24E−15 −3.811791
CYP26A1 A_23_P138655 3.35E−03 2.7341369
CYP26B1 A_23_P210100 6.86E−02 −1.3187345
RDH10 A_32_P25050 1.57E−01 −0.7989623
ADH5 A_24_P260346 2.68E−13 −2.1221184
DHRS3 A_23_P33759 1.16E−01 −0.4794662
ADH4 A_23_P30098 3.91E−01 0.592659
ADH1B A_24_P940469 4.15E−03 2.0103106
ADH1A A_24_P291658 1.58E−02 1.669169
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of 2/2047  =  0.1%. The OGS comprises CYP26C1 and RDH10, 
both of which coordinate tightly with ALDH1A2 to control RA 
activities (36, 37).

We then compared DFS in the patient cohort (n = 491) with 
altered expression of the two genes in the OGS (Figure  3B). 
Being positive for OGS, defined as having significantly altered 
expression of any or all of the genes in the OGS signature, was 
associated with statistically significant poor survival (log-rank 
p-value =  0.0248, HR =  2.213, 95% CI =  1.1–4.098). A strong 
correlation is seen between OGS and DFS: patients with OGS 
have median DFS of 62.7 months (Figure 3B, red curve) while 
>55% patients without OGS are still disease-free after 150 months 
(Figure 3B, black curve).

Complementarity of Prognostic Value of 
oGs with traditional Clinical Measures
We performed univariate Cox regression to investigate the 
association between OGS and Gleason score (Table 5). Gleason 
score, devised in the 1960s and 1970s by Donald Floyd Gleason, 
is one of the most well-established clinical measures of PCa 
disease status, where the conventional scale of 6–10 (hereby 
referred to as OldGleason) is routinely practiced (38). Recently, 
John Hopkins researchers challenged this old scale and pro-
posed a new scale of 1–5 (hereby referred to as Gleason) that was 
validated to exhibit better prognostic values (15). In agreement 
with recent studies (7), low grade Gleason scores (OldGleason 
6 and 3 + 4) are not predictive of disease relapse (Table 5). In 
contrast, whether a patient has altered OGS expression (based 
on gene expression, |z|  >  1.96, see Bioinformatics Analysis) 
can predict DFS based on Cox regression analysis (Table  5, 
p = 0.0248, HR = 2.123). Further, ANOVA analysis of the mul-
tivariable Cox regression model with OGS plus Gleason score 
(Gleason + OGS, Table 6) shows that adding the OGS variable 
significantly improve the predictive power of Gleason score 
alone in a univariable Cox regression model (p = 2.19 × 10−11 
at 4 degrees of freedom).

dIsCUssIoN

As the number of large-scale genomics datasets exponentially 
increases due to decreasing experimental costs, current limita-
tions reside in our capacity to extract relevant information. Our 
study illustrates a novel pipeline applicable to any range of dis-
ease cohorts that can assist in mining these datasets in a robust 
and unbiased way to generate clinically relevant knowledge. 
Combinatorial enumeration of all possible subsets of n genes 
with DFS helps isolate k gene sets based on statistical significance 
(i.e., KM log-rank p-value  <  0.05). From there, we are able to 
identify an OGS signature, whose dysregulation can be associated 
with DFS in early stage PCa patients (Figure 3). We illustrate this 
process with ALDH1A2, where by using this RA as a seed for the 
data-mining pipeline, we identify an initial set of n = 11 genes, 
which is reduced by statistical significance, first to k  =  2 gene 
sets, and then refined to an OGS containing just two genes. This 
optimal gene signature has significant predictive power of relapse, 
both alone and in combination with the traditional histological 
Gleason score.

oGs expression Profiles Based on 
Predictive Power Using the tCGA  
Patient Cohort
The TCGA dataset contained 491 PCa cases for which there 
was clinical information, and of those, 92 patients (18.7%) had 
relapsed. A comparison between relapsed patients and patients 
with DFS did not identify any significant differences in the clini-
cal characteristics of age, number of lymph nodes removed, and 
most recent PSA value (all p-values ≥0.05 using heteroscedastic 
unpaired t-test; Table 4).

We investigated the relationship between DFS and every pos-
sible candidate gene set based on the core gene set Gcore, defined 
as the power set of Gcore. The KM log-rank statistic was used for 
unbiased exploration of these gene subsets in correlation with 
DFS, producing a DFS landscape (Figure 3A). Surprisingly, the 
KM p-values were found to be statistically significant for only 
two gene sets (Figure  3A, below dashed line), at a probability 
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tABLe 6 | ANoVA analysis for multivariable Cox regression models of 
Gleason score and/or optimal gene set (oGs).

Clinical 
parameters

Log (likelihood) Chi-square degree of 
freedom

p-Value

Gleason −494.69 Reference Reference Reference
Gleason + OGS −466.78 55.816 4 2.191 × 10−11*

*p-Value < 0.05.

tABLe 5 | Univariate Cox regression analysis of Gleason score and 
optimal gene set (oGs), with respect to disease-free survival.

Clinical parameters Univariate hR (95% CI) p-Value

Gleason 1 (OldGleason ≤ 6) Reference Reference
Gleason 2 (OldGleason = 3 + 4) 3.638 (0.473, 27.98) 0.21472
Gleason 3 (OldGleason = 4 + 3) 5.223 (0.6788, 40.19) 0.11233
Gleason 4 (OldGleason = 8) 9.173 (1.1997, 70.13) 0.03273*
Gleason 5 (OldGleason ≥ 9) 20.826 (2.8802, 150.58) 0.00263*
OGS 2.123 (1.1, 4.098) 0.0248*

*p-Value < 0.05.

FIGURe 3 | systematic analysis of all candidate gene sets, generated from the power set of 11 genes in Gcore. (A) The DFS Kaplan–Meier (KM) log-rank 
p-value landscape from the ALDH1A2-derived candidate gene sets. The optimal gene set (OGS) according to KM log-rank p-values is indicated (red dashed box). 
(B) KM log-rank survival curves of n = 491 patients in the TCGA cohorts with respect to the presence or absence of aberrant expression (based on z-statistics) of 
genes in the OGS.
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The decision to use ALDH1A2 as a seed for our case study 
comes from the increasing evidence for the role of RAs in 
mammalian homeostasis and disease, especially the intimate 
association of the RA signaling pathway with a variety of cancers, 
including leukemia, neuroblastomas, and carcinomas, as well as 
gastric, ovarian, lung, breast, colon, rectal, pancreatic, and PCas 
(18–20). In PCa, a previous study has found hypermethylation 
of ALDH1A2 in cancer cell lines subjected to treatment with 
the chemotherapeutic agent 5-aza-2′-deoxycytidine (18). 
Hypermethylation of ALDH1A2 led to reduced gene expression 
in PCa cell lines. Moreover, ALDH1A2 levels were also reduced 
in human primary prostate tumors when compared with normal 

prostate tissue. Reduced expression of ALDH1A2 also correlated 
with shorter recurrence-free survival of patients, suggesting 
that ALDH1A2 may in fact be a tumor suppressor gene for 
PCa. A second study using an adenocarcinoma prostate model 
confirmed reduction of ALDH1A2 in prostate tumors in mice 
(33). This study was further supported by measuring  ALDH1A2  
protein levels in prostate tissue from PCa patients, where PCa 
tissue samples showed reduced ALDH1A2 expression compared 
with healthy tissue. Finally, the ALDH1A2 case study has been 
chosen because of its potential significance other disease models, 
as we have previously demonstrated that the ALDH1A2 pathway 
is involved in a completely different disease context, i.e., cardiac 
fibrosis (39, 40).

Our case study results are not only consistent with the evi-
dence for the role of ALDH1A2 in PCa but also show that the 
ALDH1A2 pathway could potentially be used as biomarker for 
treatment selection: aberrant expression of genes involved in the 
regulation of ALDH1A2 defines a patient group associated with a 
significantly high risk of relapse, thereby facilitating stratification 
of patients to ensure the appropriate individualized selection of 
therapy. Combining the OGS with clinical parameters, especially 
Gleason score, further increases discrimination between relaps-
ing and non-relapsing patients.

The combinatorial ranking procedure can be applied to other 
cancers, with appropriate adjustment based on the available data-
sets. We performed combinatorial ranking on the TCGA Breast 
Cancer dataset with 10 genes of Gcore (ADH1B was excluded due 
to missing data in this cohort). The metrics used was KM log-
rank p-values for overall survival, rather than DFS. The procedure 
returned three significant gene sets with p < 0.05 (Figure S1 in 
Supplementary Material), where the OGS* contains ADH5, 
ADH7, and CYP26A1. Being positive for OGS* was associated 
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with statistically significant poor overall survival (log-rank 
p-value = 0.0201, HR = 1.245, 95% CI = 1.035–1.497).

The major limitations of this study relate to the data. In this 
cohort, patients were seen at multiple different institutions, which 
could lead to some biases in sample collection and data collection 
and processing. Added to this, overall survival information is not 
available, which therefore limits the analysis to DFS. This is a 
significant issue in diseases such as PCa, where there may be a 
long period of time prior to relapse. Our analysis also does not 
take in to account the type of treatment that was administered, 
which could affect patient outcomes. Finally, our automated data-
mining approach has a benefit of being unbiased, but at the same 
time we may lose some of the expertise-driven analyses that are 
emerging from studies of individual genes.

Despite these limitations, our ALDH1A2-derived OGS is nev-
ertheless highly predictive of PCa relapse, and of particular note 
it is predictive in the context of early PCa, where decisions around 
treatment can be most difficult in terms of being appropriate and 
proportional to the disease severity and prognosis. The pipeline 
is automated, which allows a large-scale and unbiased assessment 
of the available data, such that just a single seed gene can be used 
to generate then rank very large numbers of gene panels, and is 
designed to be intuitive for clinicians. The case study illustrates 
the power of the pipeline with PCa but can the technology be 
applied to any cancer, or indeed any other disease, especially 
where clinical data are available to assess the prognostic value of 
the gene panel, ahead of clinical assessment, and validation of the 
derived optimal gene signature.
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FIGURe s1 | systematic analysis of all candidate gene sets in the Cancer 
Genome Atlas (tCGA) breast cancer cohort (n = 2,509), generated from 
the power set of Gcore. Out of 11 genes in Gcore, the ADH1B gene was excluded 
due to missing data from this cohort, leaving 10 remaining genes for power set 
generation. (A) The overall survival KM log-rank p-value landscape from the 
ALDH1A2-derived candidate gene sets. The optimal gene set (OGS*) according 
to KM log-rank p-values is indicated (red dashed box), which contains three 
genes: ADH5, ADH7, and CYP26A1. (B) KM log rank overall survival curves of 
patients in the TCGA breast cancer cohorts with respect to the presence or 
absence of aberrant expression (based on z-statistics) of 10 genes in OGS*.

dAtA s1 | R script for executing the combinatorial ranking pipeline is 
maintained via Github at https://github.com/nimt0001/
CombinatorialRank. The code performs combinatorial ranking based on a 
specific patient cohort from TCGA. As the TCGA database is updated regularly, 
results from the provided R script can change from run to run and should be 
used only as a reference.
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