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Tumor cells reprogram their metabolism to survive and grow in a challenging micro-
environment. Some of this reprogramming is performed by epigenetic mechanisms. 
Epigenetics is in turn affected by metabolism; chromatin modifying enzymes are 
dependent on substrates that are also key metabolic intermediates. We have shown 
that the chromatin remodeling enzyme Brahma-related gene 1 (BRG1), an epigenetic 
regulator, is necessary for rapid breast cancer cell proliferation. The mechanism for this 
requirement is the BRG1-dependent transcription of key lipogenic enzymes and regu-
lators. Reduction in lipid synthesis lowers proliferation rates, which can be restored by 
palmitate supplementation. This work has established BRG1 as an attractive target for 
breast cancer therapy. Unlike genetic alterations, epigenetic mechanisms are reversible, 
promising gentler therapies without permanent off-target effects at distant sites.
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Tumor cells reprogram their metabolism to support growth in their unique and challenging micro-
environment, a hypoxic environment with inadequate blood supply for normal nutrient replenish-
ment. As first observed by Otto Warburg (1, 2), tumor cells develop a glycolytic metabolism where 
energy is derived primarily from nutrient catabolism to lactate and not from the mitochondrial 
Krebs cycle where cells in normal tissue derive most of their energy. Although adaptive to a hypoxic 
tumor microenvironment, this preference for glycolysis persists even when oxygen is abundant. The 
nutrient fuel for glycolysis is glucose, but tumor cells also become “addicted” to the normally non-
essential amino acid glutamine (3), as first observed in cultured cells by Harry Eagle (4). Glutamine 
can serve as a carbon and nitrogen source for amino acid synthesis and can fuel the residual Krebs 
cycle after conversion to glutamate and then α-ketoglutarate. After a period of neglect, cancer 
metabolism is now recognized as central to the cancer phenotype and as an important target for the 
development of therapies (5).

ReGULATiOn OF MeTABOLiSM

Cells carefully regulate their metabolism with nested levels of controls (6). First, levels of circulating 
molecules that serve as feedstock for metabolic pathways change with diet. These include plasma-
free fatty acids and amino acids that increase after a meal (7) or plasma ketone bodies and free fatty 
acids that increase after a prolonged fast (8, 9). Second, allosteric regulation of metabolic enzymes 
changes flux rates through metabolic pathways in response to concentrations of substrates or products 
(10–12). Third, there is regulation by hormones (13), often through posttranslational modification 
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of metabolic enzymes. For example, glycogen deposition or 
depletion is regulated by a protein kinase cascade-modifying 
glycogen synthase and glycogen phosphorylase downstream of 
insulin or glucagon (14, 15). AMP-activated Kinase (AMPK) is 
a master regulator of metabolism that can sense cellular energy 
status and respond by switching on and off pathways to achieve 
energy homeostasis (16, 17). AMPK is activated in response to 
cellular ATP depletion, which can result from low glucose levels, 
hypoxia, and heat shock. Upon activation, AMPK upregulates 
pathways replenishing ATP, including fatty acid β-oxidation 
and autophagy, and downregulates ATP-consuming processes, 
including lipid synthesis and protein synthesis.

The protein kinase mTOR (mechanistic target of rapamycin) 
(18, 19) is the core Ser/Thr protein kinase in two signal transduction 
complexes, mTORC1 and mTORC2. mTORC1 is a master growth 
regulator that senses and integrates diverse signals, including lev-
els of growth factors, amino acids, other metabolites, and cellular 
stress. mTORC2 activates the cell signaling Ser/Thr protein kinase 
AKT, promotes cellular survival, regulates cytoskeletal dynamics, 
and regulates growth via SGK1 phosphorylation. mTOR com-
plexes promote cell growth through regulation of anabolic and 
catabolic metabolic processes by multiple mechanisms, as well as 
through control of cell proliferation. An altered interplay of all of 
these mechanisms participates in the progressive reprogramming 
of metabolism with tumor progression.

TRAnSCRiPTiOnAL ReGULATiOn OF 
MeTABOLiSM

Metabolic pathways can also be regulated by transcriptional 
mechanisms increasing or decreasing levels of enzymes. Take 
the example of lipid metabolism. The Sterol Regulatory Element 
Binding Protein (SREBP) transcription factors are the master 
regulators that control the expression of nearly all lipogenic 
enzymes. The mTORC1 complex regulates lipid synthesis (20) 
through SREBP by multiple mechanisms. In response to cellular 
signaling, mTORC1 regulates SREBP processing through S6K 
and increases SREBP nuclear accumulation through Lipin 1, 
a phosphatidic acid phosphatase that is also a transcriptional 
coactivator (21–25). mTORC1 phosphorylates Lipin1, preventing 
its translocation into the nucleus where it can inhibit SREBP1/2-
dependent transcription (24). mTORC1 also increases the activ-
ity and expression of peroxisome proliferator-activated receptor γ 
(PPARγ), another transcriptional regulator of lipogenic genes (26, 
27). By these mechanisms, mTORC1 increases the transcription 
of lipogenic genes, including key enzymes in fatty acid synthesis, 
such as acetyl CoA carboxylase (ACC), ATP citrate lyase (ACLY), 
and fatty acid synthase (FASN). As we shall discuss, we have 
shown Lipin1 and each of these enzymes involved in fatty acid 
synthesis to be transcriptionally regulated by Brahma-related 
gene 1 (BRG1), a chromatin remodeling enzyme (28).

CAnCeR ePiGeneTiCS

Epigenetic mechanisms control heritable phenotypes without 
changes in DNA sequence, often changing chromatin structure by 

modulating DNA methylation, the posttranslational modification 
of histones and non-histone chromatin associated proteins, and 
the regulation of ATP-dependent chromatin remodeling enzymes 
that control genome accessibility (29). Epigenetic mechanisms 
regulate normal development and maintain tissue-specific gene 
expression patterns while their disruption can cause altered 
gene function and contribute to malignant cellular transforma-
tion. The initiation and progression of cancer has been seen as a 
genetic disease, but we now realize that epigenetic abnormalities 
contribute to the development of cancer. Cancer cells often have 
altered levels or activities of epigenetic regulatory proteins with 
consequences including altered chromatin structure and altered 
regulation of gene expression (30, 31). These are so common and 
numerous that global changes in the epigenetic landscape are 
now considered a hallmark of cancer (5).

THe ROLe OF BRG1 in CAnCeR 
ePiGeneTiCS iS COnTeXT DePenDenT

Chromatin structure presents a barrier to transcription factors 
and polymerases accessing DNA. Several multiprotein complexes 
alter chromatin structure using the energy derived from ATP-
hydrolysis (32–34), including the mammalian SWI/SNF family of 
chromatin modifiers, which are large, multisubunit enzymes that 
contain one of two closely related ATPases called BRM or BRG1 
(35–37). SWI/SNF complexes containing either catalytic subunit 
alter nucleosome structure and facilitate binding of transcrip-
tion factors to nucleosomal DNA in an ATP-dependent manner 
(38, 39). Subunits of the mammalian SWI/SNF complexes are 
important for gene activation and repression, development and 
differentiation, recombination and repair, cell cycle control, and 
tumorigenesis (40–43). For example, the SNF5 (INI1) subunit is 
required for embryonic development and functions as a tumor 
suppressor (44–46).

Brahma-related gene 1 (BRG1) function in cancer is context 
dependent. BRG1 is mutated in lung and other cancers, where it 
may function as a tumor suppressor (30, 47). Cancers that have 
lost the SWI/SNF INI1 subunit require BRG1 (48), suggesting that 
targeting BRG1 may be therapeutic for these tumors. Similarly, 
targeting BRM might be an effective strategy for targeting BRG1-
deficient tumors (49, 50). As we and others have shown, BRG1 
is upregulated but rarely mutated in primary breast and prostate 
tumors, in melanoma and neuroblastoma, and in pancreatic, gas-
tric, and colorectal carcinomas (51–60). Mice heterozygous for 
Brg1 develop mammary tumors (61, 62). However, conditional 
knockout of Brg1 in mammary gland does not cause mammary 
tumors (63). Genome sequencing of more than 500 primary 
breast cancers showed none with mutations in BRG1 (64). The 
evidence suggests that BRG1 can be a driver of cancer as well as 
a tumor suppressor.

FATTY ACiD MeTABOLiSM AnD CAnCeR

In tissues with high rates of lipogenesis such as liver, lactating 
mammary gland, and adipose tissue, the fatty acid synthesis path-
way has three principal functions: storage of excess energy as fat, 
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synthesis of lipids from carbohydrate or protein precursors when 
dietary lipids are scarce, and synthesis of milk fats during lactation. 
Most normal cells in other tissues do not synthesize fatty acids de 
novo but preferentially use circulating lipids. However, upregula-
tion of both lipogenic genes and overall lipogenesis are observed 
widely in tumors in those non-lipogenic tissues (65). Depending 
on the tumor type, tumor cells synthesize up to 95% of saturated 
and mono-unsaturated fatty acids de novo from acetyl CoA 
despite a sufficient exogenous supply of fatty acids (66). Lipogenic 
enzymes, such as FASN, ACC, and ACLY that are required for fatty 
acid biosynthesis, and SREBP1, the master regulator of lipogenic 
gene expression, are overexpressed in many cancers, including 
breast (67–70). FASN is a key enzyme involved in energy stor-
age from excess carbohydrates to fat in liver and adipose tissue, 
during lactation in breast, and in support of reproduction in 
endometrium and decidua. But FASN expression during these 
processes is strictly regulated by nutrition and hormonal levels. In 
contrast, FASN is highly expressed in many cancer and precancer-
ous lesions. The expression of FASN is independent of nutrition, 
in many cancers, as well as independent of hormonal regulation. 
Whereas various tumor types have elevated endogenous fatty acid 
biosynthesis irrespective of extracellular lipid availability, most 
normal cells, even those proliferating rapidly, preferentially use 
exogenous lipids for synthesis of new structural lipids (65, 71).

The activation of the de novo fatty acid synthesis pathway is not 
only observed in tumors but also may be required for malignant 
progression (65, 72, 73). For example, elevated levels of FASN, 
the enzyme catalyzing the synthesis of palmitate and thereby 
required for long chain and unsaturated fatty acid synthesis, are 
correlated with poor prognosis in breast cancer patients (65, 72). 
Increases in FASN activity and expression are observed early 
in cancer development and correlate with cancer progression, 
while high FASN levels correlate with more aggressive malignant 
phenotypes (65). Inhibiting key enzymes involved in fatty acid 
synthesis, including FASN, ACC, and ACLY, with small molecules 
or knockdowns reduces cell proliferation, induces the apoptosis 
of cancer cells, and decreases the growth of human tumors grown 
as mouse xenografts (65, 71, 74–77).

BRG1 iS neCeSSARY FOR FATTY ACiD 
BiOSYnTHeSiS in SUPPORT OF 
PROLiFeRATiOn in BReAST CAnCeR

We first reported that the alternative SWI/SNF chromatin 
remodeling enzyme ATPases BRG1 and BRM are required for 
proliferation of breast cancer cells (59). Western blots of biopsies 
showed that BRG1 protein levels were higher in tumor than in 
normal tissue. Analysis of TCGA Breast Cancer patient data 
revealed an approximate twofold increase in BRG1 mRNA levels 
(64) and in BRG1 protein levels (78) in tumors compared to 
normal tissue across all subtypes. These are not well-controlled 
comparisons because of the great heterogeneity in normal tissue 
cell types. More convincingly, immunohistochemistry confirmed 
that the BRG1 and BRM proteins are greatly overexpressed in 
most primary breast cancers independent of receptor status (55, 
59). BRG1 staining was rarely observed in the normal ductal 

epithelial cells from which most breast tumors derive but was seen 
in normal myoepithelial cells. However, in tumors BRG1 staining 
was observed in almost every cell. Because of the heterogeneity of 
breast cancer subtypes our further experimental work focused on 
triple-negative breast cancer, the most aggressive and deadly type.

Knockdown of either ATPase in triple-negative breast cancer 
cell lines reduced cell proliferation in vitro and tumor formation in 
xenografts. An extended cell cycle progression time was observed 
without apoptosis, without senescence, or without alterations in 
migration or attachment. Combined knockdown of BRM and 
BRG1 produced additive effects, suggesting that these enzymes 
function, at least in part, through independent mechanisms. 
Knockout of BRG1 or BRM using CRISPR/Cas9 technology 
caused cell death. Our work supports the novel idea that overex-
pression of BRG1 and BRM is common in breast cancer and that 
BRG1 and BRM are required for breast cancer cell proliferation 
and survival. These results are in direct contrast to other tumors 
where BRG1 acts as a tumor suppressor (79). For example, it 
is mutated in lung and other cancers. We and others have now 
shown that BRG1 is upregulated but rarely mutated in primary 
breast and prostate tumors, in melanoma and neuroblastoma, 
and in pancreatic, gastric, and colorectal carcinomas (51–60, 80).

When we began our studies, it was expected that BRG1 was a 
weak tumor suppressor in mammary gland because about 10% of 
Brg1+/− mice eventually developed mammary tumors (61, 62) 
and because there were functional interactions between BRG1 
and cell cycle regulatory proteins, including RB and p53 (30, 42, 
81). This tentative identification of BRG1 as a mammary tumor 
suppressor was challenged by our work (59) and by others (55). 
The conditional knockout of Brg1 in the mouse mammary gland 
did not cause mammary tumors (63). We observed that fewer 
than 2% of BRG1 sequences in the TCGA database contained 
mutations. Breast cancer is not alone in this requirement for 
BRG1. BRG1 is also required for the proliferation of HeLa cells 
and mouse fibroblasts (82, 83).

What is the mechanism for the BRG1 requirement for breast 
cancer cell proliferation? We discovered that BRG1 promotes 
breast cancer by reprogramming lipid synthesis (28) as shown 
in Figure 1. BRG1 knockdown reduced the rate of chloroform/
methanol extractable lipid synthesis by 35% while glucose uptake 
remained unchanged. mRNA and protein levels for ACC, ACLY, 
and FASN, the key enzymes in de novo fatty acid synthesis, were 
all significantly decreased in BRG1 knockdown cells as were other 
important proteins performing or regulating lipid synthesis such 
as Lipin1. BRG1 bound to the promoters of all of these genes, 
and the promoter binding was diminished in BRG1 knockdown 
cells, evidence of direct BRG1 transcriptional control. Treatment 
with either an ACC inhibitor or a FASN inhibitor decreased cell 
number, and BRG1 knockdown cells showed increased sensitivity 
to these inhibitors. Remarkably, addition of exogenous palmitate, 
the key intermediate in fatty acid synthesis, completely rescued 
proliferation. Our work supports a mechanism in which BRG1 
transcriptionally promotes de novo lipid synthesis, which is 
necessary for maintaining high rates of proliferation. In these 
cells, exogenous palmitate can substitute for endogenous FASN-
generated palmitate. Furthermore, BRG1 regulation of prolifera-
tion through fatty acid metabolism is breast cancer specific. We 
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FiGURe 1 | The chromatin remodeling enzyme Brahma-related gene 1 (BRG1) epigenetically regulates key enzymes in de novo fatty acid 
biosynthesis. The pathway for de novo fatty acid synthesis requires the enzymes ATP citrate lyase (ACLY), acetyl CoA carboxylase (ACC), and fatty acid synthase 
(FASN). ACLY is important for increasing cytoplasmic acetyl CoA to levels supportive of fatty acid synthesis. ACC is required for making malonyl CoA, which along 
with acetyl CoA is used by FASN to produce palmitate, a 16-carbon saturated fatty acid that can be extended and desaturated into the extended family of fatty 
acids which are used for fat storage and for the biosynthesis of membrane phospholipids. BRG1 is important for the transcription of ACLY, ACC, and FASN in breast 
cancer cells. Knockdown or inhibition of BRG1 decreases levels of all three enzymes with resulting decreases in lipid synthesis and decreases in breast tumor cell 
proliferation. Proliferation can be rescued with palmitate supplementation (28). Acetyl CoA is also the source of acetyl groups for histone acetylation which generally 
upregulates transcription and may cooperate with BRG1 in the regulation of gene expression.
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showed that key fatty acid synthesis enzymes are not upregulated 
by BRG1 in non-tumorigenic MCF-10A mammary epithelial cells 
(59). Though MCF-10A cells also require BRG1 for proliferation 
(84), this requirement has a different mechanism. Restoration 
of BRG1 expression in cells depleted for both BRG1 and BRM 
rescued lipid synthesis, the expression of lipogenic enzymes and 
cell proliferation so BRM is not required for these effects in this 
system.

TARGeTinG BRG1 FOR BReAST CAnCeR 
THeRAPY

Chromatin remodeling complexes have not been viewed as a 
drugable target until recently, but our work shows that the BRG1 
chromatin remodeling enzyme is an especially promising target 
for epigenetic breast cancer chemotherapy (28, 59, 85). Inhibition 

of BRG1 function decreases tumor cell proliferation, decreases 
tumor mass in mouse models, and potentiates tumor cell killing 
by clinically used chemotherapy drugs.

Only two BRG1 inhibitors have been reported. PFI-3, a Pfizer/
Structural Genomics Consortium candidate, is a small molecule 
inhibitor that specifically targets the bromo domains of BRG1, 
BRM, and PB1 (86, 87). We treated three triple-negative breast 
cancer cell lines, MDA-MB-231, MDA-MB-468, and HDQ-P1, 
with PFI-3 at different doses (85). No inhibition of cell prolif-
eration was observed. This is consistent with recent results 
demonstrating that PFI-3 does not affect the proliferation rate 
of other cancer cell lines (87). While PFI-3 does have an effect 
on some BRG1 functions, it does not dislodge full length BRG1 
from chromatin (87) and this may be necessary for inhibiting 
proliferation through control of lipid synthesis.

The natural product ADAADi (Active DNA-dependent ATPase 
A Domain inhibitor) inhibits the ATPase activity of the SWI2/
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SNF2 family of ATPases (88, 89). Enzymes from other families of 
DNA-dependent ATPases have no or greatly reduced sensitivity 
to ADAADi, and DNA-independent or RNA-dependent ATPases 
are not affected (88). ADAADi inhibits BRG1 nucleosome remod-
eling activity in vitro (88). We tested the ADAADi inhibitor on 
TNBC cell lines: MDA-MB-231, MDA-MB-468, and HDQ-P1. 
ADAADiN significantly decreased cell proliferation in these cell 
lines (85). However, ADAADi failed to decrease cell proliferation 
significantly in cells with experimentally reduced BRG1 expres-
sion. This observation strongly suggests that ADAADiN specifi-
cally targeted BRG1 in these cells by interfering with its ATPase 
function.

ADAADi decreases lipid biosynthesis in breast cancer 
cells (28) and also sensitizes cells to chemotherapy drugs, 
just as BRG1 knockdown does (85). After pretreatment with 
ADAADi, cells were exposed to different doses of six clinically 
used chemotherapy drugs and cell viability was assayed by 
MTT. ADAADi significantly increased the drug killing efficacy 
in MDA-MB-231 and MDA-MB-468 cells from 3-fold to over 
10-fold. Therefore, chemical inhibition of the BRG1 ATPase 
domain targets BRG1-mediated pro-survival pathways in 
breast cancer cells, decreasing levels of the ABC transporters 
that pump chemotherapy drugs out of cells and contribute to 
treatment failure (85).

MeTABOLOePiGeneTiCS

At the level of organisms, food intake affects patterns of gene 
expression. At the level of cells, levels of nutrients and metabo-
lites regulate patterns of gene expression. Multiple mechanisms 
have been described and many remain to be discovered (90–92). 
Epigenetic controls are often exerted through covalent modifica-
tions of chromatin proteins or through modification of DNA 
itself. The essential donor groups for these modifications are 
important metabolic intermediates including Acetyl CoA, 
S-adenosylmethionine, ATP, and NAD+.

Here, we will concentrate on histone acetylation and 
metabolism. In one form of epigenetic regulation, histones 
can be acetylated at multiple positions on their N-terminal 
tail domains, affecting gene expression at the proximate genes. 
The extent of histone acetylation at specific sites depends on 
relative rates of deposition by histone acetyl transferases and 
removal by Histone Deacetylases (HDACs). The acetyl donor for 
histone acetylases is acetyl CoA, a metabolite that is produced 
downstream of glycolysis by the mitochondrial trichloroacetic 
acid cycle, by the β-oxidation of fatty acids, or by amino acid 
catabolism. Acetyl CoA is required for both fatty acid and cho-
lesterol synthesis. ACLY generates acetyl CoA from citrate, ATP, 
and CoA (Figure 1). It partitions to both nucleus and cytoplasm, 
suggesting that nuclear acetyl CoA can be made locally (93) and 
that nucleocytoplasmic levels change with the metabolic status 
of cells, for example with glucose levels (94, 95). Knocking down 
ACLY reduces the acetylation of core histones H2B, H3, and H4 
with consequent reductions in the expression proximate genes 
(93). As we have found ACLY to be transcriptionally regulated by 
the chromatin remodeling enzyme BRG1 in triple-negative breast 

cancer cells (28), BRG1-mediated chromatin remodeling may 
tune the relationship between metabolism and histone acetyla-
tion, linking two distinct mechanisms for epigenetic regulation.

Histones can also be acylated with at least eight other species of 
short chain carboxyl groups: propionyl, butyryl, 2-hydroxyisobu-
tyryl, succinyl, malonyl, glutaryl, crotonyl and β-hydroxybutyryl 
(94, 96). The levels of these modifications may be controlled by 
the metabolic pathways producing these carboxyl groups. This 
may be a mechanism for integrating readouts from these path-
ways to control patterns of transcription. There is now evidence 
that histones are acylated with longer chain fatty acids (97). Such 
a mechanism would directly link fatty acid levels with histone 
epigenetics.

Many HDACs exist in mammalian cells. Class III HDACs, 
also known as sirtuins, are nicotinamide adenine dinucleotide 
(NAD)-dependent deacetylases (98). NAD is a coenzyme car-
rying electrons between redox reactions in its reduced form 
NADH. More than 200 metabolic enzymes use NAD+/NADH as 
a cofactor, most functioning in catabolism. For example, starting 
with one glucose molecule, two NAD+ molecules are reduced 
to NADH in glycolysis, at the step catalyzed by glyceraldehyde 
3-phosphate dehydrogenase. The highly related NADP+/NADPH 
performs the same role for enzyme catalyzed anabolic reactions, 
for example in the de novo synthesis of palmitate by FASN.

As first shown for SIRT2 (99–101), a cytoplasmically localized 
protein, sirtuins have a deacetylation activity requiring NAD+, 
but not as an electron carrier. Instead, their reactions use NAD+ 
in equal stoichiometry to the acetyl group and cleave NAD, 
generating nicotinamide and 2′-O-acetyl-ADP-ribose. Of the 
seven mammalian sirtuins, SIRT1, SIRT 6, and SIRT 7 are nuclear 
proteins, enriched in the nucleoplasm, in heterochromatin, and 
in nucleoli, respectively, and positioned to deacetylate histones 
and other nuclear proteins (102). SIRT1 efficiently deacetylates 
p53 (102).

It has been proposed that this unusual use of NAD+ makes 
these sirtuins sensors of cellular NAD+ levels. Cellular and 
nuclear NAD+ levels are close enough to the Km of SIRT1 for 
NAD+ to make this plausible (103). In this view, cellular NAD+ 
levels would change in response to metabolic fluxes or stresses 
and cause changes in histone and other nuclear protein acetyla-
tion with consequences on gene expression. Conflicts have been 
noted between this model and early studies on NAD+ levels that 
showed little response to starvation (92). NAD+ levels do cycle 
with circadian rhythms (104) and increase with exercise (105). 
NAD+/NADH ratios decrease in response to elevated glucose 
levels in C2C12 skeletal muscle cells while in the muscles of fasted 
mice SIRT1 decreases expression of AMPK targets in control 
animals and is necessary for their induction after fasting (106). 
In mouse liver, NAD+ levels are increased by 33% after fasting 
for 24  h and return to control levels after 24  h after refeeding 
(107). SIRT1 protein levels were induced after refeeding, showing 
a second mechanism for SIRT1 activity regulation. The energy 
sensor AMPK increases cellular NAD+ levels, increasing SIRT1 
deacetylation of downstream SIRT1 targets (108). SIRT1 is pro-
posed to activate AMPK creating a feedback loop between SIRT1 
and AMPK that controls energy metabolism.
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THeRAPeUTiC inTeRvenTiOn in 
BReAST CAnCeR ePiGeneTiCS AnD 
MeTABOLiSM

The reciprocal relationships between metabolism and epigenetic 
regulation are attractive opportunities for targeted cancer therapy. 
Multiple drug candidates targeting epigenetic mechanisms are 
currently in trials for breast cancer. Among those with published 
promising results are the HDAC inhibitors SAHA (Vorinostat) 
(109–111), entinostat (112), valproate (113), and romidepsin 
(114). Romidepsin and vorinostat have been FDA approved for 
treatment of T-cell lymphomas (115, 116). An inhibitor of a DNA 
methyltransferase, 5-aza-2′-deoxycytidine (5azaC), causes DNA 
hypomethylation, is FDA approved for treatment of myelodys-
plastic syndrome (117, 118), and has early promise for breast 
cancer (119, 120). The great promise of these drugs should drive 
the search for other epigenetic targets in cancer therapy.

In the work, we have reviewed here, the chromatin remod-
eling enzyme BRG1 and its breast cancer-specific effects on lipid 

metabolism are an attractive target for breast cancer therapy. Our 
work establishes that one part of the anti-cancer mechanism of 
BRG1-targeted drugs is an effect on fatty acid synthesis decreasing 
proliferation. Unlike genetic alterations, epigenetic mechanisms 
are reversible, promising gentler therapies without permanent 
off-target effects at distant sites.
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