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Despite advances in molecular characterization and lung cancer treatment in recent 
years, treatment options for patients diagnosed with squamous cell carcinoma of the 
lung (SCC) remain limited as actionable mutations are rarely detected in this subtype. This 
article reviews potential molecular targets and associated novel agents for the treatment 
of advanced SCC in the era of personalized medicine. Elements of various pathways 
including epidermal growth factor receptor, PI3KCA, fibroblast growth factor receptor, 
retinoblastoma, cyclin-dependent kinases, discoidin domain receptor tyrosine kinase 2, 
and mesenchymal-to-epithelial transition may play pivotal roles in the development of 
SCC and are under investigation for drug development.
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inTRODUCTiOn

In 2016, lung cancer remains the most commonly diagnosed malignancy and accounts for the 
most cancer-related deaths worldwide, representing a significant global health burden (1). The 
majority of these neoplasms are pathologically categorized as non-small cell lung cancer (NSCLC), 
which is further divided into three main pathological subtypes: adenocarcinoma, squamous cell 
carcinoma (SCC), and large cell carcinoma. SCC represents an estimated 20% of NSCLC in 
developed countries and is mainly attributed to tobacco consumption (2). In the past decade, 
breakthroughs in molecular characterization of cancers have revolutionized the classification and 
therapeutic arsenal for lung malignancies. With the discovery of oncogenic driver mutations in 
epidermal growth factor receptor (EGFR) and rearrangements in anaplastic lymphoma kinase 
(ALK) and ROS1, there has been a paradigm shift from a “one size fits all” approach to lung cancer 
treatment to more precise and rational targeted therapy (3, 4). Targeted agents such as EGFR 
and ALK tyrosine kinase inhibitors (TKI) are now routinely used in clinical practice and have 
contributed to improving the previously dismal prognosis of this malignancy (5–12). Unfortunately, 
the impact of these developments to date is largely limited to lung adenocarcinoma as these 
actionable mutations are rarely detected in other subtypes such as pure SCC (13). This article 
reviews potential molecular targets and associated novel treatments for advanced lung SCC in 
the new era of personalized medicine (Figure 1; Table 1).

In recent years, comprehensive molecular profiling of SCC has revealed that these cancers harbor 
numerous genomic and epigenomic alterations with a reported mean of 360 exonic mutations, 
165 rearrangements, and 323 segments of copy-number alteration per tumor (14). Relative to 
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TabLe 1 | estimated incidence of targetable molecular aberrations in 
squamous non-small cell lung cancer (nSCLC).

Gene and aberration incidence (%) Reference

eGFR
Mutation 0–4.9 Lindeman et al. (13)

1.1 TCGA (14)
4 Spoerke et al. (15)

Amplification 7 TCGA (14)

aLK
Rearrangement 0 Lindeman et al. (13)

FGFR
Mutation 0.8b CLCGP/NGM (16)

8c TCGA (14)

Amplification 9.7–22 Weiss et al. (17)

16e Heist et al. (18)

Pi3KCa
Amplification 37 Spoerke et al. (15)

33 Yamamoto et al. (19)

Mutation 9 Spoerke et al. (15)

16 TCGA (14)
3.6 Yamamoto et al. (19)
6.5 Kawano et al. (20)

PTen
Loss 21 Spoerke et al. (15)

Mutation 8 TCGA (14)
10.2 Jin et al. (21)

Rb1
Mutation 7 TCGA (14)

CDK
Amplificationd Significantly amplified TCGA (14)

CDKn2a
Mutation 15 TCGA (14)
Lossa 72 TCGA (14)

DDR2
Mutation 1.1 CLCGP/NGM (16)

3.8 Hammerman et al. (22)

MeT
amplification 6.2–10.3 Go et al. (23)

aVia epigenetic silencing by methylation, inactivating mutation, exon 1β skipping and 
homozygous deletion.
bAll FGFR3 mutations.
cFGFR1, 2, 3, and 4 mutations.
dSignificant amplification of CDK6 and CCND1.
eFGFR1 amplification.

FiGURe 1 | General signaling schema of cell membrane (eGFR, FGFR, 
MeT, and DDR2), cytoplastic (Pi3KCa, aKT, mTOR, and PTen), and 
nuclear (Rb1 and CDK) molecular targets in squamous nSCLC. CDK, 
cyclin dependent kinases; DDR2, discoidin domain receptor tyrosine kinase 
2; ECM, extracellular matrix; EGF, epidermal growth factor; EGFR, epidermal 
growth factor receptor; FGF, fibroblast growth factor; FGFR, fibroblast growth 
factor receptor; HGF, hepatocyte growth factor; mTOR, mammalian target of 
rapamycin; MET, mesenchymal-to-epithelial transition; PTEN, phosphatase 
and tensin homolog. Credit to Matthew Villagonzalo, graphic artist, University 
Health Network.

2

Soldera and Leighl Update on the Treatment of Metastatic Squamous NSCLC

Frontiers in Oncology | www.frontiersin.org March 2017 | Volume 7 | Article 50

other tumor types, only malignant melanomas contain a higher 
burden of genetic abnormalities (24). This is not surprising since 
both of these cancers are associated with significant exposure 
to carcinogens. In fact, SCC is known to be strongly associ-
ated with chronic tobacco exposure (25). With such a complex 
genetic landscape and associated high immunogenicity, this 
tumor type has been an interesting target for immunotherapy 
and chemotherapy, but the development of targeted agents has 
thus far represented a significant challenge (26). To address this 
lack of targeted therapies, the Cancer Genome Atlas Project 
compared SCC samples to normal pulmonary tissue in order to 
identify potential actionable mutations (14). Eleven recurrent 
genomic abnormalities were reported, including tumor protein 
53, cyclin-dependent kinase inhibitor 2A (CDKN2A), phosphatase 
and tensin homolog (PTEN), PIK3CA, Kelch-like ECH-associated 
protein 1, mixed-lineage leukemia protein 2, human leukocyte 
antigens A, nuclear factor erythroid-derived 2-like 2, NOTCH1, 
and retinoblastoma (Rb1) (Figure  1; Table  1). Aberrations in 
these genes are thought to promote oncologic transforma-
tion and progression through their effect on cell survival and 
proliferation, cell cycle progression, metastatic spread, genetic 
instability, and response to oxidative stress. Other series have 
demonstrated similar recurring mutations, while also demon-
strating significant abnormalities in Kirsten rat sarcoma viral 
oncogene homolog (KRAS), PI3KCA, mesenchymal-to-epithelial 
transition (MET), human epidermal growth factor receptor 2, 
fibroblast growth factor receptor (FGFR), platelet-derived growth 
factor receptors (PDGFR), BRAF, and discoidin domain receptor 
tyrosine kinase 2 (DDR2) (15–23, 27) (Figure 1; Table 1). These 
findings have fueled the development of multiple targeted agents 
directed against these pathways (Table 2).

ePiDeRMaL GROwTH FaCTOR 
ReCePTOR

EGFR TKIs improve outcomes for patients with lung cancer 
harboring activating EGFR mutations. While these mutations are 
commonly found in adenocarcinoma, women, Asians and light 
or never smokers (3, 5–10), they are rarely found in pure SCC 
with series reporting a rate in the range of 0–5% (13). Despite this, 
EGFR TKI have shown significant benefit compared to placebo 
in patients with advanced lung cancer (all genotypes) having 
progressed on first or second-line chemotherapy, including SCC 
(28–30). More recently, Soria et al. reported further advantage of 
afatinib over erlotinib in the treatment of advanced unselected 
SCC (including mixed NSCLC) in terms of both PFS (median 
2.6 versus 1.9 months; HR 0.81, 95% CI 0.69–0.96, p = 0.0103) 
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TabLe 2 | Clinical trials of targeted therapies in squamous nSCLC.

agents Trial Phase Outcome Reference

(95% Ci)

eGFR
Erlotinib versus placebo BR21 III OS HR 0.70 (0.58–0.85) Shepherd et al. (28)
Gefitinib versus D INTEREST III OS HR 1.020 (0.905–1.150) Kim et al. (29)
Afatinib versus erlotinib LUX-Lung 8 III PFS HR 0.81 (0.69–0.96) Soria et al. (30)

OS HR 0.81 (0.69–0.95)
C + T ± cetuximab BMS 099 III PFS HR 0.902 (0.761–1.069) Lynch et al. (31)

OS HR 0.890 (0.754–1.051)
Cis + V ± cetuximab FLEX III OS HR 0.871 (0.762–0.996) Pirker et al. (32)
Chemo ± cetuximab Pujol et al. Individual patient data meta-analysis PFS HR 0.90 (0.82–1.00) Pujol et al. (33)

OS HR 0.88 (0.79–0.97)
Cis + G ± necitumumab SQUIRE III OS HR 0.84 (0.74–0.96) Thatcher et al. (34)
P ± matuzumab (1 versus 3 week) Schiller et al. Randomized II ORR 5 versus 11% (p = 0.332)a Schiller et al. (35)

OS 1 week HR 0.67 (0.3–0.21)
OS 3 week HR 1.66 (0.9–0.86)

C + T ± panitumumab Crawford et al. Randomized II TTP HR 0.9 (0.66–1.21) Crawford et al. (36)

FGFR
D ± nintedanib LUME-lung 1 III PFS HR 0.79 (0.68–0.92) Reck et al. (37)

OS HR 0.94 (0.83–1.05)
Dovitinib Lim et al. Single arm II ORR 11.5% (0.8–23.8) Lim et al. (38)
AZD4547 Paik et al. Ib 0 CR, 1 PR, 4 SD, 9 PDb Paik et al. (39)
BGJ398 Nogova et al. I 15.4% PR, 34.6% SD Nogova et al. (40)

23.1% PR, 26.9% unknown

Pi3KCa
Everolimus Soria et al. Single arm II ORR 4.7% Soria et al. (41)
Everolimus + D Ramalingam et al. Single arm II ORR 8% Ramalingam et al. (42)
Erlotinib ± everolimus Besse et al. Randomized II PFS 0.769 (0.506–1.167) Besse et al. (43)
Buparlisib BASALT-1 Single arm II 12 week PFS 23.3% (9.9–42.3) Vansteenkiste et al. (44)
D ± PX-866 Levy et al. Randomized II med PFS 2 versus 2.9 mo (p = 0.65) Levy et al. (45)

med OS 7.9 versus 9.4 mo (p = 0.9)

Rb1/CDK
Palbociclib Gopalan et al. Single arm II ORR 0%, SD 50% (8/16) Gopalan et al. (46)

Med PFS 12.5 week
Abemaciclib Patnaik et al. I ORR 3%, DCR 49% Patnaik et al. (47)

DDR2
Dasatinib Johnson et al. Single arm II DCR 43%, ORR 3% Johnson et al. (48)

Med PFS 1.36 mo
Med OS 11.4 mo

Dasatinib + erlotinib Haura et al. I/II DCR 62%, ORR 7% Haura et al. (49)
Med PFS 2.7 mo
Med OS 5.6 mo

MeT
PL + TAX ± onartuzumab Hirsch et al. Randomized II PFS HR 0.95 (0.63–1.43) Hirsch et al. (50)

OS HR 0.90 (0.55–1.47)
Erlotinib ± tivantinib Sequist et al. Randomized II PFS HR 0.81 (0.57–1.16) Sequist et al. (51)

OS HR 0.87 (0.59–1.27)
Erlotinib ± onartuzumab METLung III PFS HR 0.99 (0.81–1.20) Spigel et al. (52)

OS HR 1.27 (0.98–1.65)
Erlotinib ± onartuzumab Spigel et al. Randomized II PFS HR 1.09 (0.73–1.62) Spigel et al. (53)

OS HR 0.80 (0.50–1.28)

C, carboplatin; Cis, cisplatin; CR, complete response; D, docetaxel; DCR, disease control rate; G, gemcitabine; HR, hazard ratio; Med, median; ORR, objective response rate; OS, 
overall survival; P, pemetrexed; PD, progressive disease; PFS, progression-free survival; PL, platinum; PR, partial response; SD, stable disease; T, taxane; TAX, paclitaxel; TTP, time 
to progression; V, vinorelbine.
aORR in pem versus all matuzumab containing arms.
bRepresents number of patients with measured response as detailed.
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and OS (median OS 7.9 versus 6.8  months; HR 0.81, 95% CI 
0.69–0.95, p  =  0.0077) (30). Of note, patients were previously 
treated with first-line platinum doublet and had no prior EGFR 
TKI directed therapies.

Monoclonal antibodies directed against EGFR have also been 
investigated in this setting. For example, several trials explored 
the use of cetuximab in combination with chemotherapy in treat-
ment naïve patients, including two phase III trials with conflicting 
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results (31, 32). A meta-analysis reported a HR of 0.878 (95% 
CI, 0.795–0.969; p = 0.01) for overall survival favoring the use 
of cetuximab in all lung cancer subtypes (33). Necitumumab, a 
second-generation recombinant human IgG1 monoclonal anti-
body, has also shown minor improvements in PFS and OS when 
added to gemcitabine/cisplatin first-line in advanced SCC versus 
gemcitabine/cisplatin alone (HR OS 0.84, 95% CI 0.74–0.96; 
p = 0.01) (34). No predictive markers of benefit were identified, 
although EGFR copy number may be promising (54). Conversely, 
other agents such as matuzumab and panitumumab have failed 
to show a benefit (35, 36). Despite the low frequency of action-
able mutations, SCC shows high rates of EGFR amplification and 
protein expression that could explain these results (55–57). To 
date, different trials have reported inconsistent results using these 
findings as predictive biomarkers for response to EGFR directed 
therapies and their significance remains controversial (58).

FibRObLaST GROwTH FaCTOR 
ReCePTOR

Genomic abnormalities in the FGFR pathway have also been 
frequently reported in various malignancies including SCC of 
the lung (59). Most of these aberrations are FGFR amplifica-
tions with reported rates ranging from approximately 10–25%, 
while mutations are present in approximately 0–8% of cases  
(14, 16–18). It is hypothesized that this family of transmembrane 
receptors participates in many cellular processes including cell 
survival, differentiation, migration, angiogenesis, tissue homeo-
stasis and repair, and inflammation (60–62). Clinically, FGFR 
amplifications are associated with smoking history and worse 
prognosis in SCC (63). In recent years, multiple FGFR-directed 
molecules, including both selective and non-selective FGFR 
inhibitors, have been developed but remain investigational to 
date. In the phase III LUME-lung 1 trial, nintedanib, an oral 
multiple TKI targeting FGFR1–3, vascular endothelial growth 
factor receptor 1–3, PDGFR α and β, RET, FLT3, and Src fam-
ily kinases, was investigated in combination with docetaxel 
after failure of first-line therapy versus placebo (37). Despite 
marginal improvement in PFS in the overall study population, 
OS benefit was limited to adenocarcinomas. Dovitinib, a mul-
tikinase inhibitor of FGFR1–3, VEGFR1–3, PDGFR β, c-KIT, 
and FLT3, investigated in a phase II trial of SCC lung cancers 
showed modest antitumor activity and acceptable toxicity profile 
with most common significant side effects including gastro-
intestinal toxicity (nausea, diarrhea, and anorexia), skin rash, 
and fatigue (38). Selective FGFR inhibitors, such as FGFR1–3 and 
VEGFR2 inhibitor AZD4547 and pan-FGFR inhibitor BGJ398, 
remain largely investigational, as early phase trials have reported 
mixed results in terms of efficacy (39, 40) (NCT00979134, 
NCT02154490, NCT02160041, NCT01004224). Other agents 
such as lucitanib (64) (NCT01283945, NCT02109016), ponatinib 
(NCT01935336), Bay1163877 (NCT02592785, NCT01976741), 
ARQ087 (NCT01752920), and JNJ-42756493 (NCT02699606) 
are also in development. Most trials enrolled molecularly enriched 
populations according to FGFR amplification. To date, there is 
however no standardized method or cut-off for amplification 
status with significant heterogeneity across trials.

Pi3KCa

Alterations in the PI3KCA pathway have also been implicated 
in the development and progression of advanced lung cancer 
(14). Its activation, triggering downstream AKT and mammalian 
target of rapamycin signaling, has been linked to gene amplifica-
tion and mutations, which are both found predominantly in SCC 
in the range of 35 and 3–15%, respectively (14, 15, 19–21). This 
pathway is also upregulated through inactivating mutations and 
loss of its negative regulator PTEN and rarely via AKT mutations  
(14, 21, 65). In response to various growth factors, PI3KCA-
AKT-mTOR participates in many cellular functions including 
cell growth, proliferation, differentiation, motility, and survival 
(66). In preclinical models, cells harboring PI3KCA alterations 
present aggressive phenotype and express markers of epithelial-
to-mesenchymal transition (67). Clinically, these aberrations are 
also linked to EGFR inhibitor resistance (68). Previously, multi-
ple trials have investigated the use of everolimus, an mTORC1 
inhibitor, with disappointing results (41–43). Currently, various 
newer agents targeting this pathway are in development includ-
ing isoform-specific and pan-isoform PI3KCA inhibitors, AKT 
inhibitors, and dual PI3KCA-mTOR inhibitors. Buparlisib, an 
oral inhibitor of class I PI3K (α, β, γ, and d), showed disappoint-
ing response rates in a phase II trial meeting futility criteria 
despite enrichment for PI3KCA pathway activation positive 
tumors (44). In phase I trials of advanced solid tumors including 
NSCLC, pilaralisib, an oral pan-class I PI3K inhibitor, has shown 
acceptable toxicity profile both as a single agent and in combina-
tion with EGFR inhibitors with preliminary efficacy limited to 
monotherapy use (69, 70). PX-866, an irreversible pan-isoform 
inhibitor of PI3K, failed to show benefit in terms of PFS and OS 
in a randomized phase II trial in combination with docetaxel 
compared to placebo (45). Trials investigating other selective 
PI3K inhibitors such as taselisib (NCT02785913, NCT02389842, 
NCT02154490, NCT02465060) and pictilisib (NCT01493843, 
NCT02389842) are currently ongoing both as single agents and 
in combination with chemotherapy.

Rb1 anD CYCLin-DePenDenT  
KinaSeS (CDK)

The Rb1 pathway is also commonly disrupted in various cancers. 
In association with D-type CDK, CDK4 and CDK6 promote cell 
cycle progression from the G1 to S phase via phosphorylation 
of the tumor suppressor Rb1. P16, a tumor suppressor protein 
encoded by CDKN2A, also influences this pathway through its 
negative regulation of CDK4 and CDK6, which ultimately causes 
inhibition of Rb phosphorylation. Once phosphorylated, Rb is 
rendered inactive, driving cells into synthesis thus contributing 
to oncogenesis. Deregulation of this pathway occurs as a result 
of various mechanisms in SCC including CDKN2A inactiva-
tion via promoter methylation, deletions, and mutations, Rb 
mutations and deletions, and CDK amplifications (14, 71–74). 
Furthermore, preclinical data suggest activity of CDK inhibi-
tors in lung cancer xenograft models, and therefore, CDK4/6 
inhibitors are currently under investigation for the treatment 
of advanced lung cancers (74). In a phase II trial, Gopalan et al. 
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found no responses to palbociclib, a highly specific CDK4/6 
inhibitor, in patients with advanced lung cancers and negative 
p16 expression by immunohistochemistry (46). Interestingly, 
approximately half of evaluable patients had stable disease 
(SD) suggesting treatment may induce replicative senescence. 
Abemaciclib, another CDK4/6 inhibitor, showed acceptable 
toxicity profile and preliminary efficacy in a phase I trial of mul-
tiple tumor types, including NSCLC (47). Further trials inves-
tigating these agents are currently underway (NCT02411591, 
NCT02450539, NCT02152631, NCT02079636, NCT02022982, 
NCT02389842, NCT02897375, NCT02785939).

DiSCOiDin DOMain ReCePTOR 
TYROSine KinaSe 2

Discoidin domain receptor tyrosine kinase 2 is a widely expressed 
receptor tyrosine kinase (RTK) in normal cells that is activated 
through its interaction with various types of extracellular 
matrix protein collagen. Once activated by ligand binding and 
phosphorylation, DDR2 has been shown to promote various cel-
lular functions such as migration, differentiation, proliferation, 
and survival (75). This RTK has been proposed as a potential 
treatment target in various cancers. Sequencing data has in fact 
shown mutations in the kinase domain of DDR2 in approximately 
1–4% of SCC (16, 22). Furthermore, in  vitro studies have also 
demonstrated that cells harboring these mutations are sensitive 
to silencing of DDR2 by RNA interference. Multikinase inhibi-
tors have been found to have DDR2 directed activity in cell lines 
(76). Dasatinib, a multikinase inhibitor that targets BCR-ABL, 
Src family, c-KIT, PDGFR-β, and ephrin receptor approved for 
the treatment of chronic myelogenous leukemia (CML), has been 
investigated for the treatment of NSCLC. Pitini et  al. reported 
a case of a patient with DDR2 mutated SCC who presented a 
nearly complete response following treatment with dasatinib 
for a concurrent CML (77). In a phase II trial, this agent dem-
onstrated moderate clinical activity in patients with unselected 
treatment naive advanced NSCLC (48). Its use was however 
limited by significant toxicity, in particular pleural effusion. 
Notably, one patient responded markedly to treatment with four 
others showing prolonged SD, suggesting potential benefit in a 
subset of patients. Unfortunately, investigators failed to identify 
a predictive biomarker in this subpopulation of responders. 
Another phase II trial of dasatinib in combination with erlotinib 
in heavily pretreated NSCLC showed modest efficacy with two 
patients having PR, one with an EGFR mutated adenocarcinoma 
and one with SCC (49). It is however challenging to estimate the 
antitumor activity of dasatinib in this setting as responses are 
more likely related to erlotinib.

MeSenCHYMaL-TO-ePiTHeLiaL 
TRanSiTiOn

The proto-oncogene MET is disrupted in various cancers includ-
ing NSCLC (78). It encodes a RTK that, once activated by its ligand 
hepatocyte growth factor, promotes downstream signaling via 
multiple pathways such as PI3KCA, AKT, signal transducer and 

activator of transcription 3, and mitogen-activated protein kinase 
(79). Various activating alterations in MET have been reported 
in NSCLC. For example, MET amplification has been reported 
in approximately 6–10% of SCC, while mutations, particularly 
in exon 14, are more common in adenocarcinomas (23). Once 
upregulated, MET signaling contributes to cell survival, invasion, 
migration, and proliferation (79). Clinically, MET amplification 
has been linked to EGFR TKI resistance and poor prognosis (80). 
Cells harboring alterations in this pathway were found to be 
responsive to MET inhibitors that are commonly used in other 
tumor types such as crizotinib and cabozantinib (81, 82). Several 
clinical trials have investigated various TKI with MET directed 
activity for the treatment of advanced NSCLC with disappointing 
results in the SCC subpopulation so far (50–53). For example, 
onartuzumab, a monoclonal antibody directed against MET, failed 
to show significant antitumor activity in a phase II trial in com-
bination with platinum-doublet chemotherapy (50). Moreover, a 
phase III trial of onartuzumab in combination with erlotinib was 
terminated early due to futility in terms of its primary outcome 
(OS) despite selection of patients with positive MET expression by 
immunohistochemistry (52). Tivantinib, a small-molecule MET 
inhibitor, showed modest antitumor activity in combination with 
erlotinib in unselected NSCLC (51). In subgroup analysis, benefit 
was however mostly noted in KRAS mutated patients and the 
subsequent phase III trial enrolled only non-squamous histology 
(83). Finally, identifying responding subpopulations represents a 
significant challenge in the development of these agents. In fact, 
selection of patients across trials has been inconsistent, with no 
clear definition of MET enriched populations. Overexpression 
has been defined using various methods including protein over-
expression by immunohistochemistry, gene copy-number gain, 
and amplification by fluorescent in  situ hybridization. Despite 
these challenges, multiple MET-directed molecules are cur-
rently under investigation for advanced NSCLC, including SCC 
(NCT02499614, NCT02034981, NCT00585195, NCT02925104, 
NCT02414139, NCT02929290, NCT02296879, etc).

iMMUne THeRaPY

In recent years, immunotherapy agents have elicited great interest 
for the treatment of several tumor types. Various immune check-
point inhibitors including antibodies directed against cytotoxic 
T-lymphocyte associated protein 4, programmed cell death 
protein 1 (PD-1), and programmed death ligand-1 (PD-L1) are 
under investigation or approved for clinical practice, revolution-
izing the approach to lung cancer treatment. Patients diagnosed 
with SCC in particular have benefited from these advancements, 
as alternative treatments are sparse, and they have higher muta-
tion burden, which may be associated with benefit. Agents such 
as nivolumab, pembrolizumab, and atezolizumab have demon-
strated improvement in survival outcomes in the second-line 
setting including in SCC (84–87). Furthermore, Pembrolizumab 
showed improvement both PFS and OS for patients with strongly 
PDL-1-expressing tumors treated in the first-line setting. This 
was however not the case for first-line nivolumab, another 
PD-1 inhibitor that used less restrictive PDL-1 selection, 
which had similar PFS and OS but not superior outcomes (88) 
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(NCT02041533). Much like targeted agents, the selection of 
patients seems to be an important factor when choosing the best 
course of therapy. Unfortunately, a predictive biomarker to guide 
this decision is lacking with PD-L1 expression status, a promising 
biomarker for the selection of the subgroup likely to benefit from 
PD-1 and PD-L1 inhibiting drugs, having shown mixed results 
so far. For example, in the Checkmate 017 study of nivolumab 
in advanced pretreated SCC patients, PDL-1 expression was not 
predictive of benefit and even those without PDL-1 expression 
derived survival gain (84). Conversely, PD-L1 expression was 
predictive in the Checkmate 057 trial of nivolumab in a similar 
setting in non-squamous NSCLC (85). Finally, smoking status, 
a simple clinical characteristic, could also represent a possible 
predictive marker of response.

COnCLUSiOn

SCC represents complex tumors with alterations in various 
interacting pathways (14). Despite the current wealth of avail-
able molecular data and a vast array of clinical trial results, 
multiple challenges remain in the development of targeted 
therapies for this cancer. One recurring obstacle is the definition 
of subgroups that derive optimal benefit from investigational 
agents. With the current understanding of NSCLC now refined 
according to molecular profiles, individual subpopulations rep-
resent rare tumor types limiting their accrual into traditionally 

designed clinical trials. The revolutionized classification of lung 
cancer therefore requires an equally novel approach to clinical 
trial design. In fact, a growing number of “master protocols” 
with innovative schemes such as “basket” and “umbrella” 
biomarker-driven trials have been completed or are currently 
underway (89, 90) (NCT01042379). The LUNG-MAP trial, one 
such biomarker-based master protocol, is currently ongoing in 
multiple centers (90). Enrolled patients with advanced SCC are 
assigned to treatment arms according to detected targetable 
mutations identified through a comprehensive genomic pro-
filing platform. Targeted agents such as taselisib, palbociclib, 
talazoparib, ABBV-399, rilotumumab, and AZD4547 have been 
included in this study. Furthermore, patients without action-
able mutations are included in immune therapy sub-studies 
investigating various immune checkpoint inhibitors such as 
nivolumab, ipilimumab, durvalumab, and tremelimumab. 
Considering the dismal prognosis of patients diagnosed with 
advanced SCC, a greater focus on drug development and clini-
cal trials remains of upmost importance to improve outcomes 
in this disease.
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