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Lung cancer is the most common cancer worldwide, accounting for 1.8 million new 
cases and 1.6 million deaths in 2012. Non-small cell lung cancer (NSCLC), which is one 
of two types of lung cancer, accounts for 85–90% of all lung cancers. Despite advances 
in therapy, lung cancer still remains a leading cause of death. Cancer relapse and dis-
semination after treatment indicates the existence of a niche of cancer cells that are not 
fully eradicated by current therapies. These chemoresistant populations of cancer cells 
are called cancer stem cells (CSCs) because they possess the self-renewal and differen-
tiation capabilities similar to those of normal stem cells. Targeting the niche of CSCs in 
combination with chemotherapy might provide a promising strategy to eradicate these 
cells. Thus, understanding the characteristics of CSCs has become a focus of studies 
of NSCLC therapies.

Keywords: lung cancer, non-small cell lung cancer, cancer stem cells, neoplastic stem cells, surface markers, 
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iNTRODUCTiON

Lung cancer has remained as the leading cancer cases worldwide in term of the high incidence and 
mortality rate (1). Based on data published in GLOBOCAN, 2012, there are 1.8 million new cases 
of lung cancer (or 12.8% in total) and 1.6 million deaths (19.4%) in 2012 (1). In 2016, the number 
of new lung cancer diagnosed was increased to 14% and remained as the highest mortality rate 
accounting for about 1 in 4 cancer deaths (2). Based on pathological features, lung cancer has been 
classified into two major groups: small cell lung cancer (SCLC) that accounts for only 15% of all lung 
cancer cases and non-small cell lung cancer (NSCLC) that accounts for 85% of lung cancer cases. 
NSCLC is further classified into three subtypes: adenocarcinoma, squamous cell carcinoma, and 
large cell carcinoma (LCC). Due to very poor prognosis (only 15% of patients surviving 5 years after 
treatment), treatment for lung cancer remain challenging.

Researchers believe that there is a presence of small subpopulation of cells within the tumor 
cells that driven the aggressive behavior of cancer cells and chemotherapy resistance of the cancer  
cells. The subpopulation of cancer cells is known as cancer stem cells (CSCs) or cancer-initiating cells  
(CICs) (3). According to American Association for Cancer Research, CSC was defined as “a cell 
within a tumour that possesses the capacity to self-renew and to cause the heterogeneous lineages 
of cancer cells that comprise the tumour” (4). The theory of CSC suggests that this subpopulation 
of cells has the capacity to self-renew, initiate tumors, and undergo multipotent differentiation (3). 
Many of the concepts that arise in cancer research, such as self-renewal, heterogeneity, and relapse 
after treatment and resistance to conventional chemotherapies, can be explained by this theory.
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FigURe 1 | The biology of cancer stem cells (CSCs). CSCs (red) self-renew and differentiate within tumors to form CSCs pool and non-tumorigenic cancer cells 
(yellow), which have limited proliferative potential. As the tumor grows, these cells can either undergo limited benign growth or form disseminated malignancies. 
These cells are resistance to chemotherapy and leads to cancer recurrence.
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The first solid evidence to support the CSC theory was the 
identification of relatively rare population (1:250,000 cells) of 
stem-like cells in acute myeloid leukemia (AML) (5). The cells 
were isolated based on the expression of surface protein markers 
and able to re-grown human AML when transplanted in immuno-
compromised mice (5). Later, the analysis of stem-like cells from 
various AML subtypes has found that the cells were immature in 
terms of differentiation and closely related to the hematopoietic 
stem cells (HSCs) rather than mature, terminally differenti-
ated blood cells (6). This breakthrough finding has fostered an 
intense effort to characterize and isolate CSCs in various solid 
tumor including breast, brain, prostate, colon, and pancreatic 
cancer (7–11) thus making the CSCs field at the rapidly evolving 
field that may play a pivotal role in changing how basic cancer 
researchers, clinical investigators, physicians, and cancer patients 
view cancer the CSCs study.

BiOLOgY OF CSCs

CSCs is defined as a small population of cells within tumor 
with share characteristics of normal stem cells. The cells have 
the capacity to initiate tumor formation, extensive proliferation, 
and resistant to chemotherapy (Figure  1). Apart from that, 
CSCs also share other similar characteristics like normal stem 
cells including self-renewal, expression of specific markers 
and genes, and utilization of common signaling pathways (3). 
The source of CSCs can be either from somatic stem cells or 
differentiated progenitor cells (3, 12, 13). Those cells initiate 
tumorigenesis by undergoing self-renewal and differentiation 
and thus resulting in tumor relapse, therapy resistance, and 
metastasis (3, 14).

CSCs are identified based on several approaches: (1) ability 
to self-renewal (sphere and colony forming assay), (2) ability to 
differentiate, and (3) ability to form secondary or tertiary tumors 
when transplanted into immunodeficient rodent (15). The abil-
ity of the CSCs to form tumor in immunodeficient mice was 
the commonest method to characterize the human CSCs. For 
instance, Dick et al. (16) had reported that the CD34+CD38− cells 
derived from human leukemia cells, which constituted less that 

1% cells in 10,000 leukemia cells had the ability to form leukemia 
in non-obese diabetic/severe combined immunodeficient (NOD/
SCID) mice (16).

Similar to normal cells, tumors are composed of heterogene-
ous populations (17), which distinct in tumor subtypes. The 
heterogeneous tumor cells are different in terms of morphological 
and phenotypic profiles including proliferation and differentia-
tion capacities. To illustrate, the progression of each cells within 
the tumor are different individually, in which there are some cells 
classified as cycling or non-cycling tumor cells, some may be 
in dormant state or reproductively dead (18). If the cells are in 
cycling mode, therefore, the cells may be at any stage of cell cycle 
which coincidentally may influence the cellular properties such 
as membrane properties (19, 20), antigen expression (21), sensi-
tivity to immune killing (22), drug cytotoxicity (23), and ability 
to metastasize (24). Therefore, the characteristics of the tumor 
cells will be dependent on these properties. Back then, the het-
erogeneity of tumor cells may also eventually arise from genetic 
changes, environmental differences, and reversible changes in 
cells properties that resulted different in terms of morphology 
and biology of the tumor cells (25). Unfortunately, the diversity 
of tumor heterogeneity results in greater challenge in targeting 
specific CSCs. Thus, a number of specific markers are required 
in order to identify the CSCs population specifically lung CSCs 
(see Markers for Lung CSCs). Taken into consideration the 
tumor niches or microenvironment that control the stemness 
of the CSCs, the differences in the histological types and clinical 
presentations of lung cancer have contributed to the fact that the 
CSCs can produce morphologically and biologically different 
tumor within the same tissue.

Lung cancer has been considered as the most complex type 
of cancer due to the genotypic and histological varieties. This in 
turn, making the study of lung CSCs less explored as compared to 
other types of cancer (26). CSCs of lung cancer has been proposed 
to originate from several sources including from airway stem 
cells, bronchiole alveolar progenitor cells, basal/mucous secretary 
bronchial progenitor cells, or neuroendocrine progenitor cells. 
The different origin has resulting in the development of region-
specific lung cancers (27). The study of CSCs has to be specific 
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TaBLe 1 | List of markers used for identification of CSC in various tumor.

Markers Tumor Reference

CD133 (prominin-1) Lung, brain, and colon (8, 42–44)
CD44 (membrane-bound glycoprotein) Lung (45)
Aldehyde dehydrogenases Lung, leukemia, liver, 

pancreas, breast, and 
colon cancers

(46–49)

CD133+ESA+ Lung (50)
CD90 Lung (51)
CD87 (uPAR) Lung (52)
Side population Lung (39)
CD166+CD44+ and CD166+EpCAM+ Lung (30)
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for respective subtypes of lung cancer and therefore making the 
CSCs study in lung cancer become more challenging.

The concept of CSCs in human lung cancer was initially coined 
30 years ago (28). The study by Carney et al. (28) demonstrated 
that less than 1.5% of cells taken from patients with adenocarci-
noma (SCLC) were able to form colonies when cultured in vitro. 
The selected colonies were able to generate the formation of tumor 
with similar features of the original tumor when transplanted into 
nude mice. Another study done by Kim et al. (29) has identified 
the bronchioalveolar stem cells from the mouse bronchioalveolar 
duct. They found out that the cells could initiate the development 
of lung adenocarcinoma (29). Recently, our group has identified 
the lung CSCs in NSCLC that was isolated from lung adenocarci-
noma cells (A549 and H2170). Apart from showing characteristics 
similar to multipotent stem cells, the microarray analysis of the 
isolated lung CSCs also showed that the cells possess the biological 
characteristics associated with cancer and stem cells (30).

MeTHODS FOR iDeNTiFiCaTiON  
OF LUNg CSCs

CSCs have been identify and isolated using functional assay such 
as side population (SP) assay and based on the expression of CSCs 
surface marker.

SP assay
The SP assay method discriminate cells based on the differential 
potential of cells to efflux fluorescent Hoechst dye (a DNA-binding 
dye) via the ATP-binding cassette (ABC) transporters (31). The 
ABC transporter proteins are expressed within cell membrane, and 
they belong to the superfamily of membrane pumps that catalyze 
the adenosine triphosphate (ATP) and transport various endog-
enous compounds out of the cells (32). In human, it has been esti-
mated between 500 and 1,200 genes encoded for drug transporter 
protein (33). Among them, the P-glycoprotein (ABCB1, MCR1), 
ABCG2 (breast cancer resistant protein, BRCP1), and ABCC1–5 
(multidrug-resistant proteins, MRP1–5) are the drug transporter 
proteins involved in the establishment of SP phenotype (32). The 
SP assay was first described by Goodell et al. (34) for isolation of 
mouse bone marrow cells and shown to be enriched with HSCs 
(34). Moreover, the SP cells are overlapping with HSC phenotype 
CD177+Sca1+Lin−Thy1− (35, 36). The SP cells have been described 
in various tumor types as being enriched in stem-like properties 
(37, 38). The SP assay was the first approach used for the identifica-
tion of lung CSCs (39, 40). The SP cells isolated from established 
lung cancer cell lines are more tumorigenic and display increased 
invasive capability compared to the non-SP cells (39). Moreover, 
the cells are resistance toward multiple chemotherapeutic drugs 
and display high expression of ABCG2 and other ABC transport-
ers (39). The SP cells also exhibit the self-renewal characteristics 
display by the ability to generate floating spheres and poses high 
proliferative potential (41).

Surface Marker expression
Another strategy used to identify lung CSCs is by expression of 
stem cell surface marker. Currently, there are relatively few lung 
CSC markers that have been validated. However, extensive studies 

have led to the identification of various CSCs that differ from other 
cells in the tumor. Most CSCs express multiple markers at the same 
time and using one marker to define CSC is not possible (Table 1). 
For example, in cell lines A549 and H446, CD133-positive and 
-negative populations contain the same amount of CSCs. Studying 
CSC markers may present new insight that will improve current 
lung cancer therapy and better patient prognosis.

CD133
CD133, also known as prominin-1, is one of the most commonly 
used markers for detecting CSCs. CD133 is a five-transmembrane 
glycoprotein that has been demonstrated to be highly expressed 
in various carcinomas of various origins including brain (8) 
and colon (42). The exact role of CD133 in lung cancer is still 
unclear. However the CD133+ cells are thought to be CICs on the 
basis of their ability to induce tumor development, invasion, and 
metastases. Previous study on NSCLC showed that CD133+ cells 
isolated from NSCLC tumor specimens have higher self-renewal 
capacity compared to CD133− cells with 40-fold higher number 
of colonies/spheres formed. Self-renewal capacity of CD133+ and 
CD133− cells were further confirmed by injecting the cells into 
NOD/SCID mice. The results had demonstrated that CD133+ 
cells possessed more tumourigenicity compared to CD133− cells 
(44). Moreover, in tumor specimens of NSCLC patients, signifi-
cant increase in CD133+ cells and capillary structure have been 
detected, suggesting the involvement of this cell population in 
tumor growth and tumor vasculogenesis (44). However, another 
study on NSCLC patients’ exhibit opposite findings where CD133 
cells were found to acts as resistant phenotype, not as a prognostic 
marker for survival like previously reported (53). Salnikov and 
colleagues reported that even though CD133 was found in vari-
ous lung cancer cell lines, including A549, H157, H226, Calu-1, 
H292, and H446, the CD133 was only exhibited CSC charac-
teristics such as self-renewal, differentiation, proliferation, and 
tumorigenic capacity in H446 cell line. In another study, Eramo 
and colleagues were able to isolate small niche of CD133+ from 
SCLC and NSCLC and found that both the CD133+/− populations 
have the ability to self-renew, but the CD133− population were 
non-tumorigenic (43).

CD44
Another marker that has been proposed as CSCs marker is the 
CD44. CD44 was initially proposed as CSCs marker for colorectal 
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cancer (54–56). CD44 is a membrane-bound glycoprotein that 
plays several important roles including cell migration, cell adhe-
sion, and modulation of cell–matrix interaction (57). Besides, 
CD44 has been reported to be associated with many cancer-
mediated signaling pathways that explain the involvement of 
this marker in cancer initiation and enhancement. For example, 
CD44 acts as a coreceptor with epidermal growth factor recep-
tor and as an indirect activator of the cell proliferation pathway 
through the ligand presentation (58). In addition, CD44 has been 
reported to enhance cancer cells invasiveness and multidrug 
resistance due to its association with mitogen-activated protein 
kinase-phosphatidyl inositol 3 kinase signaling pathway. This 
association led to the overexpression of urokinase plasminogen 
activator/urakinase plasminogen activator receptor that results in 
enhancing invasiveness and multidrug resistance of cancer cells 
(52). Profiling of the expression of several markers including 
CD44 from 10 NSCLC cell lines by using flow cytometry found 
that CD44+ from certain cancer cell lines acts as a tumor initia-
tor marker in lung cancer cells when tested in both in vitro and 
in vivo (45).

CD166
CD166 is another CSCs that have been described as CSCs marker 
for lung cancer. While CD166 has been studied extensively in 
other solid tumor (59–61), little is known about CD166 expres-
sion and its function in lung cancer. The role of CD166 as marker 
for lung CSCs has been demonstrated by Zhang et  al. (62) in 
their comprehensive study on the potential of different surface 
marker candidates (CD166, CD133, CD44, and EpCAM) for the 
identification of CSCs in NSCLC (62). The isolated CD166 shows 
higher self-renewal potential and initiates formation of in  vivo 
xenograft. Moreover, CD166 population shows higher in  vivo 
tumor initiating capacity in comparison to CD133+, CD44+, 
and EpCAM+ cells isolated from the same cells. Based on this 
evidence, CD166 marker is considered as the most robust CSCs 
marker for identification of lung cancer.

Aldehyde Dehydrogenase (ALDH)
Another marker for CSCs that recently caught the attention of 
researchers is ALDHs. ALDH superfamily is composed of 19 
known functional genes that can be classified into 11 families 
and 4 subfamilies (63). ALDH superfamily is NADP+-dependent 
enzymes that play crucial role oxidation of aldehydes into carbox-
ylic acid. In retinoic signaling, ALDHs are required to produce 
the active form of retinoic acid by oxidation of all-trans-retinal 
and 9-cis-retinal (64, 65). There are several isoforms of ALDH 
that play important role in retinoic acid signaling including 
ALDH1A1, ALDH1A2, ALDH1A3, and ALDH8A1 (66). Several 
ALDH isoforms has been reported to involve in stem cell and also 
CSCs populations including ALDH1A1, ALDH1A2, ALDH1A3, 
ALDH1L1, and ALDH1L2 (63). ALDH was found to be highly 
expressed in various cancers such as leukemia, liver, pancreas, 
breast, and colon cancers (46, 47, 67). Recently, ALDH have been 
recognized as common markers not only for normal but also for 
CSCs (63, 68, 69). Profiling of ALDH expression in 12 different 
human lung cancer cell lines by using flow cytometry-based assay 
exhibited high expression of the cytosolic form of ALDH1A1 and 

ALDH3A1 (70). The involvement of ALDH in CSCs was further 
clarified by Ucar and colleagues (49). In their study, they compare 
the proliferative potential between two subpopulations of CSCs: 
a population with bright ALDH activity and population with 
dim ALDH activity in H522, lung cancer cell line. The obtained 
results show that the cells’ population with bright ALDH activity 
has higher and long-term proliferative capability compared to 
cells population with dim ALDH activity (49). Consistent with 
this result, Jiang et al. (48) found that ALDH+ cells, isolated from 
human NCSLC cell lines had important properties of CSCs in 
both in  vitro and in  vivo studies (48). Further clarification of 
the specificity of ALDH in lung cancer development is needed, 
as ALDH expression in normal pneumocytes increases due to 
exposure to cigarette smoking (70). Both these ALDH isozymes 
have been reported to play crucial role in stem cells (63).

Other Markers
CSCs that were known to have a capability in self-renewal, 
differentiation, and tumor initiation might express multiple 
markers instead of only single marker. For example, in a study 
on lung cancer cell lines A549 and H446, it was proved that 
CD133 alone could not be used to isolate the CSCs since both 
CD133+ and CD133− cell populations contained similar number 
of cells that contains CSCs characteristic (71). In another study 
on lung cancer cells, CSCs have been isolated by using combina-
tion CD133 with other markers such as ABCG2, chemokine  
receptor 4, and epithelial-specific antigen (ESA) (50). Population 
of CD133+ESA+ population was higher in NSCLC compared with 
normal lung tissue. Comparison between positive and negative 
populations of CD133 found that CD133+ population exhibit 
higher tumorigenic capacity when injected in SCID. Recently, 
our group had found that CD166+CD44+ and CD166+EpCAM+ 
cells isolated from A549 and H2170 lung cancer cells showed the 
stemness characteristics including the sphere and colony-forming 
capabilities, expression of stem cells transcription factors (Sox2 
and Oct 3/4), and tumorigenic capacity when transplanted in nude 
mice (30, 72, 73). Thus, it is clearly shown that cancer cells contain 
a heterogeneous population of CSCs that expresses various cell 
surface markers and the use of more than one marker for isolat-
ing CSCs might increase the stringency of the CSCs population. 
However, it is still not isolating the whole population of CSCs in 
any cancer cell populations. Therefore, more research should be 
done in order to explore more markers that can be used to identify 
lung CSCs.

THeRaPeUTiC STRaTegieS OF  
LUNg CSCs

CSCs are believed to sustain the progenitor of cancer cells and 
regulate the progression of cancer development in human. 
Therefore, targeting CSCs may provide a strategic way in 
therapeutic of cancer. Signaling pathway such as Hedhgog (Hh) 
is function in development and regeneration or repairing of stem 
cells (74). However, due to mutation, the aberrant of Hh signaling 
pathway activated the oncogenic pathway and eventually lead to 
tumorigenesis including initiate the CSCs progression that is 
responsible in cancer relapse. Therefore, inhibit the Hh pathway 
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would be a great strategic by aiming on (1) inhibition of ligand 
processing, (2) disruption of receptor ligand, and (3) inhibition of 
transcription factor, the glioma-associated oncogene transcrip-
tion factors 1–3 (GLI1, GLI2, and GLI3) (74). In addition, Hh 
pathway is also associated with chemoresistance (75, 76), which 
is also a characteristic that defines the properties of CSCs and 
causes major failure in chemotherapy (77).

Understanding the biological properties of lung CSCs is a fun-
damental toward improvement of the therapeutic effectiveness in 
cancer therapy. M2 isoform of glycolytic enzyme pyruvate kinase 
(PKM2) is well known in regulating the tumorigenic of cancer 
and associated with therapeutic resistance (78) that eventually 
contributes to poor prognosis of cancer. A recent study has revealed 
that PKM2 expression was associated with the biological properties 
of lung CSCs in which when the function of PKM2 was silent in 
CD44+ cells, the capability of CSCs to form spheroid and colony were 
reduced, and the sensitivity toward cisplatin was increased (79). On 
the other hand, an activation of D2 dopamine (DA), a receptor in 
CD133+ adenocarcinoma NSCLC were significantly inhibited the 
proliferation, colonies formation, and invasiveness of this tumor 
cells (80). In a different study, the lysine demethylase 1 (LSD1) 
was discovered to play a role in maintaining SCLC stemness, thus 
could be a potential therapeutic candidate in targeting lung CSCs. 
Interestingly, a potent inhibitors for LSD1 known as GSK2879552 
was discovered, which was found to be sensitive specifically to 
only SCLC and AML as compared to the other 165 cell lines that 
were tested (81). Therefore, it is essential to discover the biological 
properties of lung CSCs as a promising in selective targeted therapy.

Cellular surface markers are one of the common method uses 
in discriminating CSCs population. Markers such as CD166+/
EpCAM+ and CD166+/CD44+ has been correlated to CSCs since 
it possesses the characteristics of CSCs including the ability to 
self-renewal, differentiated into adipogenic and osteogenic, and 
expressed transcriptomic profile of multipotent cells (30) that 
therefore could be a potential in targeting the CSCs popula-
tion. Another strengthen markers that is CD44HighCD90+ which 
eventually represent a CSCs population in SCLC and LCC as it 
capable on forming a spheroid that is recognized as tumor model 
for in  vitro study (82). Furthermore, the clinical study showed 
that dual expression of stem cells markers, the CD133+ABCG2+ 
has showed early relapse in stage 1 NSCLC as compare to non-
CD133+ABCG2+ (83), which will be useful target in cancer 
chemotherapeutic. Perhaps such marker as CD133 (44), CD44 
(45), CD24 (84, 85), and CD166 (62) are known to detect lung 
CSCs but are also used in other study to detect CSCs in head 
and neck region (86, 87), gastric (88), colorectal cancer (89–92), 
breast (93), and pancreatic (94). Nevertheless, functional assay 
including SP and Aldelflour assay also has been used as a strategy 
to distinct between CSCs and non-CSCs. Based on Hoechst 33342 
dye efflux assay, the cells will be isolated as it develop the ability of 
stem cells to efficiently efflux the dye and consequently represent 
a Hoechst 33342 dye negative and will be characterize as SP (41). 
Likewise, Adelflour assay was used to isolate cells that possess 
high ALDH enzymatic activity which in the same way mimic the 
capacity of stem cells (95, 96) that encode for resistance potential.

Natural product has widely use in cancer treatment as it con-
tain low or fewer side effect but exhibit strong antitumor activity. 

Curcumin, a yellow-pigmented polyphenol, derived from curcuma 
longa (commonly known as turmeric) has been used in traditional 
Indian Ayurvedic as anti-inflammatory agent. Finally, scientist 
has showed that curcumin has chemopreventive and therapeutic 
properties against many tumors and enable it to suppress cell 
proliferation and inflammation, induce apoptosis, suppress 
many cancer signaling and pathway, inhibit cells metastasis and 
angiogenesis, and sensitize tumor cells to cancer therapies (97, 98). 
Curcumin has effectively sensitizes NSCLC CSCs and enhances 
cisplatin effectiveness thus induce cells apoptosis and suppression 
of cell migration of CD166+/EpCAM+ population (99), which 
subsequently reverse cisplatin resistant (100) in CSCs. Another 
recent study also shown that curcumin effectively inhibit the lung 
CSCs traits as evidence of shrinking the tumoursphere formation 
and also decreasing the expression of lung CSC marker as well as 
suppressing cells proliferation and induce cells apoptosis through 
a specific signaling known as Wnt/β-catenin and sonic Hedgehog 
pathways (101). Perhaps, not only lung CSCs but also curcumin has 
shown to efficiently inhibit several others types of cancer including 
colon cancer stem-like cells (102), breast CSCs (103), SP of C6 
glioma cell (104), and CSC of colorectal liver metastasis (105).

The tumor microenvironment offer a niche that can sustain the 
growth (106) of CSCs as well as a protective role by sheltering the 
CSCs from any genotoxic insults, which results in therapy resistant 
(107). The niche possesses a complex structure (107) composed of 
diverse of stroma cells including mesenchymal and immune cells, 
vascular network, soluble factor extracellular matrix components, 
and also homeostatic processes (108), which is important in order to 
retain the abilities of CSCs to self-renewal and give rise to progeni-
tor cells through differentiation process (109). Thus, interrupting 
CSCs niche would be necessary and could be a promising strategy 
for eradicating CSCs. Current study on targeting CSCs niche 
found that integrin, which is the primary receptors that involved 
in cell–matrix adhesion have a profound impact on the ability of 
CSCs to survive in specific locations. Recent findings demonstrated 
that the integrins, which play important role in CSCs biology, are 
required for cancer progression and drug resistance. Previous 
study on K-ras mouse model of NSCLC demonstrated that CSCs 
expressing integrin β4 are enriched after treatment with cisplatin 
(110). In consistent with this study, study on breast cancer showed 
that after treatment of cancer cell with taxol, the integrin α6+ CSC 
population is upregulated (111). Also, study of β1 integrins on head 
and neck cancer cell also support that integrins can act as potential 
cancer targets (112). However, specific integrins that is responsible 
to promote stemness, drug resistance, and metastasis of CSCs 
are yet to be determined (113). Recently, there are a few integrin 
α2-binding agents that have been invented to reduce the prolifera-
tion capability of CSCs (114). Therefore, it is clear that identifying 
specific integrins that is responsible to maintain survival of CSCs 
might be a promising target for cancer therapy.

Current technique of targeting CSCs is using miRNA therapy. 
microRNAs or miRNA are short nucleotide (~18–25 nt) of non-
coding RNA that is responsible in regulation of gene expression 
by binding to 3′-untranslated regions or open reading frame 
of target genes (115). Formerly, the important characteristics 
that determine the CSCs are self-renewal, and study has  
shown that miRNA regulates this important feature. Miao et al. 
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(116) discover that downregulation of miR-27 enhanced the  
properties of stem-like SCLC, whereby downregulation of miR-27  
dedifferentiate non-tumorigenic cells into highly tumorigenic 
cells and was consistently downregulated in spheroid cells even 
at passage 4 (116). In addition, miR-27 was also reported to 
be downregulated in A549 cell that derived from NSCLC type 
(117). There were many more miRNA that act as tumor suppres-
sor such as miR-145 (118) and miRNA-34a (119) demonstrating 
the inhibition proliferation of lung cancer-initiating cells and 
epithelial–mesenchymal transition (118), the key step of metas-
tasis of cells.

CHaLLeNgeS iN LUNg CSCs

Overcoming the CSCs could be one of the strategic ways in 
increasing the therapeutic of cancer diseases as it is associated 
with poor prognosis. However, the fact that CSCs should be 
eliminated is not as simple as the theory as it faces many chal-
lenges and limitations. There are several things need to be aware 
and considered in order to improve the method in targeting the 
CSCs populations. The heterogeneity in CSCs, which results in 
diverse phenotype, has become a great challenge in identify-
ing the prominent CSCs subpopulation especially in lung. 
Moreover, lung structure consist of complex structure comprise 
of a large variety of morphologies that differently function and 
responsible in facilitating gas exchange, balancing fluid in the 
lung, detoxifying and clearing foreign agents, and the activation 
of inflammatory due to injury (120, 121). Therefore, to track 
the CSCs, a list of markers has been widely select but is not 
always reliable because certain marker may not be specific in 
targeting the CSC. Study by Meng et al. (71) revealed that single 
marker of CD133+ showed no differences with CD133− as both 
of these markers display similar CSCs features such as the ability 
of self-renewal, colony formation, differentiation, and invasion 
(71). Perhaps, during the selection of CSCs markers, there could 
be a contradiction in declaration of certain markers used, for 
example, Roudi et al. (122) mentioned CD44 and CD24 is not a 
potential CSCs used in A549 cell derived from NSCLC because 
both CD44+/CD24+ and CD44+CD24low are capable of forming 
the holoclone, meraclone, and paraclone colonies and develop 
spheroid formation (122). Furthermore, cellular markers are 
difficult to stand alone and have to be used in combination 
of other markers in order to improve the selection of CSCs. 
However, targeting CSCs in lung would be challenge due to 
heterogeneity (123) of the cells and various genomic path-
ways involved. Therefore, many studies are focusing on using 
combination of cellular markers as it increase the specificity of 
targeted population.

CSCs are known to be resistant to chemotherapy and 
therefore are accountable for cancer relapse. This would be the 
major challenge in targeting CSCs as it usually causes failure 
in chemotherapy. CSCs usually display high expression of 
multidrug-resistant gene whose role involved in drug-efflux 
pump and is regulated by ABC transporter family such as 
ABCB1 and ABCB2 (77). Liu described CD133+ lung cancer 
cells exhibited drug resistance when treated with cisplatin 
with both ABCG2 and ABCB1 was upregulated and therefore 

increased the cross resistant to doxorubicin and paclitaxel 
that usually used for second-line agent (124). In addition, the 
enrichment of CSCs population were also reported in recent 
study, whereby the subpopulation of A549 and H2170 with 
markers CD166+/EpCAM+ showed higher expression upon 
cisplatin treatment as comparing to basal expression (99). In 
another study of NSCLC, the CD166+ cells with strong CSCs 
characteristics also were resistant when exposed to cisplatin 
drug (125). Furthermore, CSCs can adopt in quiescent state 
where it resist any cytotoxic insult (126) due to high expres-
sion of Bcl-2/Bcl-XL that function in mitochondrial ATP/ADP 
exchange as to prevent apoptosis which probably contributes 
to resistant of CSCs upon chemotherapy (127). Thus, in future, 
it is important to break the CSCs resistance properties as this 
controlled countless cytotoxic agents from entering the plasma 
membrane, which afterward cause relapse in cancer.

Current research is struggling in finding a selective ways to 
inhibit the CSCs and its characteristics. Though certain things 
need to be considered as CSCs share a similar characteristics to 
stem cells, whereby targeting the CSCs could also give effect to 
normal stem cells and toxic to health tissue. Therefore, a selective 
method have to be done to specifically aiming on CSCs without 
affect any others normal cells.

CONCLUSiON

As the second most common cancer in men and third most 
common cancer prevalence in Malaysians diagnosed each year, 
lung cancer is most complicated cancer diseases to treat due to 
chemodrug resistant and relapse. Therefore, the fundamental 
understanding on the basic science studies relating to CSCs 
development and maintenance are gaining momentum recently 
due to the fact that it has been known to be responsible to lead 
cancer progression, tumourigenicity, and therapeutic resistance. 
Thus, CSCs has become a novel and important clinical targets 
in cancer therapy in modern treatment. However, considering 
the fact that each type of tumor involves different epithelial/
progenitor or stem cell types that controlled by various molecular 
pathways, variation in expression of the markers is even existent 
in the lung cancer subtypes making them all more difficult to be 
identified and targeted. Therefore, this review had discussed the 
importance and prospect of lung CSCs that would beneficial for 
future therapeutic of lung cancer.
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