
May 2017 | Volume 7 | Article 811

Review
published: 02 May 2017

doi: 10.3389/fonc.2017.00081

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Cristina Mammucari,  

University of Padova, Italy

Reviewed by: 
Manuela Côrte-Real,  

University of Minho, Portugal  
Vito De Pinto,  

University of Catania, Italy

*Correspondence:
Silvia Campello 

silvia.campello@uniroma2.it

Specialty section: 
This article was submitted to 

Molecular and Cellular Oncology,  
a section of the journal  

Frontiers in Oncology

Received: 26 January 2017
Accepted: 11 April 2017
Published: 02 May 2017

Citation: 
Bordi M, Nazio F and Campello S 
(2017) The Close Interconnection 

between Mitochondrial Dynamics and 
Mitophagy in Cancer. 

Front. Oncol. 7:81. 
doi: 10.3389/fonc.2017.00081

The Close interconnection between 
Mitochondrial Dynamics and 
Mitophagy in Cancer
Matteo Bordi1, Francesca Nazio2 and Silvia Campello1,3*

1 Department of Biology, University of Rome Tor Vergata, Rome, Italy, 2 Department of Pediatric Hematology and Oncology, 
IRCCS Bambino Gesù Children’s Hospital, Rome, Italy, 3 IRCCS, Fondazione Santa Lucia, Rome, Italy

Recent decades have revealed the shape changes of mitochondria and their regula-
tors to be main players in a plethora of physiological cell processes. Mitochondria are 
extremely dynamic organelles whose highly controlled morphological changes respond 
to specific and diverse pathophysiological needs. Thus, their qualitative control is crucial 
for the determination of cell function and fate. Moreover, ever-new metabolic changes, 
mainly attributable to mitochondrial (dys)functions, are strongly connected to cancer and 
its microenvironment. For this reason, the aspects controlling mitochondria activity and 
status are in the oncological spotlight. In this review, we elucidate the most intriguing 
discoveries related to two apparently independent but strictly interconnected processes 
crucial for the organelle functionality and fate, mitochondrial dynamics, and mitophagy. 
We will mostly focus on their metabolic interconnections and regulations that can caus-
ally foster a tumoral context.
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THe MiTOCHONDRiA BALLeT

A large body of evidence has highlighted the existence of a close interconnection between the 
cancer cells fate and the two apparently unrelated cellular processes of mitochondrial dynamics and 
autophagy. Indeed, cancer cells regulate the morphology of their mitochondria on the basis of their 
bioenergetic and biosynthetic needs to sustain proliferation and migration, and to escape apoptosis. 
The modulation of the organelles shape is also crucial for the qualitative control of the same, which 
mainly depends on the selective autophagic process called mitophagy.

Mitochondria are highly dynamic organelles, forming an active network capable of undergo-
ing sudden changes to adapt its structure to the energetic and physiological needs of the cell (1). 
Mitochondria shape results from a balance between fusion and fission mechanisms in response to 
endogenous and exogenous stimuli or insults (2). These organelles are fundamental for: (i) energy 
production through an efficient oxidative phosphorylation (OXPHOS) and ATP production and (ii) 
biosynthetic metabolism and production of metabolites (3). On the other hand, mitochondria are 
the major source of reactive oxygen species (ROS) that could cause oxidative damage to proteins, 
lipids, and DNA (4) and result in aging and several diseases, including neurodegenerative disease, 
diabetes, and cancer (5, 6) see Figure 1.
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FiguRe 1 | Mitochondrial dynamics and fate can affect metastatization of cancer cells. The activation of optic atrophy 1–mitofusin (MFN)1/2-mediated 
mitochondrial fusion promotes oxidative phosphorylation (OXPHOS) at the expense of anaerobic glycolysis, leading to increased reactive oxygen species (ROS) 
levels and, consequently, disfavoring the migration of cancer cells. On the other hand, mitochondrial fission events mediated by dynamin-related protein-1 (DRP1) 
recruitment through its accessory proteins (mitochondrial fission factor, FIS1, MIEF1/2) inhibit oxidative metabolism by increasing the energetic yield of glycolysis, 
and reduces ROS production, so easing the process of metastasis. Moreover, fission is critical for the correct activation of mitophagy, even though it remains 
ambiguous how mitophagy may be related to tumor migration.
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Mitochondrial Fusion Dynamism
In the fusion phase, the outer and inner mitochondrial mem-
branes (OMM and IMM, respectively) of two distinct mito-
chondria fuse with each other, so resulting in the mixing of the 
mitochondrial content (7). Fusion is regulated by the activity of 
dynamin-related GTPases Mitofusin (MFN) 1 and 2, and by optic 
atrophy 1 (OPA1) (1). Upon GTP binding, the GTPase domains 
of MFN1 and MFN2 interact, forming homo- and hetero-dimers 
that undergo conformational changes upon GTP hydrolysis, 
bringing the opposing OMM into close contact to foster their 
fusion (8–11). OPA1, instead, facing the inner membrane space, 
regulates the IMM fusion (1), together with MFN1 (12). The 
pleiotropic OPA1 is also involved in mitochondrial cristae archi-
tecture, mitochondrial bioenergetics, and apoptosis (13–15). 
Distinctive OPA1 isoforms have been identified, derived by dif-
ferential RNA splicing and precursor protein processing (16) [for 
more details, see Kasahara and Scorrano (1)]. Moreover, OPA1 
activity is regulated by a proteolytic cascade; the long isoform, 
i.e., characterized by pro-fusion activity, can be cleaved by: the 
large intermembrane space AAA-protease Yme1L (17, 18), the 
mitochondrial matrix ATPase proteases (19), the metalloprotease 
paraplegin (20), and OMA1 (19, 21). The shorter isoform is a 
substrate for the presenilin-associated rhomboid-like (PARL) 
and contributes to regulate the cristae morphology and apoptosis 
(1). It is possible that tissue-specific expression of OPA1-cleaving 

proteases and/or splice variants contributes to the complex pat-
tern of OPA1 processing. Fusion processes are inhibited upon 
specific stress stimuli (such as mitochondrial uncoupling agents 
like CCCP), promoting the activation of the opposite fission 
pathway; when mitochondria lose membrane potential [ΔΨ(m)] 
or the ATP levels decrease, OMA1 is stabilized and enhances the 
cleavage of OPA1 so preventing inner membrane fusion (21). As 
the long and short OPA1 isoforms are both required for fusion, 
complete conversion of OPA1 to the short isoform by OMA1 
shuts off the fusion machinery of dysfunctional mitochondria. 
This activity could contribute to a quality control process by 
preventing fusion of defective mitochondria. Under the same 
circumstances, fusion can be prevented by MFNs degradation 
mediated by both PTEN-induced putative kinase 1 (PINK1) 
and PARKIN during mitophagy, a selective removal of damaged 
mitochondria by macroautophagy (described in detail in the next 
section) (22). Likewise, in response to genotoxic stresses, MFN2 
is phosphorylated by Jun N-terminal kinase (JNK), ubiquitinated 
by the E3 ubiquitin ligase HUWE1 and consequently degraded 
by the proteasome, leading to mitochondrial fragmentation and 
apoptotic cell death (23).

Mitochondrial Fission Dynamism
As mentioned above, when fusion is inhibited, fission is initi-
ated. Fission is mediated by the activation of dynamin-related 
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protein-1 (DRP1), a protein mainly localized in the cytosol that 
cycles between the cytosol and the OMM, where it constricts and 
cuts the organelles (16).

Many pathways regulating the activities of the fission machin-
ery in mammalian cells have been discovered. Also DRP1 activity 
is reversibly regulated by several post-translational modifications, 
in particular by phosphorylation/dephosphorylation events. The 
phosphatase calcineurin dephosphorylates DRP1 on Ser637 (24) 
leading to its translocation to OMM, where it interacts with 
different accessory factors such as the mitochondrial fission fac-
tor (MFF), FIS1, Mid49/Mief1, and Mid51/Mief2 that may act 
in various ways to promote DRP1-dependent fission (16, 25). 
Once on the OMM, DRP1 assembles into multimeric spiralic 
structures and, through hydrolysis of GTP, mediates constric-
tion of the spiral and scission in two distinct mitochondria (16, 
26). Three protein kinases that phosphorylate different DRP1 
serine residues have been identified: (1) high-glucose-induced 
Ca2+, extracellular signal-regulated kinase 1/2 (ERK1/2) causing 
mitochondrial fission (27); (2) the protein kinase A (PKA) that 
inhibits DRP1 GTPase activity and therefore prevents fission 
(28); and (3) a kinase anchoring protein 1 (AKAP1), which upon 
hypoxia conditions stabilizes PKA on neurons OMM, so exac-
erbating PKA negative regulation of DRP1 and promoting both 
mitochondrial elongation and neuronal survival (29). Opposed 
to PKA/AKAP1, PP2A/Bβ2-mediated dephosphorylation of 
Drp1 enhances fission, so regulating neuronal development via 
mitochondrial bioenergetics (30). During mitosis, CDK1/cyclin 
B leads to mitochondrial fragmentation activating DRP1 via its 
phosphorylation at Ser616, thereby facilitating an appropriate 
distribution of mitochondria to daughter cells (31). Furthermore, 
it has been described that the E3 ligase PARKIN (32) and another 
E3 ligase, MARCH-V (33), mediate the degradation of DRP1 via 
proteasome, while positively modulating MFN2, probably thus 
boosting fusion. Mitochondrial-anchored protein ligase is a 
mitochondrion-anchored small ubiquitin-like modifier (SUMO) 
ligase that sumoylates DRP1 to stimulate mitochondrial fission 
(34). Removal of SUMO from DRP1 involves sentrin-specific 
protease 5 (SENP5), a SUMO protease that recognizes several 
mitochondrial targets (35). Despite many pieces of the mitochon-
drial dynamics machinery puzzle being now in place, further 
pieces will probably be discovered and need to be added to better 
explain the role of all the components regulating the fusion and 
fission pathways.

Mitochondrial Dynamics-Related 
Modulation of Mitochondria Quality versus 
efficiency
The mitochondrial shape remodeling is intimately connected 
to the fate of the organelles; in fact, the mitochondrial function 
is maintained by the coordinated activation of the mitochon-
drial quality control pathway that guarantees the degradation 
of damaged mitochondria, so safeguarding the cell from the 
activation of apoptosis (1). The selective removal of damaged 
mitochondria is ensured by macroautophagy (hereafter referred 
to as autophagy): it is an evolutionarily conserved process, which 
triggers degradation of bulk cytoplasm, long-lived proteins, and 

entire organelles via lysosome, for recycling purposes (36, 37). 
Autophagy is upregulated during cellular stress (38) (increase of 
oxidative stress, ER-stress, DNA damage) and is closely linked 
to the mechanisms underlying aging (39). Autophagy is a very 
dynamic process described as a flux (40). The “autophagy core 
complex,” a multimolecular machinery including the ULK1 com-
plex and the BECN1-VPS34 complex, initiates the formation of 
a double-membrane vesicle, termed autophagosome (AP), which 
surrounds the substrates (37); the matured AP is thus delivered 
to lysosomes for degradation (41). Several kinase complexes, 
including MTOR complex 1 that negatively affects ULK1 activity 
(42), tightly regulate each step of autophagy (36). Whereas the 
autophagy response to starvation is bulk degradation of cytosolic 
material, other types of stress, such as damaged organelles or 
aggregated proteins (39), require selective sequestration of the 
specific cargo into the autophagosomal membranes. Selectivity 
is achieved through autophagy receptors, such as SQSTM1/p62, 
NBR1, NDP52, OPTINEURIN (OPTN), TAX1BP1, and NIX, 
which recognize, on the one hand, cargos tagged by degradation 
signals and, on the other hand, the autophagosomal membrane 
through their LC3-interacting regions (LIR) (43, 44). The specific 
autophagic breakdown of mitochondria is termed mitophagy 
(45). In this case, mitochondria with decreased membrane poten-
tial are less likely to be engaged in subsequent fusion events and, 
instead, are prone to be removed through mitophagy. By contrast, 
inhibition of fission impedes mitophagy and results in decline 
of the respiratory capacity, whereas, arrest of autophagy leads to 
the accumulation of mitochondria with low membrane potential 
and low OPA1 (46). Thus, as already mentioned, mitophagy and 
mitochondrial dynamics are tightly interconnected. In recent 
years, distinct mitophagic pathways have been identified, reveal-
ing that the elimination of altered mitochondria is a critical step 
for mammalian cell fate.

Spotlight on the Molecular Pathways
PTEN-induced putative kinase 1 (PINK1)–PARKIN-dependent 
mitophagy is the most characterized mitophagic pathway. In 
basal healthy conditions, PINK1 is constitutively cleaved by the 
mitochondrial processing protease (MPP) and, further, cleaved 
by PARL and so rapidly degraded (47, 48). Upon mitochondria 
membrane depolarization, MPP and PARL are inhibited and 
PINK1 is consequently stabilized at the OMM (49, 50); this leads 
to its autophosphorylation (50, 51) and to the phosphorylation of 
its substrates that initiates mitophagy. In particular, PINK1 phos-
phorylates ubiquitin at its Ser65; this leads to the activation and 
recruitment to mitochondria of the E3 ligase PARKIN (52–54), 
thus amplifying the signal started by PINK1 (55). Fascinatingly, 
a recent study shows that, in HeLa cells, PINK1 phosphorylates 
and also recruits NDP52 and OPTINEURIN, two autophagic 
cargo receptors that, despite being considered downstream of AP 
formation, are important for re-localization of ULK1 on damaged 
mitochondria (55). Moreover, as previously mentioned, PINK1 
mediates the phosphorylation of MFN2 that acts as a relevant 
receptor for a correct PARKIN translocation (56).

Following its translocation to the mitochondrial surface, 
PARKIN modifies many OMM proteins by both K48- and K63-
linked ubiquitin chains (57–59). On the one hand, PARKIN 
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promotes proteasome-degradation of MFN1, MFN2, some 
TOM complex proteins (TOM20) (22), and mitochondrial 
rhoGTPase-1 (MIRO1) (60), so favoring the mitochondrial 
fission and arresting mitochondria motility; on the other hand, 
PARKIN mediates K63-linked ubiquitination of substrates such 
as VDAC1, a mitochondrial protein voltage-dependent anion 
channel, which acts as a signal for recruiting autophagic cargo 
receptors (22, 61, 62). A very recent publication has opened 
new insights into the mitophagy mechanisms, revealing that an 
IMM protein prohibitin 2 (PHB2) acts as a mitophagy receptor 
directly binding to LC3 through its LIR motif and is essential for 
PARKIN-mediated mitophagy (63).

Recruitment of PARKIN to depolarized mitochondrial 
membranes is inhibited by the anti-apoptotic proteins BCL-XL, 
Mcl-1, and BCL2, in a BECLIN1-independent manner (64, 65). 
Additionally, the contribution of deubiquitinating enzymes 
(DUBs) on the PINK1/PARKIN-mediated mitophagy has been 
characterized. DUBs regulate ubiquitin signals by removing or 
trimming ubiquitin linkages, and thus they can play important 
roles in modulating mitophagy. The OMM-localized DUB 
ubiquitin-specific processing proteases USP30 (66) and USP15 
(67) antagonize PARKIN activity by cleaving ubiquitin chains 
on mitochondria (22). USP8, instead, antagonizes mitophagy 
by directly deubiquitinating PARKIN, so contributing to its 
recruitment and activity (68). Moreover, Heo et  al. report that 
mitochondrial damage activates the kinase TBK1, which phos-
phorylates autophagy adaptors OPTN, NDP52, and SQSTM1/
p62, so enhancing their recruitment to damaged mitochondria 
to promote mitophagy (44). Collectively, these events constitute 
a feedforward amplification mechanism to endorse mitophagy 
(44, 58).

Although PINK1–PARKIN-dependent mitophagy is the 
most characterized and most tumors-linked pathway, as men-
tioned, alternative pathways have been recently described, and 
different cell types might have different degrees of sensitivity 
for the activation of characteristic mitophagic pathways. For 
instance, PARKIN is further reported to interact with Activating 
molecule in BECN1-regulated autophagy protein 1 (AMBRA1) 
that activates BECLIN1 complex, endorsing the AP formation 
nearby (69). However, AMBRA1 can also induce mitophagy 
regardless of PARKIN and PINK1, via a direct interaction with 
LC3 (70) and allegedly, via its positive loop on ULK1 (42). In 
fact, a recent study points out that, upon mitophagy induction by 
either hypoxia or mitochondrial uncouplers, ULK1 translocates 
to mitochondria and phosphorylates the cargo receptor FUN14 
domain-containing protein, so regulating mitophagy (71). In 
neurons, pro-mitophagy stimuli cause the translocation of the 
phospholipid cardiolipin from IMM to OMM, thus favoring the 
recognition of damaged mitochondria by the autophagic machin-
ery in a PINK1–PARKIN-independent way (72). Intriguingly, 
Toyama et al. describe that energy-sensing adenosine monophos-
phate (AMP)-activated protein kinase (AMPK), a positive 
regulator of ULK1 that activates autophagy for maintaining the 
energy homeostasis, triggers fission activation, and consequently 
mitophagy, through phosphorylation of MFF, thus unveiling a 
new central role for AMPK in the regulation of mitochondria 
homeostasis (73).

Previous studies have also identified the BH3-only protein 
NIX (Bnip3L) and BCL2/adenovirus E1B 19  kDa protein-
interacting protein 3 (BNIP3) as mitophagy receptors due to 
their direct interaction with LC3 (74); during the maturation 
of erythroid cells, NIX is involved in programmed removal of 
mitochondria (75), while both BNIP3 and NIX are key play-
ers in hypoxia-induced mitophagy (74, 75). In addition to 
mitophagy, a new pathway for mitochondrial quality control has 
been recently discovered (76) in which PINK1–PARKIN drive 
the formation of mitochondrial-derived vesicles for the delivery 
of mitochondrial oxidized proteins to lysosomes [reviewed by 
Sugiura et al. (76)].

Mitochondria in Cancer: A Question of 
Balance between energy Production and 
Clearance
Recent publications have identified a linear relation between 
mitochondria fate and cancer (77–81). In fact, mitochondria 
can be connected to cancer formation and progression, and 
their contribution has a strong impact on invasiveness and 
metastatic profile of cancers (79). A growing body of evidence 
suggests that many cancer cell lines and solid tumors undergo 
a drastic metabolic reprogramming; they limit the tricarboxylic 
acid cycle (TCA) and mitochondrial OXPHOS as a consequence 
of mutations that affect the activity of TCA key enzymes or the 
activity of OXPHOS complexes (77, 82). Therefore, cancer cells 
veer toward a prominent use of glycolysis as the main source for 
ATP production (“Warburg effect”) (83), so upregulating glucose 
uptake [reviewed by Gaude and Frezza (81)]. However, the con-
nection between mitochondria dysfunction and cancer is not 
just related to metabolism (83). In fact, mitochondria activities 
can also directly or indirectly affect nuclear or mitochondrial 
DNA expression (84) and mutations (81), epigenetic changes 
(such as methylation) (77), cell migration (78), and cell death 
(85). Moreover, an imbalance in the mitochondrial degradation 
process results in progressive alteration of cellular homeostasis, 
which, in turn, may set the stage for the development of tumor 
cells. This suggests the existence of an intricate reciprocal inter-
play between mitochondria, autophagy/mitophagy, and tumor 
initiation. Autophagy has always been perceived as playing a 
double-faceted role in tumorigenesis, either supporting survival 
or promoting death, depending on the different cellular contexts. 
For instance, mice with heterozygotic deletion of Becn1 are 
susceptible to spontaneous tumors, while deletion of other key 
autophagic genes such as Atg5 or Atg7 leads to the appearance of 
only benign liver tumors (86). By contrast, some types of tumors 
are dependent on the activation of autophagy, such as RAS-
driven cancers (86, 87). In other cases, tumor cells can increase 
autophagy to promote chemo- and radio-resistance (88).

Intriguingly, autophagy has been described as being critical 
for innate and adaptive immunity through regulating antigens 
processing and presentation (89); moreover, autophagy induction 
helps the host immune system to properly recognize and elimi-
nate pre-malignant and malignant cells (90). Recently, Pietrocola 
and collaborators have demonstrated that short-term fasting 
or autophagy-inducing caloric restriction mimetics enhances 
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anticancer immune responses by activating immune effector 
T  lymphocytes, thus preventing cancer cells escaping from 
immuno-surveillance (91). This activation of autophagy, in cancer 
cells, leads to their ATP release into the extracellular space where 
ATP acts as a chemotactic factor attracting T cells and, thus, favor-
ing tumor growth reduction (91). Considering that mitochondria 
elongation correlates with more performing mitochondria and 
more cristae that should guarantee a sustained ATP production 
(92), we speculate that, in Pietrocola’s system mitochondrial 
dynamics might have a role. Thus, ideally, by pharmacologically 
modulating mitochondrial dynamics of tumor cells, we might 
act on and improve anticancer immuno-surveillance. These 
assumptions reinforce the belief that mitochondrial dynamics 
and autophagy/mitophagy are coevolutionarily interconnected 
along all the cell types.

In line with these notions, increasing evidence interestingly also 
links dysfunctions in mitophagy to cancer development (65, 76, 
80, 93), even though how they are connected it is strictly depend-
ent on the cancer type. A pathological decrease of mitophagy effi-
ciency causes accumulation of damaged mitochondria. This leads 
to disruption of redox balance and to an increase of detrimental 
oxidative damage, such as ROS-induced DNA mutations; hence, 
the increase in free radicals production raises the possibility of 
tumors developing due to genetic instability (94, 95). Conversely, 
mitophagy can protect cells from apoptosis and promote tumor 
cell survival under some adverse conditions (71, 96).

PARKIN deletions or loss of function mutations have been 
identified in ovarian, breast, bladder, and lung cancers (this topic 
has recently been thoroughly reviewed elsewhere) (97); addition-
ally, mice null for PARKIN develop spontaneous macroscopic 
hepatic tumors (98). Mutation in PARK6 gene (PINK1) (99) has 
been observed in neuroblastoma, so raising the hypothesis that 
alteration of mitophagy may have a causal role in certain tumors. 
As described above, AMBRA1 is a PARKIN-interacting protein 
indispensable for the final step of PARKIN-triggered mitophagy 
(70). Ambra1 heterozygosity, in mice, has been recently associ-
ated to tumorigenesis, this gene thus acting as a tumor suppressor 
gene (100). Although the exact role of AMBRA1 in cancer insur-
gence is still largely unclear, one of the possible mechanisms, pro-
posed by Strappazzon and Cecconi, hypothesizes that AMBRA1 
dysregulation in mitophagy might be related to carcinogenesis 
(65). Moreover, increase in ROS levels, in particular nitric oxide 
levels, further impairs PARKIN E3 ligase activity (101), thus 
exacerbating the accumulation of damaged mitochondria, on a 
feedback loop. On the other hand, mitophagy is triggered by mild 
oxidative stress through HIF-1α (102), a transcriptional factor 
normally activated during hypoxic conditions, which positively 
regulates the expression of BNIP3 and NIX, these thus acting as 
tumor suppressors (93).

As already mentioned above, some tumors can use mitophagy 
to escape cell death activation, or as an adaptive mechanisms 
during the first stages of solid tumor development, when cancer 
cells are in the typical hypoxia environment (71, 96, 103). In 
fact, K-ras-induced lung tumors require mitophagy to sustain 
mitochondrial function and lipid catabolism and, in this case, 
inhibition of mitophagy leads to proliferative arrest, so negatively 
altering the tumor fate (104). In addition, a recent study indicates 

that AMPK confers metabolic stress resistance on leukemia-
initiating cells and promotes leukemogenesis by suppressing ROS 
production and maintenance of metabolism (105), this probably 
also through mitophagy activation.

Interestingly, it has been demonstrated that cancer cells 
can act as metabolic parasites and extract nutrients from host 
cells by inducing catabolic processes (autophagy, mitophagy, 
aerobic glycolysis, and lipolysis) (106). In these cases, fibroblasts 
adjacent to the tumor (cancer-associated fibroblasts) positively 
regulate autophagy and mitophagy in order to support cancer 
cells metabolic needs for growth, proliferation, migration, and 
invasion (106–108). This demonstrates that tumor cells are able 
to coordinate these two pathways in different ways as a protective 
mechanism to ensure their own survival.

In this context, also some OMM proteins play a fundamental 
role in driving and promoting cancer cell progression. Recently, 
VDAC1, a voltage-dependent anion channel (109, 110), con-
tributes to the metabolic phenotype of cancer cells regulating 
mitochondrial activity and glucose metabolism. In fact, VDAC1 
directly binds to hexokinase II (HK II), so endorsing its activ-
ity (111). HK is an enzyme that catalyzes the first reaction of 
glycolysis, which is upregulated in broad variety of tumor types 
sustaining elevated rate of glucose catabolism and consequently 
rapid growth rates (111). Moreover, the interaction between 
VDAC1 and HK II inhibits mitochondrial-induced apoptosis, 
so helping tumor cells to elude cell death (110); furthermore, 
HK dissociation from mitochondria can be also a strong pro-
apoptotic stimulus independent from VDAC1 (112). Though, 
VDAC1 is over-expressed in many cancer types, and its silencing 
inhibits tumor development (113). Furthermore, as described 
above, VDAC1 is a mitochondrial target of PARKIN, required 
for its efficient targeting to damaged mitochondria (62) and, 
therefore, essential for PINK1/PARKIN-mediated mitophagy 
(61). This demonstrates that, beside fusion and fission proteins, 
other OMM proteins have a role in the intricate interconnection 
between mitochondria fate and cancer.

Mitochondrial Dynamics Are Crucial for 
Tumor Cell Fate Decision
Hitherto, we have discussed the role of mitophagy regulation in 
the progression of cancer, highlighting some link between this 
process and mitochondrial dynamics. But which is the actual 
effect of mitochondrial dynamics in tumor? Like a healthy cell, 
a cancer cell can undergo mitochondrial morphology changes 
for responding to the external environment. This decision is 
critical for cancer cell fate determination during tumor progres-
sion see Figure 1. In fact, cancer cells might undergo extensive 
fusion to promote respiratory capacity, to support proliferation, 
or to promote cell survival in adverse conditions, such as upon 
anticancer treatment (114) or glucose deprivation (115), for 
escaping apoptosis activation. On the other hand, cancer cells 
might foster fission to repress oxidative metabolism, preventing 
ROS formation and oxidative damage, or most likely to encour-
age activation of mitophagy, as mentioned. In other cases, tumor 
cells rely on glutamine-dependent reductive carboxylation. They 
upregulate mitochondrial biogenesis and increase mitochondrial 
respiratory chain capacity through the activation of the potent 
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oncogene C-MYC, which, in turn, regulates the mitochondrial 
network controlling the expression of multiple mitochondrial 
genes (116, 117). From a molecular viewpoint, and related to 
tumor progression and severity, more than its onset, alteration of 
DRP1 activity seems to be a common feature of many cancer cells 
that, therefore, exhibit fragmented mitochondria (78, 118–123). 
In pancreatic cancer, DRP1 activation by ERK2 and mitochon-
drial fission are crucial for malignancies (119). In brain tumor 
initiating cells, cyclin-dependent kinase 5 (CDK5)-mediated 
DRP1 activation drives massive mitochondrial fragmentation, 
affects AMPK pathway, and correlates with poor prognosis (123). 
In lung cancer cells, increased mitochondrial fission is due to 
an upregulation of DRP1 expression and an increased ratio of 
Ser616-to-Ser637 phosphorylation, paralleled by a decrease of 
MFN2 levels, and impaired fusion. Reverting the DRP1/MFN2 
imbalances result in in vitro reduction of cancer cell prolifera-
tion and activation of apoptosis (118). No less importantly, the 
coordination between mitochondrial dynamics and mitosis 
(so-called mitotic fission), which ensures equitable distribution 
of mitochondria to daughter cells, plays a role in cancer, clearly 
related to the requirement for mitochondrial division during 
mitosis. This phenomenon is regulated by cyclin B1–CDK1, 
which simultaneously initiates mitosis and activates DRP1 
by phosphorylating its Ser616 (121). Another mitotic kinase, 
Aurora A, phosphorylates the Ras-like GTPase (RALA), leading 
to mitotic mitochondrial accumulation of RALA and its effector, 
ralA binding protein 1 (RALBP1). RALBP1 acts as a scaffold for 
recruiting DRP1 and cyclin-CDK to mitochondria and inducing 
fission (31).

DRP1 activation, however, is closely linked to migration and 
invasion of tumor cells. It has been described that imbalance of the 
mitochondria phenotype toward fragmentation coordinates the 
migratory capability in cells where migration represents a crucial 
physiological function, such as T  lymphocytes (124). Indeed, 
ample data have started to highlight a strict correlation between 
the levels of DRP1-mediated mitochondrial fission and diverse 
metastatic states of different tumoral cells (125); these cells boost 
mitochondria fission and re-localization up in order to locally 
fulfill their high-energy requests for migration. This is the case 
of invasive breast carcinoma cells that require DRP1-dependent 
mitochondrial fission for re-localizing the organelles to lamellipo-
dial regions where they need to satisfy a localized growing energy 
demand, so marking this process as a critical early developmental 
step in metastatic breast cancer (78). DRP1 overexpression is also 
associated with malignant oncocytic thyroid tumors, positively 
regulating migration of thyroid cancer cells (120). In glioblas-
toma cells, DRP1-induced mitochondrial fission and consequent 

cell migration are driven by hypoxia through HIF-1α (122). In 
line with these observations, the perturbation of MIRO1, which is 
essential for mitochondrial transport, prevents the redistribution 
of mitochondria to the anterior of moving epithelial cancer cells, 
so affecting these cells migratory abilities (126). It is important to 
note that DRP1 and mitochondria remodeling have a constitu-
tive leading role in the modulation of T cell metabolic shifts, this 
inducing differentiation of T cells, and it is crucial for the detection 
and clearance of tumor cells (127) into diverse populations (128). 
Therefore, the connection between mitochondria fragmentation 
and tumor development raises questions as to whether alteration 
of fission–fusion processes may also negatively and specifically 
affect the T-cell anti-tumor surveillance, thus contributing to 
malignant tumor prognosis.

CONCLuSiON

In spite of considerable progress in understanding the implica-
tions of mitochondrial dynamics and mitophagy in controlling 
tumor origin and progression, and these two processes emerging 
cross-links, many key issues remain unresolved. Several lines of 
evidence indicate that it is quite unreasonable to make a general 
statement of how autophagy and mitophagy may influence 
tumor. Likewise, based on emerging findings, it appears that 
mitochondrial shape regulation plays a critical role in the first 
steps of tumor and in cancer migration/invasion ability. This 
breaks new ground in the fundamental understanding of pos-
sible mechanisms underlying the intimate interplay between 
mitochondrial homeostasis and tumors.

Although, it remains to be elucidated also how different 
aspects of mitochondrial metabolism and dynamics may affect 
the anti-tumor immune response and what their relative contri-
butions to tumor progression or clearance are. This new concept 
helps to broaden our knowledge and perspectives regarding 
tumor cure, making it possible to identify new candidate targets 
for therapy.
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