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Calreticulin (CALR) is a multifaceted protein primarily involved in intracellular protein 
control processes. The identification of CALR mutations in essential thrombocythemia 
(ET) and primary myelofibrosis that are mutually exclusive with the JAK2 V617F mutation 
has stirred an intensive research interest about the molecular functions of CALR and its 
mutants in myeloproliferative neoplasms (MPNs) and its diagnostic/prognostic value. The 
recently characterized protein–protein interaction of CALR mutants and MPL receptor 
has advanced our knowledge on the functional role of CALR mutants in thrombocythemia 
but it has also uncovered limitations of the current established research models. Human 
cell lines and mouse models provide useful information but they lack the advantages 
provided by ex vivo primary cultures of physiologically relevant to the disease cell types 
[i.e., megakaryocytes (MKs), platelets]. The results from gene expression and chromatin 
occupancy analysis have focused on the JAK-STAT pathway activated in both JAK2 
V617F- and CALR-mutated MPN patient groups, although a more complete analysis is 
needed to be performed in MKs. Stress related processes seem to be affected in CALR 
mutant ET-MKs, but the precise mechanism is not known yet. Herein, we describe a cul-
ture method for human MKs from peripheral blood progenitors, which could help further 
toward an unbiased characterization of the role of CALR in ET and MK differentiation.

Keywords: calreticulin, essential thrombocythemia, myeloproliferative disorders, megakaryopoiesis, 
thrombopoiesis

The role of calreticulin (CALR) has been well documented in the calnexin–CALR cycle in the endo-
plasmatic reticulum (ER) as a crucial process for proper glycan folding and, beyond that, for calcium 
homeostasis (1). Additionally, it has been shown that it plays a role in programmed cell death and 
apoptosis in stress conditions (2) and cancer (3).

Mutations in the CALR gene have been identified in myeloproliferative neoplasms (MPNs), 
namely Type I (del52bp) and Type II (Ins5bp) mutations, the most common ones among essential 
thrombocythemia (ET) and primary myelofibrosis (PMF) patients in a mutual exclusive pattern with 
the JAK2 V617F mutation (4, 5). However, the molecular mechanism that links CALR mutations 
with the disease is not fully understood. Several studies based on the ectopic expression of CALR 
WT or each of its mutants in human cell lines (e.g., Ba/F3, UT-7) have resulted in the identification 
of an important protein–protein interaction with the thrombopoietin receptor (MPL) that seems to 
be crucial for the cytokine independent growth of Ba/F3 (5–7) or UT-7 (8) CALR overexpressing 
(O/E) cells. Importantly, this interaction was shown to be fundamental for the thrombocythemia 
phenotype of transplanted mice with CALR mutant HSC (7). Yet, there are missing molecular 
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events that precede or follow this interaction that should be 
further characterized. At the same time, it is necessary to define 
the limitations of the available experimental tools employed for 
that purpose.

Cell lines are instrumental for the biochemical and signal-
ing pathway analysis of mutants, but in certain cases, they have 
considerable drawbacks, as the origin of the cell type is critical 
for the study of physiological or molecular processes and should 
be carefully chosen. As reported, ectopic expression of CALR 
mutants in Ba/F3 cells is able to induce cytokine independent 
growth; however, this cell line does not express MPL (5, 9). This 
discrepancy was attributed to uncharacterized “stochastic events” 
that mediated the cytokine independent growth (9) and was taken 
as a “hint” for the identification of the crucial protein–protein 
interaction between the MPL and the CALR mutant that activates 
MPL and consequently induces constitutive JAK2 and STAT5/3/1 
activation. Of note, the MARIMO cell line that harbors a CALR 
mutation (61bp deletion) generating a novel C-terminus domain 
like all the other reported CALR mutations by +1-bp frameshift 
is not dependent on JAK2/STAT5 signaling (10), and it does not 
express MPL (11). These striking differences are useful to explore 
alternative molecular pathways but are also complicated and 
somewhat conflicting; they raise critical questions regarding the 
extrapolation of these results to the human situation and disease, 
which is by default very complex and heterogeneous. Less-biased 
approaches such as culture of primary cells [i.e., megakaryocytes 
(MKs)] have numerous advantages. They are physiologically 
relevant to the affected cell type (i.e., platelets or MKs in ET or 
MF patients), and they can be cultured in numbers suitable for 
downstream applications. Importantly, they allow to study the 
disease mechanisms per patient, as in many cases, other factors 
are also critical for the interpretation of the clinical manifesta-
tion of the disease, such as gene expression or signaling pathway 
analysis related to a specific phenotype, genetic predisposition, or 
gender (12). Importantly, they are not manipulated genetically, 
avoiding artificial phenotypes (e.g., enhanced or permanent stress 
responses) that are to be considered when enforced expression is 
established in immortalized cell lines or primary cells.

HUMAN PeriPHerAL BLOOD 
PrOGeNitOrs MeGAKArYOcYte-
cULtUre

The demand to study the process of megakaryopoiesis in  vitro 
in the context of a pathology led us to develop a protocol for the 
culture of primary MKs from human peripheral blood that can 
be adjusted to the needs of different experimental approaches 
(biochemical assays, microscopy, proteomics, etc) (13). Differen-
tiation of the cultured MKs has been characterized based on cell 
morphology and surface marker expression analysis during the 
course of the culture (10–14 days that is dependent on the donor). 
Defined cell populations of erythroid (Erys) and megakaryocytic 
progenitor cells allow the comparison between healthy and 
pathologic samples and the identification of lineage-specific 
discrepancies during the differentiation process (Figure 1). This 
is extremely important because it permits the study of progenitors 

and mature MKs simultaneously at different time points during 
the culture [derived from patients or healthy donors (HD)] that 
can be subjected to several downstream assays (e.g., sorting, 
microscopy). Additionally, this type of culture produces platelet 
particles that can be detected and analyzed by flow cytometry, 
which resemble platelets from the individual on a fresh sample 
regarding FSC/SSC and general surface marker expression.

sUBceLLULAr DistriBUtiON OF cALr 
AND trANscriPtiONAL ActivitY

Expression of CALR is very diverse and given that it is found 
practically everywhere inside and outside of the cells; differences 
in expression levels are expected between different cell types and 
different pathologies. Even more when ectopic expression of 
mutants is established under different expression levels and kinet-
ics of protein turnover, cell responses can be affected substantially 
and result in altered proliferation or apoptosis. Consequently, the 
distribution of CALR can be variable between cell types and upon 
the same conditions.

As mentioned previously, the commonly accepted expression 
pattern of CALR is cytoplasmic, membrane and extracellular 
and thus the efforts for characterization of its molecular func-
tions have focused on these cellular compartments. However, 
unpublished data from our laboratory suggest that CALR is also 
present in the nucleus. Confocal microscopy findings of primary 
MKs from HD (Figure 2) demonstrate the nuclear localization 
and are in contrast with previous reports in human cell lines 
[UT-7 (8, 14) or Ba/F3 (6) cells], where CALR is not found in 
the nuclear compartment. These are important differences that 
should be taken into consideration at the moment to choose 
the right experimental model, and they underline the need for 
further investigation regarding the potential role of CALR in the 
transcriptional profile of MKs between the different groups of ET 
(especially between those of JAK2 and CALR) that could affect 
their differentiation program.

Interestingly, there have been earlier reports about the pos-
sible transcriptional role of CALR and its nuclear localization 
(15, 16). CALR was shown to inhibit androgen receptor and 
retinoic acid receptor transcriptional activities in vivo (15), and 
specifically, N-CALR reported to interact with the DNA-binding 
domain of the glucocorticoid receptor (GR), thereby preventing 
its binding to the glucocorticoid response elements (16). These 
results implicate CALR in the regulation of gene transcription by 
nuclear hormone receptors. A very recent study by Falchi et al. 
(17) has revisited this issue in human erythroid cells (erythroid 
progenitors) and specifically investigated how the previously 
described process concerning the shuttle of GR between the 
cytosol and the nucleus in mammalian cells (18, 19) is mediated 
by conformational changes of CALR. They used established pri-
mary Erys cultures from JAK2 V617F-PV (Polycythemia Vera) 
patients to show that GR is present mainly in the nucleus, and 
the cells were dexamethasone unresponsive, an effect that was 
reversed by Ruxolitinib treatment (JAK2 kinase inhibitor) (17). 
They also implemented confocal microscopy, and interestingly, 
they did not find significant levels of CALR in the nucleus. So 
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FiGUre 1 | Flow cytometry analysis of a healthy donor megakaryocyte (MK)-culture at day 10. A representative flow cytometry analysis based on the 
expression of KIT, CD71, CD31, CD61, CD41, and CD42b (BD biosciences) surface markers (13). Contour plots and histograms of the mean fluorescence intensity 
of these markers are included for every population present in the culture [e.g., mature MKs, erythroid progenitors, and early stage progenitors (double negative and 
CD31+ KIT−)] as also indicated by the color gates in the contour plots and the cartoon (arrows) indicating cell differentiation. Percentages of cell populations are 
indicative and depend on the donor and state of health (e.g., % mature MKs is higher in essential thrombocythemia patients than healthy donors) at the time  
point of collection.
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far, a transcriptional role for CALR has not been explored in the 
context of MPNs (i.e., ET), while the main focus has been the 
JAK-STAT signaling. The open question is whether the transcrip-
tional profile of MPNs carrying the CALR mutations as compared 
to the JAK2-mutated MPNs is different and how it is orchestrated 
in terms of transcription factor and cofactor regulation. A recent 
report has put forward partially this question and has emphasized 

the need for further investigation on primary human MKs from 
patients of CALR or JAK2 ET (20). There is a debate about the 
flavor of the JAK-STAT signaling in these two groups of patients 
(20, 21), and gene ontology analysis identifies affected biological 
processes that are linked to stress conditions in the CALR ET 
group (20). This is consequent with a cellular response due to the 
presence of mutated CALR that could trigger several adaptation 
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FiGUre 2 | confocal microscopy of a human cultured megakaryocyte (MK) from a healthy donor. Staining for nucleic acid (DAPI, BD), calnexin  
(CNX, ab31290), and calreticulin (CALR, ab39897, which recognizes an epitope in the N-terminal domain of the human CALR) was performed, and fluorescent 
signals were detected at the UV channel (DAPI), 488 nm (CNX), or 647 nm (CALR), respectively, on a single mature MK. Different combinations or single detected 
fluorescent signals are presented in the images. Cultured cells at day 10 (MKs and Erys) were collected and separated by size fractionation on a BSA gradient. The 
MK fraction was washed in phosphate buffer saline, and the cells were left to attach on a poly-l-lysine-coated glass slide (Sigma). The chosen images are 
representative of all MKs in the slide, and they show protein staining in one focal plane with a very characteristic morphology (lobular) of the nucleus, typical of the 
MKs only (polyploid).
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mechanisms (e.g., transcriptional or translational). However, the 
possibility that CALR per se mediates any type of transcriptional 
activity is an alternative hypothesis that lacks confirmation at the 
moment.

cALr AND stress

Both mutated isoforms of CALR lose their native KDEL signal, and 
the changes introduced in the negative charge of the C-terminus 
domain could affect Ca++ binding even though only Type I MKs 
have shown abnormal cytosolic Ca++ signals (22). Of note, in Erys 
cells Ca++ flux is induced by EPOR activation (23). The process 
of Ca++ regulated conformational changes of CALR that controls 
GR shuttling between the nucleus and the cytosol is deregulated 
in JAK2 V617F Erys cells (17) thereby establishing a prolonged 
stress-responsive gene-expression signature(24) characterized by 
enhanced proliferation. CALR (C-CALR) in response to Ca++ 
seems to reverse this enhanced proliferation status allowing the 
initiation of the maturation process by inducing GR nuclear export 
that has been shown also in murine cells (18). Type I mutation 
(del52bp) seems to have more pronounced effects as compared to 
Type II mutation (Ins5bp) since it is observed that it undergoes 

rapid degradation when over-expressed in cell lines [UT-7 (8), 
HEL, DAMI, Ba/F3 or 293T (11)] or in transduced HSCs that are 
subsequently transplanted (7). In the latter case, the phenotype 
(high platelet counts) was pronounced in the Type I mutation, 
and the protein levels of the mutant CALR were lower than the 
protein levels of the Type II (Ins5bp) CALR mutation when over-
expressed in HSCs. These results indicate that only low levels of 
Type I CALR mutant are tolerable by the cell and that this situation 
is the outcome of a counterbalance mechanism when the mutant 
protein levels pass over the cell survival thresholds. Although the 
levels of the CALR mutants are low in cell lines, there is lack of 
evidence about the actual protein levels and the distribution of 
the endogenous and mutant protein in primary cells. A study by 
Kollmann et al. (11) corroborates this observation in human cell 
lines but it describes higher total CALR protein levels in platelets 
from MPN patients, whereas in their MK-cultures from CD34+ 
progenitors they did not quantify protein levels. It has been 
shown previously that CALR has an important role in integrin-
mediated adhesion and signaling (25), which are important 
for platelet activation. Such quantitative changes at the protein 
levels of CALR in platelets described by Kollmann et  al. could 
have major implications in megakaryopoiesis and consequently 
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in platelet function; however, a clear distinction should be made 
between different MPN pathologies (PV, ET, and PMF) and their 
mutational genotype.

Antibodies specific for the mutants show CALR staining 
basically in MKs of the bone marrow (BM) of MPN patients but 
they do not provide a quantitative measurement (26, 27). On 
the contrary to what has been observed in ectopically expressed 
CALR mutants in cell lines, the majority of ET and PMF BM 
biopsies had very high intensity signals in MKs and lower in 
other cell types (27). This could indicate early stage MKs that 
undergo a process of adjustment of mutant CALR levels under 
the cell survival threshold, and in order to follow this process, 
a physiological and unbiased system is needed (i.e., primary 
cultures).

Endoplasmatic reticulum and mitochondria play an impor-
tant role in the orchestration of such response mechanisms under 
stress conditions, although little is known so far about their role 
specifically in MKs under the presence of CALR mutants and in 
megakaryopoiesis and thrombopoiesis in general.

FUtUre DirectiONs

It is interesting to investigate the nuclear levels of CALR in 
ET-MKs as compared to HD MKs and if quantitative changes 
at the protein level could be linked to proliferation, apoptosis, 
proplatelet formation, and platelet function under stress in the 
different groups of ET. Given that the reported results in cell lines 
are dependent on certain limitations and often do not correlate 
completely with each other, future emphasis should be given to 
the primary cultures (i.e., MKs) from HD and ET patients, which 
provide an unbiased system, and they are representative of the 
donor characteristics. Transcriptional profile of human MKs 
from ET and HD would be very informative and should provide 

us with insights about the possible transcriptional implication of 
CALR in the MK differentiation program in steady state and in 
disease. Identification of markers that could help us understand 
the biology of ET and ease the management of the patients should 
be the primary goal of this approach.
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