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Following the discovery of the mitochondria-associated membrane (MAM) as a hub for 
lipid metabolism in 1990 and its description as one of the first examples for membrane 
contact sites at the turn of the century, the past decade has seen the emergence of this 
structure as a potential regulator of cancer growth and metabolism. The mechanistic 
basis for this hypothesis is that the MAM accommodates flux of Ca2+ from the endo-
plasmic reticulum (ER) to mitochondria. This flux then determines mitochondrial ATP 
production, known to be low in many tumors as part of the Warburg effect. However, low 
mitochondrial Ca2+ flux also reduces the propensity of tumor cells to undergo apoptosis, 
another cancer hallmark. Numerous regulators of this flux have been recently identified 
as MAM proteins. Not surprisingly, many fall into the groups of tumor suppressors and 
oncogenes. Given the important role that the MAM could play in cancer, it is expected that 
proteins mediating its formation are particularly implicated in tumorigenesis. Examples 
for such proteins are mitofusin-2 and phosphofurin acidic cluster sorting protein 2 that 
likely act as tumor suppressors. This review discusses how these proteins that mediate 
or regulate ER–mitochondria tethering are (or are not) promoting or inhibiting tumorigen-
esis. The emerging picture of MAMs in cancer seems to indicate that in addition to the 
downregulation of mitochondrial Ca2+ import, MAM defects are but one way how cancer 
cells control mitochondria metabolism and apoptosis.

Keywords: mitochondria-associated membrane, mitochondria-endoplasmic reticulum contacts, mitofusin-2, 
metabolism, oncoprotein, tumor suppressor

iNTRODUCTiON: DiSRUPTiON OF MiTOCHONDRiAL 
MeTABOLiSM iN CANCeR

Lost control of mitochondria metabolism is a central cancer hallmark (1), although not all tumors 
are characterized by this property. As a consequence, cancer cells frequently rewire their metabolism 
to rely on glucose even in the presence of oxygen and, thus, reduce their reliance on mitochondria 
(2). In parallel, tumor cells exhibiting this so-called Warburg phenotype must increase their glyco-
lytic capacity.

Multiple cancer signaling pathways are associated with the glycolytic signature of cancer. For 
instance, the excessive growth of many solid tumors results in large portions of the tumor mass 
becoming hypoxic, which subsequently induces production of key glycolysis enzymes via the 
HIF1α transcription factor (3), including glucose transporters (e.g., GLUT1) or glycolytic enzymes 
(e.g., phosphofructokinase) (4). Upon their induction, these enzymes shift energy generation away 
from mitochondria toward glycolysis and glutaminolysis (5–8). This allows tumor cells to accu-
mulate more biomass through increased uptake and metabolism of glucose (2, 9–13). In parallel, 
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while glycolysis only produces two ATP molecules per glucose 
molecule, compared to 36 molecules of ATP from the complete 
oxidation of glucose within mitochondria, glycolysis can still 
result in higher energy production due to speedier progression 
of this pathway and higher ATP production per time rate (14). 
Increased ATP consumption could further accelerate this pathway 
and could result in almost 100 times faster ATP generation than 
oxidative phosphorylation (15). Under these conditions, glucose 
is converted into lactate by conversion of pyruvate through 
lactate dehydrogenase (LDH) (16, 17). When LDH produces this 
glycolysis end product, it also replenishes NAD+ levels, which 
act to make the cytosol more oxidizing (18, 19). In tumor cells, 
however, lactate can also be shuttled to mitochondria, where it 
can be metabolized to synthesize lipids (20). Secreted leftover 
lactate contributes to the altered tumor microenvironment by 
lowering the extracellular pH, activation of the VEGF signaling 
pathway (21), and driving cell migration (22), to name but a few 
consequences (23). Together, the increased presence of lactate 
caused by tumor metabolism critically manipulates multiple 
metabolic pathways and cell biological mechanisms.

In parallel, HIF1α can also achieve another characteristic of the 
Warburg phenotype: the repression of oxidative phosphorylation 
by cooperating with c-Myc to drive transactivation of pyruvate 
dehydrogenase kinase 1 (PDK1) and its relatives (24, 25). The 
induction of this enzyme not only directly reduces mitochondrial 
oxygen consumption but also further promotes glycolysis by 
decreasing pyruvate flow to mitochondria, while increasing its 
conversion to lactate (24, 25). Therefore, the inhibition of PDK1 
and related kinases by RNAi or dichloroacetate can potentially 
rescue some of the metabolic changes in tumor tissue (26).

While it was clear for a long time that cancer mitochondria 
make less ATP, it had initially been questioned whether the 
reason for this defect is found within the proteins making up 
the electron transport chain within mitochondria (27). However, 
many types of cancer result in a relative depletion of mtDNA, 
when compared to neighboring tissue (28), as one would expect 
given the important links between mitochondrial metabolism and 
cancer. Moreover, numerous mitochondrial enzymes encoded by 
nuclear or mitochondrial DNA show mutations (29). Specifically, 
mutations in mtDNA can indirectly affect enzymes of the Krebs 
cycle, including fumarate hydratase (30), and isocitrate dehydro-
genase (31). Moreover, mutations in nuclear-encoded succinate 
dehydrogenase can by themselves cause paraganglioma (32, 33), 
potentially from increased ROS production within mitochondria 
that leads to oxidative damage and eventually transformation 
(34). Somatic mutations of mtDNA have been discovered in a 
wide variety of cancers, including colorectal, ovarian, renal, and 
lung cancers (35–38). Moreover, the depletion of mtDNA by 
itself can act as tumorigenic in vitro as well as in vivo (39). Such 
a loss of mtDNA, as well as mitochondrial mass, can be caused, 
for instance, by mutations of p53 (40). While an outright loss 
of mtDNA can sometimes paradoxically reduce mitochondrial 
ROS production due to arrest of oxidative phosphorylation (40), 
cancer tissue is normally characterized by increased levels of 
ROS, due to the rapid growth of tumors (41). Therefore, more 
frequently, mtDNA mutations accelerate tumor progression via 
increased ROS production that leads to further mutations within 

nuclear and mitochondrial DNA (42). This sets a dangerous 
cycle in motion that further increases the level of oxidative stress  
(43, 44). Accordingly, the type II diabetes drug metformin, which 
reduces both ROS and inhibits complex I (45, 46), reduces the risk 
of developing cancer (47, 48). This finding suggests that regula-
tion of mitochondrial ROS production is an important point of 
intervention for the treatment of cancer. In addition, it is also 
clear that proteins regulating the progression of mitochondrial 
oxidative phosphorylation and, thus, production of mitochon-
drial ROS must be found on the list of tumor suppressors and 
oncoproteins.

ONCOPROTeiNS AND TUMOR 
SUPPReSSORS USe THe eNDOPLASMiC 
ReTiCULUM (eR) AS A PLATFORM TO 
CONTROL MiTOCHONDRiA

Recent progress has determined that besides proteins mediat-
ing oxidative phosphorylation themselves, regulatory proteins 
outside mitochondria could determine mitochondrial ROS and 
tumorigenesis. An attractive location to execute such a function is 
the mitochondria-associated membrane (MAM) (49). This intra-
cellular signaling hub houses Ca2+ exchange between the ER and 
mitochondria that is required for mitochondrial dehydrogenases 
and, thus, oxidative phosphorylation (49). Accordingly, cells with 
blocked active Ca2+ release from the ER produce less than half 
of their normal amount of mitochondrial ATP (50). A need for 
ER–mitochondria cross talk to fully engage cellular metabolism 
and energy production had been anticipated in early studies 
of Bernhard and Rouiller on the regenerating liver, where ER 
and mitochondria form close appositions in a fasting–feeding-
dependent manner (51, 52). Today, altered Ca2+ signaling at the 
MAM is recognized as a hallmark of cancer cells that shifts their 
metabolism to glycolysis and increases their resistance to cell 
death (53).

Early studies had identified the MAM as a lipid synthesis plat-
form, where phosphatidylethanolamine (PE) production requires 
the apposition between the ER and mitochondria (54–56). It is, 
therefore, not surprising that MAM lipid enzymatic activities 
are essential for normal Ca2+ signaling (57). Critically, the MAM 
represents a detergent-resistant membrane that forms a locally 
cholesterol-enriched raft (58, 59). This structure is enriched in 
the sigma-1 receptor (60), the ER prohibitin-related proteins 
erlin-1 and erlin-2 (61), the ubiquitin ligase gp78 (62), and the 
ER oxidoreductase TMX1 (63). Therefore, one way how tumor 
cells could silence mitochondria metabolism and apoptotic sign-
aling would be by altering ER lipid domain formation that could 
disrupt normal MAM rafts.

Consistent with such a possibility, a variety of lipid-interfering 
strategies are currently in development to trigger ER stress-
related apoptosis in cancer cells and have been reviewed recently 
(64). This idea is based on findings that show that cholesterol 
loading of the ER leads to ER stress and subsequent apoptosis 
of a variety of cell types (65–67). Mechanistically, this excess 
cholesterol efficiently blocks ER sarco/ER Ca2+-ATPase (SERCA) 
that pumps Ca2+ into the ER, thus resulting in the transfer of Ca2+ 
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to mitochondria (68). Similarly, ER lipid saturation, achieved by 
elevated phosphatidylcholine over PE (69) or palmitate (70), 
activates the ER stress response and apoptosis via the inhibition 
of SERCA.

However, these mechanisms might all represent a drastic, 
artificial phenotype that cannot be exploited for cancer therapy 
and does not operate in the same way within cancer cells. 
Moreover, their potential links between cancer cell biology and 
MAM-related mechanisms are currently obscure. Even when 
restricting to studies on cholesterol and tumor cell function and 
survival, no clear picture emerges. For example, mitochondria 
of cancer cells are more susceptible to increases in cholesterol, 
which tend to trigger ER stress and apoptosis in this system 
more readily than in normal cells (67, 71). However, cholesterol-
lowering drugs such as statins also trigger mitochondria-based 
apoptosis (72), possibly because cancer mitochondria operate 
with 2- to 10-fold more cholesterol than mitochondria of normal 
cells (73). Cholesterol- and PE-rich mitochondria also provide 
more resistance to Bax-mediated membrane permeabilization 
(74, 75). We must conclude that cancer cells might be influenced 
by cholesterol and that altering the lipid balance of cancer cells 
could affect their MAM rafts, but that a clear outcome of such 
interventions within cancer cells has not yet emerged. A potential 
explanation for these observations is that lipid storage at an early 
stage of cancer changes to lipolysis accompanied by increased 
cholesterol synthesis in advanced cancer (76, 77). In the context 
of this review, these observations suggest that the lipid- and 
cholesterol-dependent structure that is the MAM may undergo 
tumor stage-specific changes.

Nevertheless, consistent with altered lipid and cholesterol 
content of cancer mitochondria (73), ER–mitochondria tethering 
might be different at least in a subset of cancers. This hypothesis 
has been put forward over 60 years ago by Howatson and Ham 
(78), who observed reduced numbers of mitochondria and of 
ER–mitochondria contacts in liver cancer. These observations 
anticipated follow-up observations, which also detected lower 
amounts of mitochondria in tumor tissue in multiple instances 
(79–81). Moreover, despite (or maybe because of) their poten-
tially increased distance from intracellular Ca2+ sources, some 
tumor cell mitochondria have an increased Ca2+ uptake capacity 
compared to mitochondria from normal tissue when examined 
as isolated entities in vitro (82, 83). This property is also reflected 
in the upregulation of mitochondrial Ca2+ uniporters (MCUs) 
in breast cancer cells (84). Potentially, however, MCU is also a 
target of miR-25 that can reduce its amount in cancer cells (85). 
While these findings suggest more research is needed to assess the 
role of MCU in cancer, they also demonstrate that tumor mito-
chondria have different Ca2+ handling. Moreover, the end result 
of both observations for cancer mitochondria could actually be 
the same. While some tumor mitochondria may import less Ca2+ 
via reduced amounts of MCU, others may show increased Ca2+ 
uptake capacity from a compensation for decreased Ca2+ avail-
ability in the tumor cell, maybe due to defective ER–mitochondria 
tethering. Generally speaking, these findings also indicate that 
cancer cells undertake massive remodeling of upstream signaling 
mechanisms that result in reduced mitochondrial ATP output in 
cancer cells, as postulated by Warburg (2). Importantly, as an end 

result, this remodeling may very well end up making the residual 
power generation within mitochondria essential (86).

Consistent with such a modulated ER–mitochondria Ca2+ 
flux, MAM-localized oncoproteins and tumor suppressors 
indeed interact with Ca2+ handling proteins and modulate their 
activity. Consistent with this hypothesis, the tumor suppressors 
and oncoproteins p53 (87), the phosphatase tensin homolog 
(PTEN) (88), the kinase Akt (89), breast/ovarian cancer suscep-
tibility gene 1 (BRCA1) (90), and the promyelocytic leukemia 
(PML) protein (91, 92) all localize to mitochondria or to ER–
mitochondria contacts. Here, they exert their cancer-regulating 
activities by interacting with Ca2+-handling proteins and either 
boost ER–mitochondria Ca2+ flux (tumor suppressors) or inhibit 
it (oncoproteins), for details see Figure 1.

For instance, p53 is enriched on the MAM, where it interacts 
with the ER Ca2+ pump SERCA and promotes ER–mitochondria 
Ca2+ cross talk not only to induce apoptosis but also to promote 
ATP production needed within the ER (93). Thus, the tumor sup-
pressor p53 acts to beneficially facilitate existing mechanisms and, 
thus, overall improves mitochondrial functioning. In addition, it 
appears that these p53 functions depend on mitochondrial ROS 
production, since ROS induce p53 enrichment on mitochondria, 
where it can promote the opening of the permeability transition 
pore (PTP) (94) upon a stabilizing interaction with Hsp90 (95). 
This finding provides another connection between mitochondrial 
Ca2+ signaling, oxidative phosphorylation, and p53, but the inter-
action of this tumor suppressor with the mitochondrial proton 
gradient and Ca2+ signaling goes further. p53 can also influence 
mitochondria function via direct interaction with the F1F0-
ATPase to promote respiration and reduce ROS production (96). 
Interestingly, this function could directly link p53 to the control 
of mitochondrial permeability transition, since the F1F0-ATPase 
or parts of it are the most likely candidates for forming the 
mitochondrial PTP (97–99). Given that hexokinase II localizes 
to the PTP (100), from where it increases the use of glucose (101), 
p53 and hexokinase II may oppose each other in the control of 
tumor cell growth, as is indeed the case in castration-resistant 
prostate cancer (102). Interestingly, hexokinase II binding to 
voltage-dependent anion channel (VDAC) increases in paral-
lel with cholesterol loading of mitochondria, thus providing 
additional evidence that cancer-associated alterations of MAM 
and mitochondria properties shift cellular energy generation to 
glycolysis (73). All of these MAM-associated functions depict p53 
as a factor that would beneficially control mitochondrial oxidative 
phosphorylation: not only as a gatekeeper, which would promote 
ER–mitochondria Ca2+ flux, but also as a chaperone, which can 
make mitochondrial ATP production more efficient and which 
can arrest mitochondrial ATP production in the case of excessive 
ROS production.

An important question that cell biologists are currently 
trying to answer is whether other mitochondrial regulatory 
proteins could fulfill similar roles to the ones described above 
for p53, PTEN, Akt, BRCA1, and PML. Given the characteristic 
mechanisms that these proteins use to influence mitochondrial 
metabolism and apoptosis regulation, such proteins should 
influence mitochondrial ROS and ATP production, likely via 
influencing the availability of Ca2+ within mitochondria. While 
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recent reviews have provided outstanding global overviews of 
this hypothesis that we recommend the reader to consult as well 
(53, 103, 104), our review will specialize on the most central 
subcategory of proteins regulating the availability of Ca2+ within 
mitochondria. These are the proteinaceous tethers between the 
ER and mitochondria. While the identity of such proteinaceous 
tethers is currently much better understood in the yeast model 
system (105), where the ER–mitochondria encounter structure 
(ERMES) and ER membrane protein complex (EMC) are known 
or implicated in tethering the two organelles (106, 107), respec-
tively, numerous proteins have been implicated in the formation 
or regulation of ER–mitochondria tethers in human cells (108). 
We will discuss these tether protein complexes as well as tethering 
regulators below. The current knowledge about ER–mitochondria 
tethers in cancer is summarized in Figures 1 and 2.

Mitofusin-2
Mitofusins are a pair of GTPases that promote mitochondrial 
fusion (109). Mitofusins also determine ER–mitochondria 
apposition through a variety of proposed mechanisms. The most 
recent findings about their role for ER–mitochondria contacts 
suggest that they determine the outer mitochondrial membrane 
(OMM) protein composition (110). Through this function, 
mitofusins determine the surface properties of mitochondria, 
which could impact the interaction of mitochondria with the 
ER. Indeed, confirming this hypothesis, the expression balance 
between the two mitofusins regulates the relative apposition 

between mitochondria and the rough and smooth ER (rER/sER). 
Specifically, mitofusin-1 appears to inhibit the formation of sER–
mitochondria contacts, whereas mitofusin-2 appears to interfere 
with the formation of rER–mitochondria contacts in cells with 
increased mitofusin-1 levels (111, 112). Currently, it is unclear 
whether this effect is via a direct regulation of contact formation 
between the two subpopulations of the ER with mitochondria, or 
whether the influence of the mitofusins on mitochondrial OMM 
proteins could explain these findings. In the latter scenario, pro-
tein subdomains on the OMM could mediate contact formation 
preferentially with the rER or sER. Regardless, these two find-
ings clearly indicate that mitofusins determine the interaction 
between the ER and mitochondria. However, the exact role and 
the actual consequences of the mitofusins for this interorganellar 
interaction are currently being hotly debated.

In the case of mitofusin-2, the role for ER–mitochondria 
tethering extends beyond the regulation of the proportion 
between sER and rER–mitochondria contact formation, since 
the Scorrano lab had identified this mitochondrial GTPase 
as globally critical for MAM formation in mammalian cells 
(113). This role of mitofusin-2 in ER–mitochondria tether-
ing was identified via a loss of FRET signal from two distinct 
ER–mitochondria proximity indicator probes (114, 115), by a 
reduction of fluorescence signal overlap between mitochondrial 
RFP and ER YFP, by a reduced mitochondrial uptake of IP3R-
released ER Ca2+ (113), by reduced numbers of ER tubules in 
the proximity of mitochondria on electron micrographs (116), 
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by increased resistance to ER stress-mediated apoptosis (117), 
and by a reduction of a coefficient that measures the extent of 
close ER contacts relative to the total mitochondria surface 
(115). However, these results did not unequivocally determine 
whether mitofusin-2 is an actual tether or whether it simply 
controls tethering. Moreover, despite these multiple results 
from many experimental approaches suggesting mitofusin-2 is 
an ER–mitochondria tether, these findings have been challenged 
by studies that measured the actual distance of ER–mitochon-
dria contacts via electron microscopy and found a decrease in 
ER–mitochondria contacts in Mfn2−/− cells (118, 119). Moreover, 
etoposide- and ceramide-mediated apoptosis proceeds faster 
in Mfn2 knockdown cells (119). As discussed by others and us 
recently (105, 108), multiple hypotheses could explain these dis-
crepant findings. In our opinion, a compelling observation has 
been made recently by the Scorrano lab, which identified cellular 
culture conditions as critical for the role of mitofusin-2 for the 
formation of MAMs (115). This explanation would be an exten-
sion of the observations that mitofusin-2 knockout cells exhibit 
ER stress and that ER stress increases MAM contact formation  
(120, 121). Regardless of these outstanding questions, it is 
undisputed by all researchers of the field that mitofusins, and 
particularly mitofusin-2, are important regulators of MAM 
contacts. However, further research will have to determine the 
biogenesis and consequences of the reported phenotypes.

A role in ER–mitochondria contact formation raises the 
possibility that mitofusin-2 could also play a role as an oncopro-
tein or tumor suppressor. Since normal apoptosis progression 
requires a functional MAM, understanding its role in cancer 

may provide clues as to what function mitofusin-2 performs for 
the MAM. Indeed, and consistent with a role of mitofusin-2 as 
a MAM promoter, cancer cells with high levels of mitofusin-2 
are more susceptible for apoptosis and more competent for 
ER–mitochondria Ca2+ flux (122–124). Further demonstrating 
the tumor-suppressive role of mitofusin-2, a panel of hepatocel-
lular carcinoma (HCC) showed significant downregulation of 
mitofusin-2 and correlated with worse overall survival (125). 
Accordingly, mitofusin-2 mRNA is targeted by miR-761 in HCC 
tissues. The upregulation of mitofusin-2 via inhibiting miR-761 
decreased tumor growth and metastasis both in vivo and in vitro 
(126). Similar findings have been reported from breast cancer 
cells, where the ectopic expression of mitofusin-2 leads to pro-
apoptotic and antiproliferative signaling (127). Consistent with 
these findings, mitofusin-2 knockdown leads to reduced respira-
tion, presumably due to blocked ER–mitochondria Ca2+ flux, but 
also reduces glycolysis, thus reducing overall ATP levels in HeLa 
cells (128). Together, these observations indicate that mitofusin-2 
is a factor in cancer that typically results as reduced or absent in 
the cancer scenario (Figures 1 and 2). While some of the find-
ings may turn out to be cell-type specific, these findings are more 
consistent with a role of mitofusin-2 as a MAM promoter and a 
tumor suppressor.

Phosphofurin Acidic Cluster Sorting 
Protein 2 (PACS-2)
About 10  years ago, the cytosolic PACS-2 was identified 
as a homolog of the previously identified PACS-1 (129, 
130). Unlike its closely related sister protein PACS-1 that 
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regulates trafficking at the level of the trans-Golgi network 
and endosomes (131), PACS-2 determines the interaction 
between the ER and mitochondria, consistent with its partial 
localization to these organelles (130). Besides targeting of Bid 
to mitochondria and other functions described elsewhere 
(132), PACS-2 is required for the proper formation of the MAM  
(57, 133).

Here, PACS-2 acts as a MAM tethering regulator, but likely 
does not function as a MAM tether on its own. PACS-2 knock-
down or knockout, nevertheless, interferes with several key 
MAM functions. For instance, PACS-2 knockdown detaches 
the ER from mitochondria, as seen by light and electron 
microscopy (130). This and other activities of PACS-2 depend 
on its serine 437 residue, which promotes active PACS-2 
(134). Moreover, the phosphorylation of this site by Akt is a 
prerequisite to maintain MAM formation and is downstream 
of mammalian target of rapamycin complex 2 (mTORC2) 
(89). mTORC2/Akt-mediated phosphorylation of PACS-2 
maintains proper Ca2+ availability for mitochondria, needed 
for mitochondria metabolism (50), but also apoptosis progres-
sion (135). From this insight, it makes, perfect sense that in a 
cancer scenario, PACS-2 is a hot spot of chromosome instabil-
ity, as indeed observed in colorectal cancer (136), possibly in a 
stage-dependent manner (137). Therefore, similar to the better-
characterized mitofusin-2, it is expected that PACS-2 acts as a 
tumor suppressor (Figures 1 and 2), whose absence would be 
indeed expected to lead to ER–mitochondria uncoupling, but 
this has not been determined at this point. No information is 
currently available about cancer-associated mutations in PACS-
2, but it is clear that the regulatory serine 437 residue would 
correspond to a prime candidate.

Nogo-B/Reticulon-4B
Like mitofusin-2 and PACS-2, Nogo-B/reticulon-4B is a struc-
tural regulator of the ER, promoting the formation of tubular ER 
(138). Compared to the highly related Nogo-A that is restricted 
to neuronal cells, Nogo-B is expressed ubiquitously (139). Upon 
overexpression of this protein, the proportion of tubular ER 
increases over sheet-like ER (138). A Nogo-B overexpression 
could occur, for instance, during ER stress or hypoxia that leads to 
increased reticulon-4 expression dependent on the ER transcrip-
tion factor ATF6 (140). Interestingly in the context of this review, 
increased Nogo-B expression associated with hypoxia increases 
the distance between the ER and mitochondria, suggesting that 
Nogo-B acts as an inhibitor of ER–mitochondria tethering (141). 
Nogo-B is not the only reticulon that localizes to the MAM and 
whose overexpression modulates ER–mitochondria contact for-
mation: the same has been reported for reticulon-1C, although its 
activity seems to be opposite (142).

Again, like in the case of mitofusin-2 and PACS-2, the ques-
tion arises as to what is the functional basis of a role for Nogo-B 
in regulating the apposition between the ER and mitochondria. 
It appears that a common pattern is emerging, where ER- and 
mitochondria-associated factors that determine their respec-
tive membrane composition or shape also increase or decrease 
organellar apposition. This is again confirmed upon knockout of 
Nogo-B. In this scenario, ER tubulation is lost and the diameter 

of ER structures increases (143). Apparently contradicting a 
role as a MAM inhibitor, cells lacking Nogo-B are resistant to 
apoptosis, which normally depends on ER–mitochondria Ca2+ 
flux. While this finding could suggest that the role of Nogo-B 
is less clear than anticipated, this effect could also depend on 
a role of Nogo-B on the apposition between the ER and the 
plasma membrane: Nogo-B-deficient cells exhibit decreased 
store-operated Ca2+ entry, which suggests that this reticulon acts 
to increase contacts between the ER and the plasma membrane 
(143). This observation raises the important issue that ER tether-
ing factors could promote apposition in the case of contacts with 
one organelle, but decrease apposition in the case of contacts 
with other organelles.

If our hypothesis were correct that ER–mitochondria tether-
ing antagonizes tumor progression, then we would expect to find 
expression of a MAM-inhibitory Nogo-B to be high in cancer. 
However, the first paper linking Nogo-B to cancer found this 
to be the opposite (144): ectopic expression of Nogo-B restores 
apoptosis susceptibility in cancer cells, and small cell lung cancer 
was found to exhibit low levels of Nogo-B. Similarly, low levels 
of Nogo-B were found in leukemia and lymphoma (145), as well 
as in metastatic malignant melanoma (146). Along these lines, it 
is possible to see the effect of Ras transformation that results in 
cleavage of Nogo-B as a disruption of its MAM-regulating activi-
ties (147). Together, these observations are more consistent with 
a role of Nogo-B in promoting cell death.

While these findings may suggest that MAM tethering 
cannot be unequivocally tied to tumor suppression, additional 
cancer-relevant functions could complicate the role in cancer 
for Nogo-B. Besides the previously mentioned role for ER–
plasma membrane apposition by Nogo-B, such functions have 
indeed been detected in the case of Nogo-A, the Nogo form 
expressed in the central nervous system that acts to promote 
MAM formation. In addition to regulating the MAM, Nogo-A 
downregulates Rho signaling in neuronal cells and thus 
inhibits migration of glioma cells (148). Nogo-A also stabilizes 
the receptor tyrosine kinases ErbB3 and ErbB4 through the 
sequestration of their ubiquitin ligase Nrdp1 within ER tubules. 
This then results in an increase in proliferative signaling upon 
Nogo-A overexpression (149). Such secondary functions likely 
preclude a clear, logical connection of Nogo-B between its 
published role in MAM suppression and its activities as a tumor 
suppressor as well.

Protein Kinase RNA-Like eR Kinase 
(PeRK)
A more recently discovered tethering factor is the ER kinase 
PERK (150). While PERK is more commonly known as the 
kinase that phosphorylates eukaryotic initiation factor 2α and 
thus blocks translation of ER proteins under ER stress conditions 
(151), PERK also localizes to the MAM, where it promotes the 
apposition between the ER and mitochondria. Accordingly, 
PERK knockout cells exhibit a MAM that is less tight and show 
resistance to apoptosis inducers (152). Interestingly, these func-
tions of PERK at the MAM are accompanied by its interaction 
with mitofusin-2 (117). A general role of PERK in the functioning 
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of membrane contact sites is confirmed by its role in the formation 
of ER contacts with the plasma membrane (153).

From these functions, and if restricting a cancer role to its 
function on the MAM, we would predict that PERK, like PACS-2 
and mitofusin-2, should act as a tumor suppressor. However, 
historically, PERK-expressing tumor cells have been found to 
have a growth advantage (154). This finding is based on the role 
of PERK in the unfolded protein response, where it protects cells 
against oxidative stress originating from the ER (155). Despite 
the induction of the pro-apoptotic transcription factor CHOP, 
PERK tends to elicit a tumor-promoting function due to its role 
in increasing angiogenesis as well as resistance to chemotherapy 
(156). Hence, the picture of PERK in cancer might be complex. 
Consistent with this idea and as expected from its ambiguous 
role in ER stress and MAM tethering, more recently it has 
become clear that PERK can promote both tumor progression 
and suppression (157).

Multimeric Mammalian MAM Tethering 
Complexes
While the yeast model system has shown that its MAM relies on 
multimeric, ER- and mitochondria-localized protein complexes 
[ERMES and EMC (105)], these complexes either do not exist 
in mammalian cells (ERMES) or their functioning in tethering 
is currently unknown (EMC). Nevertheless, the set of proteins 
mediating the tethering of the ER to mitochondria is expected to 
comprise multimeric protein complexes that localize to both the 
ER and mitochondria in mammalian cells as well. Indeed, a cou-
ple of multimeric MAM tethering complexes have been proposed 
to exist over the past decade. One such protein complex is the 
ARCosome that is formed when ER-localized BAP31 interacts 
with mitochondrial Fis1 (158). Interestingly, the ARCosome 
undergoes modulation upon cell stress, which results in its 
association with caspase-8. This interaction alters the function of 
the ARCosome, which then becomes involved in mitochondrial 
fission through formation of the p20 fragment of BAP31 (159). 
This suggests the ARCosome could be central in pro-apoptotic 
roles of the MAM, suggesting that cancer is characterized by its 
absence or disruption.

However, not much is known about components of the 
ARCosome and cancer. A recent publication suggests that BAP31 
is overexpressed in malignant melanoma (160). While this find-
ing apparently contradicts our expectations, it might result in 
altered pro-apoptotic signaling of the ARCosome. More aligned 
with the idea that the ARCosome would suppress tumor growth, 
miR-484 downregulates Fis1 in cancer, associated with increased 
cancer resistance (161).

Another ER–mitochondria protein complex consists in the 
association between IP3Rs, the voltage-gated anion channel 
(VDAC), and the OMM chaperone Grp75 (162). Within this 
complex, VDAC (163) and Grp75 (162) act to boost ER–mito-
chondria Ca2+ flux. However, the exact importance of this complex 
for the formation and maintenance of the MAM is not known, 
since IP3R triple knockout cells do not show an altered MAM 
(121). Moreover, it is not known whether deletion or overexpres-
sion of any member of this complex modulates MAM formation. 

Nevertheless, the transfer of Ca2+ from the ER to mitochondria 
accommodated by IP3Rs and VDAC is typically low in cancer 
cells, but essential (164). Not surprisingly, the members of this 
protein complex exhibit multiple connections to cancer, and all 
are important regulators of cell survival and cell death.

VDAC is an important control point not only for the influx of 
Ca2+ into mitochondria but also for the efflux of pro-apoptotic 
molecules and, thus, controls both mitochondria metabolism and 
cell death. Typically, VDAC is highly expressed in tumor tissue 
(165), and its expression level has been proposed to correlate so 
much with poor prognosis to be a candidate biomarker (166). 
Grp75 is also called mortalin, due to its antiproliferative effects 
(167). In cancer, however, Grp75 appears to act tumor-promoting, 
since its expression increases upon liver cancer metastasis (168) 
and overexpression of Grp75 increases the aggressiveness of a 
variety of tumor cell lines (169). Here, like in the case of VDAC 
and PERK, additional, MAM-unrelated functions may lead to a 
complex readout of the role of Grp75 in cancer. One such example 
may be that Grp75 can sequester and inactivate p53 (170).

A more recently described ER–mitochondria tethering com-
plex is based on the OMM protein PTPIP51 and the ER vesicle-
associated membrane protein-associated protein B (VAPB) that 
spans the ER membrane. Indicative of its role in ER–mitochondria 
tethering, depleting its components disrupts mitochondrial Ca2+ 
import (171). PTPIP51 is known to be upregulated in glioblas-
toma, a role which may depend on the function of PTPIP51 
as a promoter of growth factor signaling (172, 173). Similarly, 
VAPB also has a growth-stimulatory activity of tumor tissue that 
might be tied to increased activity of Akt when VAPB is highly 
expressed (174). The oncoproteins TDP-43 (175) and fused in 
sarcoma (FUS) inhibit the PTPIP51–VAPB complex (176), 
again suggesting that the proteins of this complex generally act 
to accelerate tumor growth, albeit not necessarily through their 
roles at the MAM.

Together, it appears that the currently known multimeric pro-
tein complexes of the MAM have unclear roles for tumorigenesis 
that appear not always linked to their functions as MAM tethers. 
But given their rather recent identification as such tethers, and the 
many open questions about this biological role, such statements 
should not be considered as final.

CONCLUSiON

Research from the past decade has identified the MAM as a poten-
tially central regulator of tumor cell metabolism, as exemplified 
by the presence of critical tumor suppressors and oncoproteins on 
this structure. Moreover, findings from our lab and others have 
shown that MAM proteins such as the oxidoreductase TMX1 
indeed can determine the balance between tumor cell glycolysis 
and oxidative phosphorylation (89, 177). From these findings and 
early insights (78), we could postulate that in particular solid, 
glycolytic tumor tissue is frequently characterized by a loss of 
normal MAM architecture and formation. Further research will 
have to determine whether this is indeed the case for a majority 
of cancer types.

There is no doubt that proteins forming connections between 
the ER and mitochondria are differentially expressed in tumor 
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tissue, as shown by numerous examples mentioned in this review. 
Additionally, many of these proteins are multifunctional, leading 
to complex significance for tumor growth that is not limited to 
the maintenance of the MAM. Therefore, with the exception of 
mitofusin-2 and PACS-2, most MAM tethering regulators show 
no clear association with the progression of cancer or no logical 
connection of their expression pattern to their role as MAM 
tethers. One reason for this lack of a clear link could be the often 
multifunctional properties of MAM regulatory proteins. Another 
reason is that the bigger picture of changes at the MAM may 
impact the survival and proliferation of cancer cells in more ways 
than one.

Given the field is rapidly developing, and the exact roles of 
MAM regulators are still evolving, such connections may solidify 
in the coming years. Additionally, since the entire set of MAM 
tethers in mammalian cells is almost certainly incomplete, new 
tethers may emerge that show better or cleaner association with 
tumorigenesis than the ones we currently know. Therefore, 
researchers studying the role of ER–mitochondria contacts in 
tumor cell metabolism and tumorigenesis are expected to read 

about further exciting findings in the near future that will identify 
more oncoproteins and tumor suppressors on this suborganellar 
domain of the ER.
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