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Cancer stem cells (CSCs) have been identified in oral cavity squamous cell carcinoma 
(OCSCC). CSCs possess the ability for perpetual self-renewal and proliferation, producing 
downstream progenitor cells and cancer cells that drive tumor growth. Studies of many 
cancer types including OCSCC have identified CSCs using specific markers, but it is still 
unclear as to where in the stem cell hierarchy these markers fall. This is compounded 
further by the presence of multiple CSC subtypes within OCSCC, making investigation 
reliant on the use of multiple markers. This review examines the current knowledge in 
CSC markers OCT4, SOX2, NANOG, ALDH1, phosphorylated STAT3, CD44, CD24, 
CD133, and Musashi-1, specifically focusing on their use and validity in OCSCC CSC 
research and how they may be organized into the CSC hierarchy. OCSCC CSCs also 
express components of the renin–angiotensin system (RAS), which suggests CSCs may 
be novel therapeutic targets by modulation of the RAS using existing medications.
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iNTRODUCTiON

The overall 5-year survival of oral cavity squamous cell carcinoma (OCSCC) has remained at 50%, 
largely unchanged for 40 years (1), despite intensive research. This high mortality has been largely 
attributed to high rates of loco-regional recurrence (2, 3). An emerging hierarchical concept of 
carcinogenesis proposes that cancer stem cells (CSCs) sit atop a hierarchy of a heterogeneous popu-
lation of cells within cancer and are defined functionally as a subset of cells that display stemness 
characteristics, including the ability to asymmetrically divide, resulting in self-renewal of CSCs and 
the production of heterogeneous populations of cancer cells that are further down the hierarchical 
ladder (4, 5). CSCs are highly tumorigenic compared to the other cancer cells and are believed to be 
largely responsible for the biological characteristics of cancer, namely, rapid growth, invasion, and 
metastasis (Figure 1). CSCs also show a greater capacity for migration, invasion, and proliferation 
in vitro (6, 7), and they generate far larger tumors in immunocompromised xenograft mice with 
fewer transplanted cells compared to large numbers of unsorted cancer cells (8, 9).

Surgery with adjuvant radiotherapy (RT) and occasionally chemotherapy (ChT) is the mainstay 
treatment for OCSCC, which effectively reduce total tumor size (10). However, CSCs are predomi-
nantly in the inactive G0 phase and thus avoid destruction by RT and ChT that target active cells 
(11). CSCs in OSCCC are resistant to both RT and ChT agents such as cisplatin (6, 8, 12, 13), 
carboplatin (6), doxetaxel (6), paclitaxel (6, 14), etoposide (15), gemcitabine (9), and 5-fluorouracil 
(6–8). Thus, treatment results in an enriching effect on CSCs within the post-treatment cancer cell 
population (16), providing a plausible rationale for loco-regional recurrence and distant metastasis 
from RT- and ChT-resistant cells, despite aggressive treatment.

The rapidly accumulating evidence supporting the existence and the role of CSCs in carcinogen-
esis in recent years is largely due to the advances in cell biology and the discovery of reliable markers 
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FiGURe 1 | According to the hierarchical model of cancer, an oral cavity squamous cell carcinoma consists of a heterogeneous population of cells. 
At the top of the hierarchy is a small number of cancer stem cells (CSCs) within the peritumoral stroma (green) which differentiate and give rise to downstream CSCs 
(orange) which in turn give rise to cancer cells (beige). CSCs at the top of the hierarchy (green) are highly tumorigenic and are responsible for tumor recurrence and 
metastasis.
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of CSC (17). The expression profiles of a number of protein mark-
ers have been studied as putative CSC markers within OCSCC 
tumor samples and cell lines. No single marker has been shown to 
unequivocally identify CSCs, and it is likely that CSCs exist in an 
overlapping hierarchy of cell population subsets. Consequently, 
the majority of CSC characterization research relies on using 
combinations of these markers. This article reviews the common 
markers that have been used in CSC research into OCSCC and 
attempts to place them within the context of a hierarchical model 
of cancer.

eMBRYONiC STeM CeLL (eSC) MARKeR 
MASTeR ReGULATORS

Cancer stem cells in OCSCC express many of the same proteins 
involved in the core network that regulates ESCs. OCT4 and 
NANOG are two of the possible six major factors involved in 
reprogramming of somatic cells into ESC-like states (18, 19). 
OCT4, NANOG, and SOX2 are considered master regulators for 
self-renewal and maintenance of the stem cell population in the 
undifferentiated state (17, 20). Immunohistochemical staining 
for OCT4, SOX2, and NANOG in OCSCC demonstrates that 
OCT4 and SOX2 are expressed significantly higher in tumor-
adjacent tissue compared to both normal tissue and the tumor 
(21). However, NANOG is highly expressed in both tumor tissue 
and peritumoral tissue, compared to normal tissue (21).

OCT4
The transcription factor OCT4 is a regulator of the POU domain 
and is critical in early embryogenesis and maintenance of ESC 
pluripotency (22). As such, OCT4 is commonly used as a marker 

of “stemness” of primitive cells. OCT4 has also been linked to 
oncogenic processes (17). It has been suggested that OCT4 
plays a role in tumor transformation, tumorigenicity, invasion, 
and metastasis within OCSCC (23). It has also been proposed 
that OCT4 promotes tumor initiation by playing a role in the 
regulation of epithelial–mesenchymal transition (EMT) (13). 
Expression of OCT4 has been used to define the CSC population 
in OCSCC in conjunction with other primitive and CSC markers 
(24–26) and has been shown to contribute to tumorigenicity in 
murine models (27).

OCT4 has been hypothesized to play an important role in 
aberrant cell reprogramming resulting in carcinogenesis (28). In 
moderately differentiated buccal mucosal SCC (BMSCC), expres-
sion of OCT4 has been demonstrated in a distinct subpopulation 
of CSCs within the tumor nests, the peritumoral stroma, and the 
microvessels within the peritumoral stroma (29). Interestingly in 
moderately differentiated oral tongue SCC (OTSCC), the expres-
sion of OCT4 is restricted to a subpopulation of CSCs within the 
peritumoral stroma (30). Intriguingly, high levels of expression of 
OCT4 in OCSCC have been associated with early stage of disease, 
and better prognosis, and a molecular mechanism explaining this 
association has yet to be elucidated (21).

SOX2
The SOX2 protein is a high-mobility SRY-related HMG box 
transcription factor (31, 32). SOX2 is involved in multiple signal 
transduction pathways and has been shown to be involved 
in normal developmental and many pathological processes 
including cell proliferation, migration, invasion, stemness, 
tumorigenesis, anti-apoptosis, and chemoresistance (31, 33). 
SOX2 is known to complex with OCT4 (34), and in murine cell 
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lines has been shown to control downstream embryonic genes 
including NANOG (20, 35). SOX2 overexpression has been 
used in combination with other markers, including ALDH1, 
CD44, OCT4, and NANOG, to identify the CSC population 
in SCC including OTSCC (26, 30, 31, 36). In BMSCC, SOX2 is 
expressed within the tumor nests, the peritumoral stroma and 
the endothelium of the microvessels within the peritumoral 
stroma (29). In OCSCC and oropharyngeal SCC cell lines, SOX2 
is overexpressed in CSCs compared to the parental cell popula-
tion (37). In OTSCC, SOX2 is expressed by cells that also express 
SALL4, NANOG, phosphorylated STAT3 (pSTAT3), and CD44 
(30). In OCSCC, SOX2 expression is significantly higher in 
tumor tissue compared to normal tissue and is weakly correlated 
with OCT4 (21). In addition, SOX2 expression is correlated with 
small tumor size and early tumor stage, and better disease-free 
survival (21). SOX2 staining in OCSCC has been demonstrated 
in both a peripheral and diffuse staining pattern, and the diffuse 
staining pattern was significantly associated with lymph node 
metastasis (38). Chien et  al. (39) demonstrate that regulation 
by the Lin28B-Let7 pathway, with the Lin28Bhigh-Let7low expres-
sion pattern highly correlated with high levels of expression of 
OCT4 and SOX2 in OCSCC specimens, and a high percentage 
of CD44+/ALDH1+ CSC in OCSCC. Overexpression of SOX2 
has been demonstrated to enhance invasiveness, anchorage-
independent growth, and xenotransplantation tumorigenicity in 
OCSCC cells. Conversely, silencing SOX2 effectively suppresses 
the expression of drug resistance and anti-apoptotic genes and 
increased the sensitivity of the cells to radiation combined 
cisplatin treatment (33).

NANOG
NANOG is a homeodomain transcription factor widely known 
as a marker for primitiveness or “stemness” (20). In murine cell 
lines, NANOG has been shown to be involved in functionally 
blocking differentiation and thus maintenance of ESC pluripo-
tency (20, 35). NANOG has been shown to be upregulated in 
different types of cancers and plays a role in tumor transfor-
mation, tumorigenicity, and metastasis within OCSCC (23). 
Overexpression of NANOG is also correlated with poor differ-
entiation status and chemoresistance (40). In OCSCC, increased 
expression of NANOG has been found to be associated with poor 
prognosis (41). NANOG expression has also been confirmed in 
OTSCC (30). In BMSCC, NANOG is expressed in cells within 
the tumor nests and the peritumoral stroma (29). In OCSCC 
and oropharyngeal SCC cell lines, NANOG is overexpressed in 
the CSC population compared to the parental population (37). 
Similarly in lip SCC, NANOG is expressed by three distinct puta-
tive CSC subpopulations, both within the tumor nests and the 
peritumoral stroma (42).

Signal Transducer and Activator of 
Transcription 3 (STAT3)
Signal transducer and activator of transcription 3 has long been 
recognized as an oncogene playing a key role in control of cell-
cycle progression and anti-apoptosis (43). pSTAT3 plays a critical 
role in pluripotent stem cells, promoting cell proliferation and 
resistance to apoptosis, angiogenesis, invasion, and migration 

(44). In OCSCC, expression of STAT3 within a cell population is 
localized to the tumor nests that also express CD44, NANOG, and 
SOX2 (30). Constitutive activation of the STAT3 signaling pathway 
possesses confirmed oncogenic potential in OCSCC (45). Cross 
talk with other molecular pathways contributes to STAT3 regula-
tion in cancer (45), and STAT3 is also aberrantly activated by the 
oversupply of growth factors from the tumor microenvironment 
(43). For example, Erk1/2 appears to promote serine-pSTAT3, 
but inhibit tyrosine-pSTAT3 resulting in an overall increased cell 
growth and varying roles for the different STAT3 phosphorylation 
sites in OCSCC (45). STAT3 has also been recently found to func-
tion co-operatively with SOX2 in the initiation of SCC (32). This 
further highlights the crucial role of those transcription factors in 
stem and/or cellular proliferation (44).

Signal transducer and activator of transcription has a dual role in 
tumor inflammation and immunity by promoting pro-oncogenic 
inflammatory pathways, including NF-κB and IL-6–GP130–JAK 
pathways, and by opposing STAT1- and NF-κB-mediated T(h)1 
antitumor immune response (46). Continuous deregulation of 
these genes in tumor cells and the tumor microenvironment 
by persistently activated STAT3 and NF-κB, in contrast to their 
tightly controlled regulation in normal physiology, is considered 
crucial for inflammation and malignant progression (46). In a 
murine SCC model, forced constitutive activation of pSTAT3 
shortens the latency period and increases the number of skin 
lesions progressing rapidly to SCC (47–54).

OCSCC CANCeR STeM MARKeRS

CD44
CD44 is a large cell surface hyaluronan receptor protein (36) 
involved with contrasting roles in both cell migration and adhe-
sion (55). In OCSCC cell lines, CD44 is expressed significantly 
more highly in CSCs compared to parental cells (37). It has been 
widely used as a CSC marker in epithelial cancers including 
OCSCC. CD44 has been identified within normal oral epithe-
lium, carcinoma in  situ, and in some infiltrating lymphocytes, 
with the highest expression in carcinoma cells (56, 57). In 
OCSCC cell lines, Song et al. (15) have demonstrated increased 
expression of CD44 in side populations that also highly express 
ABC transporter proteins and Hoechst 33342 efflux, compared to 
the non-side population.

Overexpression of CD44 within OCSCC has been associated 
with decreased overall survival (58, 59), increased loco-regional 
recurrence, and increased resistance to RT, thus exhibiting many 
of the characteristics of CSCs. In one study of OCSCC, irregular 
staining of CD44 in tumor cells is shown to be associated with 
poor tumor differentiation and advanced stage (60). Conversely, 
another study finds no prognostic significance of CD44v6 expres-
sion in OTSCC (61). These differences may, in part, be explained 
by the expression of CD44v6 by CSCs, as well as inflammatory 
cells (62). Expression of the variant isoform CD44v6 has also been 
found to be significantly associated with regional nodal metasta-
sis, pattern of invasion, depth of invasion, perineural invasion, 
and local recurrence in multiple solid tumors including OCSCC 
(63). OCSCC cell clones expressing stable levels of CD44 after 
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transfection with CD44 expression vector increases proliferation 
and migration, inhibition of apoptosis, and cisplatin resistance 
resulting in a more aggressive tumor phenotype in vivo (64).

In addition, cleavage of CD44 regulated by ADAM17 has been 
found to be necessary for tumor sphere formation in OTSCC 
cells (65).

Tumors generated from CSC sorted OTSCC cell line (SCC9-
CD44high) cells demonstrate increased tumorigenicity and 
increased expression of CK19, B-catenin, E-cadherin, and CD44 
when compared with wild-type SCC9 cells. These same tumors 
show lower expression of CK19/4/15/13, and interestingly low 
levels of NANOG, Bmi-1, Snail, and Slug (66). However, the role 
of CD44 as a marker of CSCs is controversial, with many authors 
arguing that it is actually expressed by more differentiated cells 
(67). Lee et al. (41) find that increased CD44 expression has lim-
ited correlation with high histological grade and late clinical stage. 
However, Kokko et al. (68) demonstrate no association between 
expression of CD44 and poor prognosis in OCSCC. A recent study 
suggests that CD44 loses its expression during induced cellular 
reprogramming to the undifferentiated state and is actually a 
marker of partially differentiated cells (69). This may indicate a 
progressive gain of CD44 expression as CSCs progress to a more 
differentiated phenotype, and this implies that CD44 is in fact a 
relatively mature marker, likely downstream of the true CSC popu-
lation. Interestingly, downregulation of CD44 also leads to reduced 
expression of OCT4, suggesting that CD44 has a functional role in 
maintaining stem cell properties (70). CD44+/CD133+ cells dem-
onstrate higher clonogenic capacity than CD133− cells in  vitro,  
while higher CD44 expression is demonstrated in nodal metasta-
ses, suggesting a role for CD44 in tumor progression (71).

CD24
CD24 is a small cell surface glycoprotein involved in cell adhe-
sion and metastasis and has been identified in wide variety of 
cancer cells (72). A recent study using sorted OCSCC cells in a 
NOD/SCID murine model suggests that CD24+ cells may have  
angiogenic potential. Tumors generated from CD24+ cells isolated  
show a significantly higher functional capillary density, con-
firmed by the expression of CD31, than those seeded with CD24−  
cells (73).

CD44high/CD24low cells demonstrate CSC and EMT character-
istics, and are able to give rise to all other tumor cell types upon 
differentiation (74). In OCSCC cell lines, CD44v3+/CD24− popu-
lation demonstrated higher sphere forming capacity, higher drug 
resistance, and expressed higher mRNA levels of CSC-related 
genes. Expression of CD44v3 is found to be higher in lymph node 
metastases and in the invasive portion of tumors and is associated 
with poorer overall survival (75).

CD133
CD133 is a pentaspan transmembrane protein that plays a key 
role in the organization of plasma membrane topology (76, 77).  
Overexpression of CD133, first identified in hematopoietic 
stem cells and endothelial progenitor cells (57), is often used 
as a CSC marker in many solid tumors including OCSCC (23). 
There remain controversies surrounding the role of CD133 in 
tumorigenesis with reports regarding the utility of this protein as 

a CSC marker often being contradictory (77). These conflicting 
reports are based on the observation that both the CD133+ and 
CD133− cell fractions display similar stemness and differentia-
tion capabilities, and that the CD133− population is in fact more 
tumorigenic (77).

However, CD133+ oral leukoplakia has been shown to be more 
than three times as likely to progress to OCSCC than CD133− 
lesions (78). Of all CSC phenotypes studied, OCSCC lesions dis-
playing triple-positive expression of OCT4, NANOG, and CD133, 
are associated with the worst survival (23). CD133+ cells have also 
been found to co-express CD44, and the CD133+/CD44+ immu-
nophenotype has been found to correlate significantly with poorer 
overall survival, supporting the idea that cells expressing these 
proteins have a more aggressive phenotype (58). The expression 
of CD133 in oral epithelium increases from normal epithelium, 
through dysplasia, to carcinoma (79). Pozzi et al. (37) demonstrate 
that along with multiple CSC and ESC markers, CD133 is more 
highly expressed in the CSC population compared to the parental 
normal population. In several cell lines, CD133+ cells have been 
found to overexpress ESC markers, including OCT4 and NANOG, 
and also display CSC characteristics such as tumor sphere forma-
tion, tumorigenicity and chemoresistance (14). In a head and neck 
SCC cell line, inhibition of CD133 expression significantly reduces 
proliferation, expression of ESC marker OCT4, but increases the 
expression of the epithelial differentiation marker CK18, suggest-
ing its role in the maintenance of the CSC-phenotype (80, 81).

Musashi-1
Musashi-1 is a translational regulator that has been identified 
within OSCC (17). Musashi-1 expression has been associated 
with higher stage and poorly differentiated status of OCSCC, and 
is significantly correlated with CD133, suggesting a functional 
role for these two proteins in oral carcinogenesis (79).

ALDH1
Aldehyde dehydrogenase (ALDH) is a cytosolic enzyme responsi-
ble for catalyzing the pyridine nucleotide-dependent oxidation of 
aldehydes to carboxylic acids (82). ALDH has increasingly been 
used as a CSC marker in OCSCC, with ALDH+ cells demonstrat-
ing plasticity with the ability to form tumor spheres in serum-free 
media as well as having the ability to generate ALDH− cells in vitro 
(83). Although there are many isoforms of ALDH, ALDH1 appears 
to be of particular importance (84). ALDH1 is likely to play a 
role in malignant transformation of oral leukoplakia to OCSCC 
given that ALDH1+ leukoplakia is more than three times more 
likely to develop OCSCC (78). Overexpression of ALDH1 is also 
found to be correlated with nodal metastasis (38). A suppression 
subtractive hybridization assay shows that the ALDH+ subpopu-
lation expresses many known CSC-related genes not seen in the 
ALDH− population (83). Furthermore, in HNSCC, ALDHhigh 
cells are seen to be more tumorigenic than ALDHlow cells when 
implanted into a NOD/SCID murine model (85). In one study of 
OCSCC, ALDH1+ cells display radioresistance and co-expressed 
Snail, providing evidence of EMT. Interestingly, knockdown of 
Snail significantly decreased ALDH1 expression and inhibited 
CSC properties, with resultant decreased tumorigenicity (86).
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TABLe 1 | Markers for cancer stem cells (CSCs) in oral cavity squamous 
cell carcinoma (OCSCC).

Markers Roles

OCT4  – Aberrant cell reprogramming resulting in 
carcinogenesis (28).

 – Tumor transformation, tumorigenicity, invasion, 
and metastasis (23, 27).

 – Role in the regulation of epithelial–mesenchymal 
transition (EMT) (13).

 – Conflictingly, high levels of expression also 
associated with early stage of disease, and better 
prognosis (21). 

NANOG  – Overexpressed in the CSC population compared 
to the parental population (37).

 – Associated with tumor transformation, 
tumorigenicity, and metastasis (23).

 – Correlated with poor differentiation status and 
chemoresistance (40).

 – Increased expression associated with poor 
prognosis (41).

SOX2  – SOX2 overexpression has been used in 
combination with other markers to identify the 
CSC population (26, 30, 31, 36).

 – Known to complex with OCT4 (34) and control 
downstream embryonic genes including  
NANOG (20, 35).

 – Involved in many pathological processes 
including cell proliferation, migration, invasion, 
stemness, tumorigenesis, anti-apoptosis, and 
chemoresistance (31, 33).

 – Overexpression of SOX2 has been demonstrated 
to enhance invasiveness, anchorage-independent 
growth, and xenotransplantation tumorigenicity in 
OCSCC cells.

 – In OCSCC, SOX2 expression is significantly higher 
in tumor tissue compared to normal tissue and is 
weakly correlated with OCT4 (21).

 – Correlated with small tumor size and early tumor 
stage, and better disease-free survival (21).

 – Silencing SOX2 effectively suppresses drug 
resistance and expression of anti-apoptotic genes 
and increased radiation sensitivity (33).

STAT3  – Well-known oncogene with a role in control of  
cell-cycle progression and anti-apoptosis (43).

 – Expression is localized to the tumor nests that  
also express CD44, NANOG, and SOX2 (30).

 – Constitutive activation of the STAT3 signaling 
pathway possesses confirmed oncogenic  
potential (45).

 – Cross talk with other molecular pathways 
contributes to STAT3 regulation in cancer (45).

 – Aberrantly activated by the oversupply of growth 
factors from the tumor microenvironment (43, 45).

 – Function co-operatively with SOX2 in the initiation 
of SCC (32).

 – Dual role in tumor inflammation and immunity by 
promoting pro-oncogenic inflammatory pathways, 
including NF-κB and IL-6–GP130–JAK pathways, 
and by opposing STAT1- and NF-κB-mediated 
T(h)1 anti-tumor immune response (46).

 – Forced constitutive activation of phosphorylated 
STAT3 shortens the latency period, and increases 
the number of skin lesions progressing rapidly to 
SCC (47–54).

(Continued)
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ReNiN–ANGiOTeNSiN SYSTeM (RAS)

Cancer stem cells within OCSCC have been found to express 
components of the RAS. (Pro)renin receptor (PRR), angiotensin 
II receptor 1 (ATIIR1), and angiotensin II receptor 2 (ATIIR2) 
are expressed by two CSC subpopulations within OTSCC: one 
within the tumor nests that express SALL4 and another within 
the peritumoral stroma that express OCT4 (87). PRR, ATIIR1, 
and ATIIR2 are localized to the CSC subpopulations within the 
tumor nests and the peritumoral stroma, while PRR and ACE 
are localized to the endothelium of the microvessels within 
the peritumoral stroma (88). These findings suggest CSC as a 
potential novel therapeutic target by modulating the RAS using 
commonly used medications such as the aliskiren, a direct renin 
blocker; β-blockers which reduce renin levels; ACE inhibitors 
which inhibit conversion of angiotensin I to angiotensin II; and 
angiotensin receptor blockers which prevent binding of angioten-
sin II to ATIIR1 and ATIIR2 (89).

DiSCUSSiON

The origin of CSCs remains unclear, and many hypotheses have 
been advanced (90). One of the most accepted theories proposes 
that CSCs arise as a result of epigenetic or genetic alterations to 
these resident tissue stem cells (55, 91–93). The CSC concept of 
cancer is evolving as evidenced from increasingly sophisticated 
research accumulates (94). Rather than a single small population 
of CSCs and a large majority of bulk tumor cells, the presence 
of a complex hierarchy of distinct, genetically heterogeneous 
subpopulations of CSCs, each expressing an overlapping array of 
markers (Table 1) is appreciated (94) (Figure 2).

Cancer stem cells also display plasticity (95), and the complex-
ity of these subpopulations increases as tumors progress to more 
advanced stages (94, 96). Increased density of CSCs, identified by 
high levels of expression of various primitive cell and CSC mark-
ers, has also been shown to be associated with poor prognosis, 
with much research focused on identifying CSC-related markers 
that have prognostic value (58, 59, 68).

It has also been shown that both moderately and poorly differ-
entiated OSCC cells demonstrate higher expression of NANOG, 
SOX2, and OCT4 under hypoxic conditions, suggesting that CSCs 
share some similarities with induced pluripotent stem cells (97). 
It is increasingly recognized that the tumor microenvironment 
plays an important role in supporting tumor growth and metas-
tasis, and contributes to tumor heterogeneity (98). Specialized 
niche CSC micro environments result from factors that stimulate 
CSC self-renewal, induce angiogenesis, and recruit cells that 
facilitate invasion and metastasis (95). It appears that CSCs in 
SCC switch between two distinct phenotypes that are preferen-
tially migratory or proliferative (99). This plasticity presents an 
obvious challenge to the development of cancer therapeutics.

Nevertheless, CSC research has promising applications, and 
directly targeting CSCs has become increasingly appealing as it 
has the potential to be more effective than traditional approaches 
while having greater potential for organ preservation and reduc-
ing both immediate and long-term off-target toxicity. In addition, 
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Markers Roles

Musashi-1  – Associated with higher stage and poorly 
differentiated status of OCSCC, and is significantly 
correlated with CD133, suggesting a functional 
role (77).

ALDH1  – ALDH1 isoform appears to be of particular 
importance in OCSCC (84).

 – ALDH1+ leukoplakia was more than 3 times more 
likely to develop OCSCC (78).

 – ALDH+ cells are able to form tumor spheres in 
serum-free media and generate ALDH− cells 
in vitro (83).

 – Overexpression of ALDH1 correlated with nodal 
metastasis (38).

 – ALDH+ subpopulation expresses many known 
CSC-related genes not seen in the ALDH− 
population (83).

 – ALDHhigh cells are seen to be more tumorigenic 
than ALDHlow cells when implanted into a NOD/
SCID murine model (85).

 – ALDH1+ cells displayed radioresistance and 
co-expressed Snail, providing evidence of EMT, 
while Snail knockdown decreased ALDH1 
expression and inhibited CSC properties (86).

Components of the RAS  – (Pro)renin receptor (PRR), angiotensin II receptor 
1, and angiotensin II receptor 2 are localized to the 
CSC subpopulations within the tumor nests and 
the peritumoral stroma, while PRR and ACE are 
localized to the endothelium of the microvessels 
within the peritumoral stroma (88).

RAS, renin–angiotensin system.

TABLe 1 | Continued

(Continued)

TABLe 1 | Continued
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most stem cell markers currently used to identify CSCs in basic 
science research are not sufficiently specific and would be poor 
targets for direct therapy. Investigations into targeting CSCs vary, 
including targeting CSC markers and pathways, using epigenetic 
modulators, immunotherapy agents, and increasing CSC sensi-
tivity to ChT and RT (100).

Oral cavity squamous cell carcinoma tumor spheres display 
higher expression of CSC and metastasis markers and are also 
more invasive and are resistant to cisplatin/RT. Increased fuco-
sylation activity identified by upregulation of fucosyltransferases 
(FUT3 and FUT6) and increased expression of fucosylated 
polysaccharides such as Sialyl Lewis X are associated with inva-
sion and metastasis (101). Conversely, inhibition of fucosylation 
negatively affected tumor sphere formation and invasiveness of 
OCSCC CSCs (101).

Expression of TNF receptor-associated factor 1 has been 
found to be higher in OCSCC than normal oral mucosa and 
oral epithelial dysplasia, and is associated with reduced overall 
survival, Moloney murine leukemia virus integration site 1, Lin28 
homolog B, and most importantly ALDH1 in OSCC (102).

A single “silver bullet” that targets CSCs and effectively 
eliminates cancer remains elusive; however, alternative treatment 
using a combination of existing medications targeting critical 
steps of the RAS to control the CSCs may form a future approach 
to cancer treatment.

Markers Roles

CD44  – Expressed significantly more highly in CSCs 
compared to parental cells (37).

 – Widely used as a CSC marker.
 – Its role as a marker of CSCs is controversial. It 

may actually be expressed by more differentiated 
cells (67).

 – Increased expression has limited correlation with 
high histological grade and late clinical stage (41), 
or prognosis (68).

 – Increased expression of CD44 in side populations 
that also highly express ABC transporter proteins 
and Hoechst 33342 efflux (30).

 – Overexpression is associated with decreased 
overall survival, increased loco-regional 
recurrence, and increased resistance to 
radiotherapy (58, 59).

 – Associated with poor tumor differentiation and 
advanced stage (60).

 – No prognostic significance of CD44v6 expression 
in oral tongue SCC (61).

 – Variant isoform CD44v6 associated with regional 
nodal metastasis, pattern of invasion, depth of 
invasion, perineural invasion, and local  
recurrence (63).

 – Forced stable expression increases proliferation 
and migration, inhibition of apoptosis, and cisplatin 
resistance resulting in a more aggressive tumor 
phenotype in vivo (64).

 – Higher CD44 expression is demonstrated in nodal 
metastases (71).

 – Loses expression during induced cellular 
reprogramming to the undifferentiated state (69), 
implies that CD44 is in fact a relatively mature 
marker, likely downstream of the true CSC 
population.

 – Downregulation also leads to reduced 
expression of OCT4, suggesting that CD44 
has a functional role in maintaining stem cell 
properties (70).

CD24  – May have angiogenic potential (73).
 – CD44high/CD24low cells demonstrate CSC and 

EMT characteristics, and are able to give rise to all 
other tumor cell types upon differentiation (74).

 – CD44v3+/CD24− cells population demonstrated 
higher sphere forming capacity, higher drug 
resistance, and expressed higher mRNA levels of 
CSC-related genes.

CD133  – Expression of CD133 in oral epithelium increases 
from normal epithelium, through dysplasia, to 
carcinoma (79).

 – Overexpression of CD133 is often used as a 
CSC marker (23), as C133+ cells display CSC 
characteristics such as tumor sphere formation, 
tumorigenicity, and chemoresistance (14).

 – CD133+/CD44+ cells correlate significantly with 
poorer overall survival (58).

 – Inhibition expression significantly reduces 
proliferation, expression of embryonic stem cell 
marker OCT4, but increases the expression of the 
epithelial differentiation marker CK18,  
suggesting a role in the maintenance of the  
CSC phenotype (81).

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FiGURe 2 | A hierarchy of cancer stem cells (CSCs) in oral cavity squamous cell carcinoma exists with multiple distinct subpopulations, each 
expressing overlapping markers. CSCs within the peritumoral stroma (green) co-express OCT4, SOX4, and NANOG. CSCs within the tumor nests (orange) 
co-express OCT, SOX2, NANOG, phosphorylated STAT3 (pSTAT3), CD133, and CD44. A further subpopulation of CSCs (red) co-expressing OCT4, SOX2, and 
pSTAT3 are present on the endothelium of the microvessels within the peritumoral stroma.
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