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Epithelial-to-mesenchymal transition (EMT) is a physiological process that is vital 
throughout the human lifespan. In addition to contributing to the development of various 
tissues within the growing embryo, EMT is also responsible for wound healing and tissue 
regeneration later in adulthood. In this review, we highlight the importance of EMT in the 
development and normal functioning of the female reproductive organs (the ovaries and 
the uterus) and describe how dysregulation of EMT can lead to pathological conditions, 
such as endometriosis, adenomyosis, and carcinogenesis. We also summarize the 
current literature relating to EMT in the context of ovarian and endometrial carcinomas, 
with a particular focus on how molecular mechanisms and the tumor microenvironment 
can govern cancer cell plasticity, therapy resistance, and metastasis.

Keywords: epithelial-to-mesenchymal transition, adenomyosis, endometriosis, ovarian cancer, endometrial 
cancer, tumor microenvironment

iNTRODUCTiON

In Western countries, the majority of malignancies affecting the female reproductive tract are 
comprised of ovarian and endometrial cancers (ECs). EC is considered to be the most commonly 
diagnosed cancer of the female genital tract with approximately 287,100 new cases worldwide (1, 2). 
Ovarian cancer (OC), on the other hand, with an estimated 140,200 deaths worldwide, is reported 
to be the most lethal gynecological carcinoma (2).

Both malignancies affect both premenopausal and postmenopausal women. A common feature 
of ovarian pathology in postmenopausal women is that it is frequently found with endometrial 
pathology, such as EC (3). Clinical studies have reported associations between hyperplasia of 
ovarian stroma with increased androgen production by the ovaries, which also coincides with the 
development of hormonally related tumors, such as EC (4). In 10% of all women with OC and 5% of 
women with EC, the cancers of the endometrium and ovary coexist (5). Pathological changes in the 
endometrium can sometimes occur as a consequence of OC. Ovarian and endometrial tumors do 
share common etiology related to reproductive factors such as number of ovulatory cycles, as well 
as hormone replacement therapy (6).

Ovarian Cancer
In Canada, OC is only the eighth most commonly diagnosed cancer yet it ranks as the fifth lead-
ing cause of cancer-related death in women (7). Over 70% of women with OC are diagnosed with 
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advanced-stage disease (FIGO stage III–IV) because of both a lack 
of symptoms and ineffectual screening at earlier disease stages 
(8). Despite recent advances in chemotherapeutical treatments 
using platinum-based drugs, taxanes, and targeted therapies, the 
5-year survival rate for patients with OC is poor: 39–59% for stage 
III OC, and for stage IV OC, it is 17% (9). The aggressiveness 
of ovarian malignancy is associated with the development of 
chemoresistance along with tumor spreading into the peritoneal 
cavity encompassing both the pelvic and abdominal peritoneum. 
Transcoelomic and lymphatic spreading results in parenchymal 
liver/splenic metastases and extra-abdominal metastases, which 
are characterized as stage III and IV disease (10). Malignant 
ascites also occur frequently in OC patients (11, 12). Ascites act 
as a pro-inflammatory reservoir for countless soluble proteins, 
which makes ascites the perfect microenvironment to promote 
tumor cell metastasis (11, 12). Even though complete clinical 
remission is achieved in the majority of OC patients following 
initial therapy with paclitaxel plus carboplatin, over 75% relapse 
and develop progressive resistance to platinum-based chemo-
therapy leading to cancer dissemination, clinical relapse and 
eventually death (13).

Based on the dualistic model of ovarian carcinogenesis, ovarian 
tumors can develop either via a stepwise stochastic process from 
a borderline tumor to low-grade carcinoma (type I) or through 
a rapid de novo mechanism without defined precursor lesions 
(type II) (14). Type I tumors are made up of several different 
distinct histotypes, including low-grade serous, endometrioid, 
clear cell, mucinous, seromucinous carcinomas, and Brenner 
tumor. These tumors have good outcomes and are characterized 
by frequent mutations of the KRAS, BRAF, ERBB2, CTNNB1, 
PTEN, PIK3CA, and ARID1A genes, which trigger signaling cas-
cades via the RAS/RAF/MEK/MAPK, PI3K/AKT, ARID1A, Wnt, 
PP2A and mismatch repair pathways. Notably, type 1 tumors lack 
TP53 mutations (15–18). Type II tumors comprise high-grade 
(HG) serous carcinoma of the ovary, peritoneum, and fallo-
pian tubes, undifferentiated carcinomas, and carcinosarcomas  
(15, 19). HG serous carcinoma is the most malignant type of epi-
thelial ovarian carcinomas and accounts for up to 70% of all OCs 
(19). HG serous carcinomas are typically diagnosed at an advanced 
stage and are characterized by a high frequency of homologous 
recombination deficiency, TP53 mutations, activation of Notch3 
and PI3K, and inactivation of RB and NF1 concomitant with 
tremendous genetic instability and intra-tumor heterogeneity. 
These features likely drive the poor outcomes associated with this 
disease subtype (20–22).

The dualistic theory of ovarian carcinogenesis proposes that 
serous OC is a heterogeneous disease arising from any of three 
potential sites: ovarian surface epithelium (OSE), fallopian tube 
epithelium, or mesothelium-lined peritoneal cavity (23). Emerging 
research suggests that endometrioid, clear cell, and seromucinous 
carcinomas are frequently associated with endometriosis with 
probable tubal origin, especially the lesions presenting as ovarian 
endometriotic cysts or endometriomas (18, 24).

Type II ovarian carcinomas account for most tubal and peri-
toneal cancers and seem to behave as one disease entity (25). In 
the peritoneum, metaplasia of presumed pluripotent stem cells 
has been linked to the promotion of synchronous malignant 

transformation at multiply foci, which in turn leads to peritoneal 
carcinomatosis (26).

Mechanisms governing the initiation and progression of OC 
are emerging in the extant literature. OC is a molecularly complex 
malignancy with phenotypic and functional heterogeneity aris-
ing among different histologic subtypes and among cancer cells 
within the same tumor (20, 27, 28). Intratumoral heterogeneity is 
a consequence of genetic mutations and reversible changes in cell 
properties, such as epithelial-to-mesenchymal transition (EMT), 
and alterations in extracellular matrix (29). Hypoxia and chemo-
therapy along with the elements of the tumor microenvironment 
(immune, perivascular or vascular cells, stroma, and extracellular 
matrix components) can drive EMT and the production of new 
types of cancer cells, some of which behave like stem cells and 
contribute to chemoresistance and disease recurrence (30, 31).

endometrial Cancer
Despite primarily afflicting women over the age of 45 and after the 
onset of menopause, EC is the most frequently diagnosed gyneco-
logical malignancy in Western countries. In Canada, in 2016, it is 
estimated that 1,050 of the 6,600 women diagnosed with EC, will 
die from this disease (7). Increased life expectancy and the rising 
incidence of obesity have both contributed to an increase in the 
prevalence of EC. Although the 5-year survival rate is high at 90% 
for FIGO Stage I and II EC, approximately 10–15% of patients will 
experience recurrent metastatic disease (32). Taken together with 
FIGO Stage III and IV EC, these recurrent non-uterine confined 
and advanced-stage cases of EC have median survival that has 
been reported to barely exceed 1 year (33).

As with ovarian carcinogenesis, endometrial carcinogenesis 
has been proposed to follow a dualistic model and ECs can be 
grouped into two types based on immunohistochemical and 
molecular features (34). Linked to obesity, estrogen excess and 
hormone receptor positivity, Type I endometriod ECs have more 
favorable outcomes than Type II serous tumors that are found 
mostly in older women (34). Treatment of early stages of Type I 
ECs has primarily been adjuvant radiotherapy whereas advanced 
stages of Type I and serous Type II tumors are frequently targeted 
by chemotherapy (35). In order to apply appropriate treatment 
to EC patients, proper subtype classification has been further 
supported by the characterization of commonly mutated genes 
within each histological subtype. Type I ECs frequently contain 
PTEN mutations coexisting with mutations to other genes in 
the P13K-Akt pathway (36, 37). Mutations to FGFR2, ARID1A, 
CTNNB1, PIK3CA, PIK3R1, and KRAS are also common in Type 
I tumors whereas TP53, PIK3CA, and PP2R1A mutations are 
most frequent in Type II ECs (38–42).

Further characterization at the molecular level using multiple 
platforms has provided an even more refined subdivision of ECs 
into different subtypes. Examination of somatic copy number 
alterations (SCNA) and microsatellite instability (MSI) resulted 
in EC clustering into four groups (35). One group consisted of 
mostly serous EC with extensive SCNA and low mutation rates 
(35). The remaining endometriod tumors could be divided into 
three subtypes: (1) ultramutated EC with very high rates of muta-
tions; (2) a group of hypermutated MSI EC; and (3) microsatel-
lite stable EC with low frequencies of mutations (35). Only the 
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FigURe 1 | Representative diagram of epithelial-to-mesenchymal transition 
(EMT)/mesenchymal-to-epithelial transition (MET) in female reproductive tract. 
EMT/MET are highly regulated physiological processes in embryo 
implantation and early development as well as in the reproductive function of 
the ovary and endometrium. Dysfunction of EMT in the normal epithelial cells 
of the ovary and uterus results in pathological processes, such as 
adenomyosis, endometriosis, cancer initiation, progression, and resistance to 
therapy. OSE, ovarian surface epithelium; LG serous OC, low-grade serous 
ovarian cancer; HG OC, high-grade ovarian cancer; FT epithelium, fallopian 
tube epithelium; EC, endometrial cancer. For a detailed description of the 
diagram and references refer to Sections “Physiological (Non-Malignant) EMT 
in the Female Reproductive Tract” and “EMT in Cancers of the Female 
Reproductive Tract.”
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ultramutated subtype has progression-free survival near 100%, 
which strengthens the notion that a better understanding of the 
other subtypes is required to improve therapeutic application to 
patients who present with EC tumors genomically classified in 
this manner.

As the genomic contribution to aggressive forms of EC is being 
elucidated, a growing understanding of the other molecular and 
microenvironmental contributions to these tumors is also com-
ing to light. Similar to OC, certain cases of EC display a great 
degree of heterogeneity at the phenotypic level. For example, 
undifferentiated endometrial carcinoma (UEC) exhibits a solid 
growth pattern lacking appreciable features of differentiation 
juxtaposed to well differentiated lesions (43). Evidence in the lit-
erature is building a strong case that the interplay between genetic 
mutations, aberrations to signaling factor activity and cues from 
the tumor microenvironment can drive EMT, or changes to the 
extracellular matrix of EC cells. The reported aggressive clinical 
behavior of UEC could be explained by EC having undergone 
EMT to become undifferentiated, motile stem-like cells that in 
turn do not respond to conventional chemotherapy.

eMT iN THe FeMALe RePRODUCTive 
TRACT

As illustrated (Figure 1), EMT is a highly regulated physiological 
process in the early embryonic development and ontogenesis 
of the female reproductive tract (44). In adult organisms, EMT 
is important for folliculogenesis and occurs as a physiological 
response to injury during the wound healing after ovulation (44). 
Dysfunction of EMT in the normal epithelial cells of the repro-
ductive organs, the ovary and the uterus results in pathological 
processes such as adenomyosis, endometriosis, cancer develop-
ment, and metastasis (45). This will be discussed in detail further 
in the review.

During EMT, epithelial cells not only lose their polarity but 
also their adhesion to adjacent cells and the basement membrane 
and acquire properties that promote migration and invasion. 
These phenotypic changes are marked by the acquisition of a 
fibroblast-like mesenchymal appearance and cellular plasticity 
(45). In cancer cells, this developmental process is hijacked, 
allowing the tumor cells to dissociate, migrate, and metastasize 
(46, 47). Furthermore, EMT induces the emergence of cancer 
stem cell (CSC) traits, prevents apoptosis and senescence, induces 
resistance to chemotherapy, and contributes to immunosuppres-
sion (48).

Epithelial-to-mesenchymal transition is regulated epigeneti-
cally, transcriptionally, and post-transcriptionally. Downregula-
tion of epithelial cell-specific tight and adherens junction proteins 
like E-cadherin in conjunction with the novel expression of 
mesenchymal proteins Vimentin and N-cadherin are trademark 
responses to the EMT program (49, 50). Numerous signaling 
pathways including PI3K/Akt, transforming growth factor β 
(TGF-β), EGF, hepatocyte growth factor (HGF), MAPK/ERK, 
NF-kβ, Wnt, Notch, estrogen-receptor-α (ER-α), and HIF-1α 
cross talk to participate in EMT upregulation. For a summary of 
these processes in the context of ovarian and ECs, see Figure 2. 

These signaling pathways act to mobilize embryonic transcrip-
tion factors as well as epigenetic modifiers to reprogram epithelial 
cells toward a more mesenchymal-like fate (51).

PHYSiOLOgiCAL (NON-MALigNANT) eMT 
iN THe FeMALe RePRODUCTive TRACT

eMT in the Ovary
An overview of non-cancerous EMT and MET inducers in the 
female reproductive tract is presented in Table  1. The ovary 
consists of cells with different embryologic origins: OSE, stroma, 
germ cells, and sex cords (52). OSE is formed from celomic 
epithelium and ovarian stroma arises from the subcoelomic 
mesoderm. Invaginations of celomic epithelium in the superficial 
ovarian cortex form the sex cords (pregranulosa cells). In addi-
tion to being the progenitor of granulosa cells via the fetal OSE, 
the celomic epithelium, in the vicinity of the presumptive gonads, 
invaginates to give rise to the Mullerian ducts, which give rise to 
the oviduct, endometrium, and endocervix (52).

Landmark animal model studies of EMT during fetal develop-
ment and under physiological conditions have demonstrated that 
formation of primordial follicles is a multi-step process. Somatic 
cells originating from the surface of the ovary that surrounds 
the oocytes are recruited, where the OSE cells then subse-
quently undergo EMT and ingress into the stroma of the ovary  
(53, 54). During this process, two distinct pools of primordial 
follicles are formed: granulosa cells that populate the medullary 
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TAbLe 1 | Molecular and environmental inducers of non-cancerous epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) in the 
female reproductive tract.

inducers of eMT and MeT Targeted pathways Function Reference

Ovary
transforming growth factor β (TGF-β) superfamily 
proteins: TGF-β1, Bone morphogenic proteins; 
Connexin43

SMAD; Tuberous sclerosis complex/
mTORC1; ERK1/2

Granulosa cell growth and differentiation;follicular  
development

(61, 62, 67)

TGF-β, epithelial growth factor (EGF), collagen Matrix metalloproteinase (MMP)-2,9; 
ERK1/2; Integrin-linked kinase 

Ovarian surface epithelium motility, migration,  
proliferation and remodeling the extracellular  
matrix to heal the wound after ovulation

(63, 86, 88)

endometrium
Wnts, β-catenin Wnt Mullerian duct differentiation and uterine development (74–78)
Steroid hormones (estrogen, progesterone) MCL-1, STAT3 Embryo implantation (83)

Adenomyosis, endometriosis
β-catenin Wnt Endometrial gland hyperplasia (98)
17β-estradiol Estrogen-receptor-α Migration and invasion of endometrial cells (99)
LOXL1, LOXL4 TGF-β, To be discovered Early stages of EMT (106, 107)
Lipocalin2 MMP-9, To be discovered Migration and invasion of endometrial cells (109, 110)
Menstrual effluent, TGF-β (peritoneal endometriosis) Src tyrosine kinase; SMAD; JNK1 Mesothelial cell motility (112–116)
Oxidative stress (possibly involved in tubal origin of 
ovarian endometriosis)

ERK1/2 To be discovered (121, 122)

FigURe 2 | Epithelial-to-mesenchymal transition (EMT) in ovarian and endometrial cancers (ECs). Regulation of EMT-inducing signaling pathways through 
autocrine–paracrine signaling, chemotherapy, increased glycolysis, and the action of microRNAs. For a detailed description of the diagram and references refer to 
Sections “EMT in the Female Reproductive Tract,” “Molecular Mechanisms Governing EMT in Ovarian and ECs,” and “Microenvironmental Regulation of EMT in 
Cancers of the Female Reproductive Tract.”
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pool of follicles are activated during the neonatal period, while 
granulosa cells in the cortical pool are activated after puberty 
(55–57). Fertility throughout the reproductive life of a female is 

accomplished once the primordial follicles at the ovarian cortex 
have been replaced by the first pool of follicles which then sub-
sequently dominate the ovary following 3 months of age (55).
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Several studies have revealed that granulosa cells undergo a 
partial EMT during folliculogenesis, and this transition is only 
completed with the rupture of the basal lamina and subsequent 
formation of a corpus luteum at the time of ovulation (57, 58). 
The study of Mora et al. (53) has demonstrated the distribu-
tion of epithelial and mesenchymal proteins during ovarian 
follicle development. Surprisingly, granulosa cells did not 
express epithelial markers E-cadherin, Cytokeratin-8, ZO-1, 
and expressed Vimentin suggesting a more mesenchymal 
phenotype.

Another study revealed that folliculogenesis is associated with 
two growth factors: epidermal growth factor (EGF) and keratino-
cyte growth factor (KGF) (59). EGF is produced by granulosa 
cells of primordial follicles helping precursor theca cells to 
be recruited to the follicle while KGF is a mesenchymal factor 
produced by theca cells promoting transition from primordial to 
primary follicle (59).

Recent findings elucidated the importance of TGF-β, a pre-
dominant stimulus of EMT, in regulating granulosa cell growth 
and differentiation, as well as the plasticity of OSE under physi-
ological conditions (60–63). TGF-β is a cytokine whose many 
functions besides EMT include inducing growth arrest and fibrosis 
of tissue through complex canonical SMAD-mediated and non-
canonical signaling pathways that cross talk with multiple growth 
factor-signaling pathways, including Wnt- and epidermal growth 
factor (EGF)-signaling pathways (64). TGF-β-SMAD signaling 
activates the expression of EMT transcription factors ZEB1, Snail, 
Slug, and Twist, which can repress the expression of microRNAs 
(miRNAs) that target mesenchymal components (65). Expression 
of particular sets of miRNAs that are capable of repressing the 
expression of epithelial proteins can also be triggered by TGF-β 
(65). Non-SMAD signaling pathways activated by TGF-β include 
PI3K-Akt-TOR complex 1 (mTORC1), MAP kinase and Rho-like 
GTPase signaling pathways (45, 66).

In the normal ovary, TGF-β and its receptors are expressed in 
human granulosa cells. Mouse models have shown that TGF-β 
maintains the dormant pool of primordial follicles through 
tuberous sclerosis complex/mTORC1 signaling in oocytes as 
well as downstream SMAD signaling pathways (60, 62). The 
most active TGF-β superfamily pathway in early human folli-
culogenesis consists of growth differentiation factor 9 combined 
with bone morphogenic proteins (BMP-15, BMP-4, and BMP-7), 
which all promote the intracellular activation of SMAD3 and 
SMAD4 (61, 67).

In vitro studies have reported that early OSE passages express 
de novo E-cadherin and also establish tight junctions exhibiting 
Claudin-1 and Occludin. Stimulation of OSE culture with TGF-
β1 downregulates these epithelial markers and also prevents the 
formation of an epithelial barrier, leading to a mesenchymal phe-
notype in OSE cells. This phenomenon is driven by an EMT-like 
process and an altered molecular composition of the epithelial 
junction complex that partly coincides with the expression 
pattern of the naïve OSE (63). Co-expression of Cytokeratin-8 
and Vimentin in naive OSE indicates a mixed epithelial– 
mesenchymal phenotype (68, 69) and it has been suggested that 
the OSE phenotype is highly plastic, switching between mesen-
chymal and epithelial states as a result of external factors such as 

TGF-β1. This TGF-β1-induced plasticity may also serve to drive 
OC progression (63).

eMT in the endometrium, embryo 
implantation, and Development
The mucosal endometrial lining of the uterus is highly regen-
erative due to the fact that it grows up to 7 mm in thickness in 
response to cyclical changes of plasma sex steroid hormone levels 
(70). It is a highly dynamic tissue, undergoing well-defined peri-
ods of proliferation, differentiation, and menstruation or shed-
ding (71). Proliferation is influenced by the presence of estrogen 
during the follicular phase of the ovarian cycle, whereas proges-
terone stimulates differentiation during the secretory phase (72). 
Naturally, the cells comprising the endometrium have to retain a 
certain degree of plasticity at all times to be able to adapt to the 
cyclic hormonal changes. Accordingly, it has been hypothesized 
that mesenchymal-to-epithelial transition (MET) may play a 
major role in the compositional landscape of the endometrium, 
from its initial development to embryo implantation following 
the proliferative stage.

Mesenchymal-to-epithelial transition, a process in which 
mesenchymal cells become reprogramed to acquire epithelial 
traits, has been shown to be fundamental during embryo 
development (73). This cellular transdifferentiation process 
has also been confirmed to take place prenatally during 
development of the oviducts, uterus and anterior vagina from 
the Mullerian ducts (74, 75). The Mullerian ducts arise from 
the celomic epithelium, which originally developed from the 
intermediate mesoderm through MET (74, 75). EMT is then 
required to transform the celomic epithelium into Müllerian 
duct mesenchyme (MDM) (74, 75). Wnt signaling is known to 
be important for female reproductive tract development with 
Wnts expressed in both the Mullarian duct epithelium and 
mesenchyme. Wnt5a is essential for epithelial–mesenchymal 
paracrine interaction, while Wnt7a has a role in endometrial 
gland formation along with the patterning and morphogenesis 
of the female reproductive tract (76, 77). In mouse models, 
by stabilizing the levels of a downstream effector in the Wnt-
signaling pathway, β-Catenin (CTNNB1), Wnt signaling was 
found to be critical for Mullerian duct differentiation and 
uterine development (78). In these models, it also appears that 
EMT is extended when CTNNB1 is stabilized in MDM. Hence, 
the normal development of the reproductive tract from the 
Mullerian duct is halted as the endometrial cells retain their 
mesoepithelial character (78).

Mesenchymal-to-epithelial transition has also been linked to 
embryo implantation in the uterus. If an embryo is to be implanted 
onto the endometrium a complex interplay between the endo-
metrium and blastocyst must take place. In vitro implantation 
assays using human endometrial epithelial cells (EECs) have been 
designed to study early events in implantation such as the initial 
adhesion of the embryo (79). Through stimulation by steroid 
hormones and the histone deacetylase inhibitor, suberoylanilide 
hydroxamic acid, which promotes differentiation, an artificial 
system to study implantation has been constructed. Application 
of steroid hormones resulted in upregulation of Vimentin and 
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N-cadherin, indicative of EMT, which allows the EECs to adjust 
their cellular polarity prior to receiving the embryo (79).

Decidualization is a critical process that must be undertaken 
at the site of implantation to allow for the pregnancy to progress 
naturally following the initial attachment phase. Contact between 
the blastocyst and the endometrium signals endometrial stromal 
cells to begin undergoing decidualization (80). In mouse models, 
MET prepares luminal epithelial cells for the change of shape 
and intercellular junctions that are necessary to adapt the uterus 
to support pregnancy (81). By transitioning to epithelial cells 
expressing high levels of Cytokeratin and low levels of Vimentin, 
these endometrial cells become more adherent, permitting the 
formation of coherent layers through intercellular adhesion 
complexes (82). Thus following MET, these endometrial cells are 
more susceptible to deeper penetration by the embryo. A hypo-
thesis is emerging as to how the endometrial cells switch from 
a mesenchymal phenotype to becoming primarily epithelial in 
nature. A direct interaction between the transcription factor, 
STAT3 and MCL-1, a gene discovered to be expressed in cells 
committed to differentiation, has been proposed to be respon-
sible. This is due to the fact that in the presence of the steroid 
hormones, estrogen and progesterone, MCL-1 and STAT3 can 
co-localize to the nucleus and modulate the promoter activity 
of STAT3 (83). Overexpression of the two proteins prevents 
EMT and leads to an increase in epithelial markers along with a 
concurrent downregulation of mesenchymal markers (83). As co-
localization of MCL-1 and STAT3 is most evident in stromal cells 
post-implantation, during decidualization, these two factors have 
been implicated in the EMT to MET shift necessary for successful 
embryo implantation (83).

Interestingly, the ability of endometrial cells to exist in both 
epithelial and mesenchymal phenotypes by undergoing timely 
switches between EMT and MET, allows the endometrium 
as a whole to acquire the cellular traits necessary to develop 
healthy gland architecture and successfully accept embryos for 
implantation.

eMT in Ovulation and Menstruation and  
its Dysregulation in Adenomyosis  
and endometriosis
Following monthly ovulation, ovarian surface epithelial cells 
surrounding the newly erupted follicle undergo EMT. This EMT 
event is induced by the local microenvironment and allows 
the cells to manifest a phenotype, which resembles fibroblasts 
and fosters motility, migration, proliferation and the ability to 
remodel the extracellular matrix to heal the wound after ovulation 
(84). Through ischemia-reperfusion associated with ovulation-
induced injury, a complex interplay of proteolytic enzymes and 
inflammatory molecules, such as bradykinin, prostaglandins, and 
leukotrienes are generated during ovulation (85, 86).

Transforming growth factor-β, leukemia inhibitory factor 
(LIF), EGF and extracellular matrix components such as collagen 
play key roles at the site of ovulatory rupture, inducing EMT in 
OSE (63, 87, 88). Gamwell et al. (87) identified a progenitor cell-
like population of mouse surface epithelial cells that expresses 
stem cell marker lymphocyte antigen 6 complex, locus A (LY6A) 

and might be responsible for ovulatory wound healing. TGF-β 
and LIF, two factors in the follicular fluid have been demonstrated 
to modulate the size of the LY6A expressing progenitor cell popu-
lation (63, 86).

EGF in conjunction with hydrocortisone is a major EMT-
inducing factor and causes the acquisition of a fibroblast-like 
morphology. Moreover, EGF increases cell motility and enhances 
the activity of secreted pro-matrix metalloproteinase (MMP)-2 
and -9 while also augmenting activation of ERK and integrin-
linked kinase (88).

Despite the fact that the endometrium is one of the female 
body’s most dynamic organs, very little is known with regard 
to how EECs regenerate themselves during the menstrual/
estrous cycle. As menstruation results in the loss of the upper 
two thirds of the endometrium, this region of the uterus is a 
constant site of physiological injury and thus requires repair 
(89). Re-epithelialization has to occur quickly to repair the 
endometrium and appears to act independently of estrogen 
hormone levels (90). Within the endometrium, epithelial cells 
line glands and are further supported by a substantial network 
of vascularized stroma (91). MET is a common process during 
uterine development and embryo implantation; hence it is not 
surprising that it also occurs during the menstrual cycle. This 
was demonstrated through fate-mapping where MDM-derived 
cells near the stromal-myometrial border were found within the 
glandular and luminal epithelium following endometrial regen-
eration (92). This phenomenon of stromal cells adjacent to the 
epithelium transitioning from a mesenchymal-to-epithelial state 
has also been observed in murine models (93). The role that the 
shedding layer plays in the stimulation of MET and repair has 
remained elusive, and should be studied to gain greater insight 
into this process.

With emerging evidence demonstrating that MET, and to 
some extent EMT, regulates endometrial composition and regen-
eration under normal, dynamic uterine conditions, such as 
embryo implantation and the menstrual cycle, it is possible that 
dysregulation of signaling pathways that induce EMT could result 
in such uterine pathologies as adenomyosis, endometriosis, and 
eventually EC. A common and benign gynecological disorder 
dependent on estrogen levels, adenomyosis, occurs when the 
normal uterine boundaries are disrupted and endometrial glands 
and stroma are found within the myometrium (94, 95). This 
affliction is usually associated with difficulties in implantation 
and therefore leads to reduced fertility (96).

It is likely that aberrant EMT events play a role in the evolu-
tion of adenomyosis. As previously mentioned in the context of 
uterine development, elevated levels of β-catenin (CTNNB1) can 
result in the activation of the Wnt pathway, which can ultimately 
lead to aberrant activation of EMT (97). One of the first steps 
toward an EMT event has been hypothesized to be the translo-
cation of β-catenin to the nucleus as part of the Wnt-signaling 
pathway and its subsequent accumulation (97). This would 
disturb the balance of β-catenin that normally interacts with 
E-cadherin in cell–cell adherens junctions. β-catenin activation 
and induction of EMT have been proposed to play a major role 
in the pathogenesis of adenomyosis. Conditionally stabilizing 
levels of β-catenin in mice has led to both endometrial gland 
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hyperplasia and infertility being observed along with decreased 
expression of E-cadherin and induction of Snail and ZEB1, which 
further repress E-cadherin levels in EEC (98). EMT can also be 
induced by estrogen through upregulation of the transcription 
factors, Snail or Slug (99). In human tissue samples, markers 
of EMT, E-cadherin loss in particular, emerged in response to 
17β-estradiol and selective estrogen receptor modulator abol-
ished EMT, migration and invasion of ER-positive endometrial 
cells (99). Thus, above average levels of steroid hormones could 
be a predicative factor of adenomyosis and the focus of research 
on possible therapies.

Presently in endometriosis, lysyl oxidase (LOX) isoforms 
and Lipocalin2 have been tenuously linked to EMT, which 
would allow the epithelial cells to gain the necessary migratory 
and invasiveness properties to take root outside of the uterine 
cavity (100, 101). It has been confirmed by RT-PCR and IHC 
that in human samples of endometriosis, N-cadherin along with 
the transcription factors, Twist, Snail and Slug are all upregu-
lated when compared to healthy endometrial epithelial and 
stromal cells (100). This result is independent of the status of 
E-cadherin levels suggesting that downregulation of E-cadherin 
leading to EMT is not a general feature in the development of 
endometriosis (100). Depending on the microenvironment 
of endometriotic lesions, it would seems that EMT arises in 
response to stress and leads to EECs becoming invasive and 
gaining metastatic competency (101). The five isoforms of LOX 
family proteins have been shown to cooperate with Snail in 
repression of E-cadherin expression (102, 103). Two isoforms 
in particular, LOXL1 and LOXL4, have been linked to the endo-
metrium, either becoming downregulated during implantation 
or possessing single-nucleotide polymorphisms associated with 
the onset of endometriosis (104–106). Overexpression of LOX 
in endometrial cell lines did not result in the full activation 
of EMT with E-cadherin only weakly downregulated (107). It 
is now being hypothesized that LOX can only bring about the 
early stages of EMT and other factors are required to fully induce 
extracellular remodeling of the endometrium (107). Lipocalin2 
was discovered to be upregulated in endometriotic lesions 
from gene profiling experiments performed in rat models of 
endometriosis (108). This protein is thought to be a stress fac-
tor affecting cellular physiology in response to environmental 
changes (109). In vitro, nutrient deprivation stress induces EMT 
in EC, which in turn can lead to endometriosis, if the immune 
system is hijacked and high levels of anti-apoptotic cytokines 
allow for abnormal growth of endometrial tissue outside of the 
uterus (110). Lipocalin2-mediated triggering of EMT likely con-
tributes to the implantation of the ectopic endometrial tissues 
by inducing migration and invasion properties in ECs. Changes 
in Lipocalin2 expression directly correlate with EMT markers in 
stressed EECs supporting the notion that Lipocalin2 can induce 
EMT to generate the morphological and physiological changes in 
ECs required to drive endometriosis (110). Presently, Periostin, 
a secretory extracellular matrix protein found at high levels 
in ectopic endometrium of endometriosis, has been linked to 
induction of EMT in endometrial stromal cells through integrin 
and Akt pathways (111). The role of Periostin in the facilitation 
of EMT in endometrial epithelial is still up for debate (111).

In vitro, it has been demonstrated that menstrual effluent can 
promote EMT of peritoneal mesothelial cells (MC) increasing 
MC motility, changing the distribution of cytokeratins, fibrillar 
actin and α-tubulin and upregulating Snail and Vimentin expres-
sion (112, 113). It has been postulated that an increased exposure 
to a retrograde flow of menstrual effluent may lead to an insult for 
the mesothelium. Accordingly, there is an increased risk for pelvic 
endometriosis when menstrual periods are longer and blood flow 
is heavier (113).

In peritoneal MC in animal models, a cross talk between 
JNK1 and SMAD3 pathways during TGF-β1-induced EMT has 
been demonstrated (114). The role of TGF-β in the etiology of 
peritoneal endometriosis has also been demonstrated in women 
affected by endometriosis (115). TGF-β1 level is high in the 
peritoneal fluid of women with endometriosis and in vitro peri-
toneal MC also secrete TGF-β1. Moreover, the TGF-β-stimulated 
SMAD2/3 signaling pathway is active in the peritoneum and 
genes associated with tumorigenesis (MAPK8, CDC6), EMT 
(Notch1), angiogenesis (ID1, ID3) and neurogenesis (CREB1) are 
all found to be upregulated in the peritoneum of women affected 
with endometriosis (115).

The impact of ovulation and menstruation on tubal epithe-
lium has been assessed in  vitro and with three-dimensional 
organ culture systems in animal models (116). This was the 
first study (116) that showed that ovulation is associated with 
inflammation that leads to DNA damage and genomic insta-
bility in the fimbriated end of the fallopian tube. It could be 
hypothesized that it occurs due to close proximity of the ovary 
to the fallopian tube epithelium, which is exposed to iron-
induced oxidative stress generated from hemolysis of erythro-
cytes of menstrual blood by pelvic macrophages (117). In vitro 
treatment with hydrogen peroxide or macrophage-conditioned 
medium resulted in an increase in DNA damage in tubal 
epithelial cells (116). TP53 mutations are frequently found in 
precursor lesions of fallopian tube epithelium suggesting that 
they are an initiating events in serous tumorigenesis (118). 
Live-cell microscopy assays confirmed this hypothesis show-
ing that expression of mutant TP53 in immortalized human 
fallopian tube epithelial cells promotes cell–cell aggregation 
and survival under cell detachment conditions. Subsequent 
mesothelial intercalation capacity was most likely occurring 
through a mechanism involving mesenchymal transition and 
matrix production (119).

As has been defined by Hanahan and Weinberg, oxidative 
stress is one of the hallmarks of cancer (120). Reactive oxygen 
species (ROS) can enhance proliferative qualities of cancer cells by 
transactivation of receptor tyrosine kinase and activation of ERK. 
As well, ROS have been shown to promote cell dissemination due 
to metalloproteinase secretion/activation and induction of EMT 
(121). The role of oxidative stress in malignant transformation 
through the induction of EMT and acquisition of stem cell 
characteristics has been demonstrated in human renal epithelial 
cells. Oxidative stress induces EMT in kidney epithelial cells 
concomitant with morphological changes and the upregulation 
of EMT-related transcripts (122). The role of ovulation-induced 
oxidative stress in the induction of EMT in fallopian tube epithe-
lial cells requires further investigation as knowledge would lend 
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mechanistic insight to the tubal origins of ovarian endometriosis 
and HG ovarian carcinoma.

In summary, EMT plays a key role in remodeling the extracel-
lular matrix to repair OSE after ovulation, and key regulators of 
EMT in this process are TGF-β, EGF, and collagen. In contrast, 
in the endometrium, MET is a key regulator of regeneration 
following menstruation and a better understanding of the 
molecular players involved in this process is required. Activation 
of EMT by the dysregulation of the Wnt-signaling pathway has 
been implicated in the pathogenesis of adenomyosis, while LOX 
isoforms and Lipocalin 2 are the main inductors of EMT that 
have been implicated in the pathogenesis of endometriosis at 
this time. EMT of peritoneal MC has been shown to be activated 
by the Src tyrosine kinase and TGF-β signaling pathways and 
EMT could be involved in the pathogenesis of peritoneal endo-
metriosis. In the distal end of fallopian tube, EMT induced by 
oxidative damage generated from hemolysis of erythrocytes in 
menstrual blood can possibly be linked to the onset of ovarian 
endometriosis with tubal origin and HG ovarian carcinoma.

eMT iN CANCeRS OF THe FeMALe 
RePRODUCTive TRACT

eMT in the Progression of Serous 
borderline Ovarian Tumors to Low-grade 
Serous Ovarian Carcinomas
Serous borderline tumors or low malignant potential tumors 
histologically are defined by atypical epithelial proliferation 
without stromal invasion. These cancers tend to be diagnosed at 
earlier stages and are characterized clinically by good prognosis 
and superior overall patient survival (123). Nevertheless, pelvic 
and abdominal recurrence may occur 10–15 years after the initial 
diagnosis and some patients eventually die from the disease 
(124). Epidemiologic and molecular data support that borderline 
tumors may give rise to invasive low-grade serous carcinoma. 
EGF and TGF-β have been shown to support this conversion, 
at least in part by promoting EMT and invasiveness in serous 
borderline ovarian tumor cells (125, 126). In vitro studies have 
demonstrated that migration and invasion of SBOT cells can be 
induced by EGF and TGF-β which promote EMT through activa-
tion of SMAD3, ERK1/2, and PI3K/Akt pathways. Activation of 
these signaling cascades leads to downregulation of E-cadherin 
and upregulation of transcription factors such as Snail, Slug, 
Twist, and ZEB1 (125, 126).

eMT in Hg Serous Ovarian Cancer
As described above, OC, in particular HG serous disease, is 
characterized by therapy resistance and metastatic progression. 
Tumor metastasis primarily occurs due to exfoliation of single 
malignant cells or cell clusters from the primary tumor into 
the peritoneal cavity. Cancer cells can subsequently attach 
to visceral and parietal peritoneal surfaces of the abdominal 
organs (127). Recent evidence suggests that peritoneal dissemi-
nation may also occur simultaneously, from tubal intraepithe-
lial carcinoma, and often precedes ovarian carcinomas in  
HG OC (128).

In order for metastasis to occur, cancer cells must be able to 
locally invade out of the primary site. Importantly, they must 
also overcome anoikis (programmed cell death when cells detach 
from extracellular matrix) triggered within the ascites fluid in 
the peritoneal cavity. Finally, the cells must be able to attach to 
surfaces, such as the omentum (129). Recent studies by Pradeep 
and colleagues have demonstrated that OC metastasis can also 
occur via a hematogeneous route, wherein intravasation followed 
by cancer cell transit into blood vessels and extravasation into a 
secondary site occurs (130).

Both mechanisms of OC metastasis are dependent on motility 
and invasion involving EMT (127). EMT is considered to be the 
first step of the invasion cascade. In this process, primary tumor 
cells lose their cell-cell adhesions and able to migrate and invade 
the basement membrane. Once intravasated, these cells stay in the 
bloodstream as circulating tumor cells (CTCs). Micrometastases 
then occur in distant organs when CTCs exit the bloodstream and 
regain their epithelial characteristics (127).

Alternatively, the cells would use EMT in order to invade sec-
ondary sites in the peritoneum following attachment. Therefore, 
EMT and MET enable epithelial carcinoma cells to invade, dis-
seminate, and colonize distant organs.

eMT in eC
It can logically be hypothesized that the extreme invasiveness and 
poorer patient prognosis associated with HG EC and UEC is a 
direct result of EC cells having undergone the process of EMT. 
Although EMT can lead EC cells to lose their cell–cell adhesions 
and acquire the ability to migrate and proliferate, studies have 
not yet proven that EMT in EC cells will eventually result in 
metastases. More experimentation is required to gain a clearer 
picture of the role of EMT in EC cancer progression.

MOLeCULAR MeCHANiSMS gOveRNiNg 
eMT iN OvARiAN AND eCs

Transcription factors are among the best-characterized media-
tors of EMT (49). For example, Twist1, Snail, Slug, ZEB1, and 
ZEB2 all have been shown to repress the activity of E-cadherin 
leading to EMT (131). In OC and EC tissue specifically, over-
expression of Twist, Slug, ZEB1, ZEB2, and Snail is linked to 
reduced expression of E-cadherin (132, 133). Nuclear β-catenin 
has also been shown to promote EMT by upregulating Slug 
expression (51, 134–137). SALL4, an essential transcription fac-
tor with a well-described role in the maintenance of pluripotent 
embryonic stem cells is aberrantly expressed in EC, promoting 
invasiveness through the up regulation of mesenchymal cell 
markers such as N-cadherin (138). SALL4 induces EMT through 
c-Myc, another transcription factor and oncogene (138).

Kruppel-like factor (KLF17) was initially thought to be an 
inhibitor of EMT and a tumor suppressor in several cancers 
including breast cancer (139–141). In the context of EC, KLF17 
functions as a driver of EMT (142). EC tissue has elevated levels 
of KLF17 and expression of KLF17 in EC cell lines, leads to 
an upregulation of EMT-inducing transcription factors (142). 
Interesting, in OC cells, KLF4, a transcriptional factor related 
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to KLF17, reduces cell proliferation, migration and invasion by 
attenuating TGF-β induced EMT (143). Hence, some transcrip-
tional programs may regulate EMT in a tissue specific manner.

Another molecular player that has been shown to drive 
EMT is the neurotrophic receptor tyrosine kinase B (TrkB). 
Long recognized as an important oncogenic factor in a neuro-
genic context, when the TrkB signaling pathway involving the 
neurotrophic factor BDNF is activated in other tumor types, 
tumor cell proliferation, invasion, and metastatic potential 
are all stimulated (144). This pathway has also been linked to 
anoikis resistance in multiple cancers by inhibiting cell death 
and, therefore, leading to metastatic spread of cancer (145). 
TrkB and its high affinity ligand, BNDF are detected at high 
levels in both EC and OC (144, 146). TrkB levels determine the 
fate of EC cell lines, causing the Cadherin switch most com-
monly associated with an EMT event (144). The Akt and MAPK 
pathways are downstream of the TrkB signaling pathway, which 
could provide an explanation as to how the actions of several 
transcription factors can converge on the single yet complex 
cellular process of EMT.

Epithelial-to-Mesenchymal transition may also be regulated 
by metabolic processes. Enolase (ENO1), an enzyme function-
ing in the glycolytic pathway was hypothesized to have some 
role in tumor development. This idea was based on the logical 
observation that increased glucose uptake and aerobic glycolysis 
are characteristic features of rapidly growing cells (147). In EC, 
silencing ENO1 decreases Snail and N-cadherin expression while 
upregulating E-cadherin levels (148). At the same time, silencing 
ENO1 downregulates levels of proteins in the PI3K/Akt pathway, 
also resulting in Snail being expressed at lower levels (148). It 
is hypothesized then that ENO1 could be a potential oncogene, 
activating the PI3K/Akt pathway and eventually initiating down-
stream EMT signaling cascades in EC while in OC cells its role 
remains to be investigated.

Most recently, epigenetic modifications such as DNA methyla-
tion and the effects of non-coding RNA have been shown to be 
critical to the development of cancer (149). MiRNAs in particular 
have been found to be upregulated in many cancers, including 
both EC and OC, acting as oncogenes or tumor suppressor 
genes (150, 151). MiRNAs act as regulators, binding the 3′UTR 
region of coding RNAs triggering either the repression of mRNA 
translation or the degradation of the RNA completely (152). In 
general, high levels of miRNAs are associated with a variety of 
cancers but an understanding of how specific miRNAs regulate 
the expression of different oncogenes in EC and OC is gradually 
being uncovered.

Presently, EMT is suppressed in EC through the action of 
four miRNAs: miR-194, miR-101, miR-23a, and miR-124. miR-
194 has been linked to B lymphoma mouse Moloney leukemia 
virus insertion region 1 (BMI-1), a protein associated with self-
renewal and malignant transformation. In EC cell lines, BMI-1 
can be linked to enhanced invasiveness, and miR-194 levels in 
highly invasive EC in vitro are inversely correlated with BMI-1 
expression (153). miR-194 transfection decreases cell invasion 
in the HEC50B  cell line while simultaneously inducing a loss 
of the EC cell line’s mesenchymal phenotype (153). miR-101 
is downregulated in both endometriod and serous EC and has 

been found to inhibit proliferation of EC cells in the aggres-
sive serous type. Notably, increasing miR-101 levels in EC cells 
reverses EMT (154). Specific to EC, miR-101 suppression of 
EMT can partly be linked to enhanced expression of EZH2, a 
histone-lysine N-methyltransferase enzyme that participates in 
histone methylation and, ultimately, transcriptional repression. 
EZH2 downregulates mesenchymal markers and Wnt/β-catenin 
signaling, leading to MET (154). miR-23a has also been found at 
significantly reduced levels in EC tissue (155). Overexpression 
of miR-23a in vitro, led to inhibition of EMT in HEC 1A cells 
through the targeting of SMAD3 (155). Downregulated in EC, 
miR-124 expression is partially attenuated by DNA methylation 
(156). Much like miR-23a, miR-124 when expressed at higher 
levels reverses the EMT-like phenotype, exhibiting reduced 
migration, invasion and proliferation through the upregulation 
of the scaffolding protein IQGAP1 (156).

Undifferentiated endometrial carcinoma frequently possesses 
a reduction in E-cadherin expression (157). MiRNAs have been 
implicated in the modulation of the epithelial differentiation 
status by repressing the action of ZEB1 and ZEB2, which are 
transcriptional repressors of E-cadherin (157). In particular, 
members of the miR-200 family inhibit the expression of ZEB1 
and ZEB2. These transcription factors inhibit E-cadherin expres-
sion and thus drive EMT. Hence, miRNA-200 family members 
lead to a reduction and/or reversal of these processes (158). 
Of note, ZEB1 and ZEB2 can also bind to promoter regions of 
miR-200, leading to reduced expression. DICER1, a cytoplasmic 
RNase III enzyme responsible for cleaving miRNA into active 
22 nucleotide species is also downregulated in undifferentiated 
EC (159). By preventing miR-200 processing, dysregulation of 
DICER1 leads to reduced E-cadherin levels concomitant with the 
upregulation of Vimentin, N-cadherin, Twist1, Snail and ZEB2. It 
should be noted that not all miRNAs inhibit EMT. For example, 
miR-130b, an oncogenic miRNA implicated in many advanced 
carcinomas, has been shown to drive EMT in EC by impairing 
E-cadherin expression (160). Therefore in EC, miRNAs’ regula-
tion of oncogene expression can influence the induction of EMT 
and the ability of endometrial cells to acquire phenotypes with the 
potential to metastasize.

Various miRNAs such as miR-200 family and the miR-199/214 
cluster regulate EMT in ovarian tumors (161). Several miRNAs 
have been reported to function as tumor suppressors, directly 
targeting EMT transcription factors thereby inhibiting cell inva-
sion and metastasis (162). For example, miR-150 in OC cells can 
directly suppress ZEB1 (162). Other important tumor suppres-
sor miRNAs are miR-302b and miR-137. Ectopic expression of 
these miRNAs in OC cells inhibits cell invasion, proliferation, 
and colony formation. They also promote apoptosis by targeting 
RUNX1 and modulating the activity of the STAT3 signaling 
pathway (163, 164). Some miRNAs are able to reverse the EMT 
process by targeting the Notch and Wnt-signaling pathways as 
has been demonstrated for miR-429 and miR-449a. MET, which 
is induced by these miRNAs, significantly increases drug sensitiv-
ity in metastasizing OC cells (165, 166). miR-7 has been shown 
to inhibit metastasis and reverse EMT through Akt and ERK1/2 
pathway inactivation by reducing EGFR expression in OC cell 
lines (167).
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Numerous miRNA profiling studies in HG serous OC have 
identified miRNAs associated with EMT induction, chemother-
apy resistance, and disease progression. For example, miR-181a 
was identified as an inducer of EMT as it represses SMAD7, an 
inhibitor of TGF-β signaling (168). Ectopic expression of miR-
181a increases cellular survival, migration, invasion and drug 
resistance. Therefore in OC, miRNAs can influence both inhibi-
tion and induction of EMT and are implicated in OC progression.

MiCROeNviRONMeNTAL RegULATiON 
OF eMT iN CANCeRS OF THe FeMALe 
RePRODUCTive TRACT

Induction of EMT results from a complex interplay between 
biophysical parameters such as hormones and hypoxia, biological 
agents such as tumor-infiltrating immune cells, and therapeutic 
interventions including chemotherapy (see Figure 2). The roles 
that these factors play in EMT will be discussed below.

Hormones As a Driver of eMT  
in Ovarian and eCs
Experimental and clinical studies have revealed that cancer cells 
of hormone-sensitive tumors in the ovary, endometrium and 
breast hijack ER-α and β (ER-β) dependent pathways to promote 
proliferation, DNA repair, and cell survival (169–171). Moreover, 
the biologically most active estrogen (17 β-estradiol—E2) has 
been shown to stimulate EMT.

Estrogen-sensitive tissues are highly responsive to estrogen 
exposure, which can occur naturally during the menstrual cycle 
and pregnancy or as a result of obesity or the use of postmeno-
pausal hormone replacement therapy (171). Studies of estrogen 
metabolism in postmenopausal women, has revealed that E2 can 
also be produced intracellularly by cancer cells using aromatase 
(172). In this pathway, circulating inactive plasma estrogen 
precursor E1S (estrone sulfatase) wchich is originated from 
peripheral tissues (liver, muscle, skin, bones) is converted to 
active E2 (172).

In vitro studies have demonstrated that E2 exposure drives 
EMT in the OC cell line BG-1. Upon E2 stimulation, a decrease 
of E-cadherin expression was observed in conjunction with a sig-
nificant upregulation of the EMT-associated transcription factors 
Snail and Slug (173). These changes lead to a mesenchymal phe-
notype as well as increased invasiveness. More importantly, ER-α 
activation has been shown to promote EMT as well as stem cell 
traits in OC cells (173). Specifically, knockdown of ER-α in OC 
cells decreased N-cadherin expression, and increased E-cadherin 
expression (174). Furthermore, knockdown of ER-α significantly 
reduced the formation of CSC-enriched spheres and decreased 
expression of Nanog, BMI-1, and Oct-4 stem cell markers. 
Follicle-stimulating hormone (FSH) can also induce EMT-like 
phenotypes in OC cells by activating the PI3K/Akt-Snail signal-
ing pathway (175). FSH receptor is present in the majority of OCs, 
and FSH is an important ovarian epithelial growth-promoting 
factor (176). In opposition to E2 and FSH, progesterone has been 
shown to inhibit EMT in OC cells via a progesterone receptor-
dependent pathway (177). It has been demonstrated that Vimentin 

expression is reduced upon treatment with progesterone, while 
E-cadherin expression is increased.

Estrogen and progestins can also upregulate ZEB1 in the 
stroma and myometrium of the uterus and in human cells in vitro 
(178, 179). Interestingly though, there are no hormone response 
elements upstream of the translational start site of ZEB1. In 
aggressive cases of EC, such as grade 3 endometrioid and type 
II serous carcinomas, ZEB1 overexpression is not limited to the 
stroma and myometrium. Indeed, the ZEB1 protein is aberrantly 
expressed in epithelial-derived carcinoma cells as well (178). Loss 
of E-cadherin expression paired with ZEB1 expression in a high 
percentage of epithelial cells is characteristic of EMT and suggests 
hormonal regulation of the entire process.

During the normal menstrual cycle, the steroid hormone, 
progesterone can induce differentiation in EC cells. Progesterone 
induces the expression of inhibitors of Wnt signaling which in 
turn downregulate EMT and slow down cancer progression (180). 
Loss of progesterone receptors has been found in patient tissues 
with progressive EC and also witnessed in these cases, is a sig-
nificant upregulation of pathways involved in the progression of 
cells to a mesenchymal phenotype (180). Taken together with the 
fact that application of medroxyprogesterone acetate, a synthetic 
variant of progesterone, to EC cells in  vitro inhibits migration 
and downregulates Vimentin; a strong case for progesterone-
mediated inhibition of EMT can be presented (180). Progesterone 
also downregulates TGF-β, a signaling pathway which is a major 
driving force behind EMT.

Much like in OC, elevated levels of E2 contribute to the 
enhanced proliferation and invasive capasity of EC cells through 
the activation of the PI3K/Akt and MAPK signaling pathways 
and mass and obesity-associated (FTO) gene expression (181).  
A study by Wik and colleagues (181) not only provided new 
insight into the mechanisms of E2-induced proliferation and 
invasion of EC but also provided a link to obesity. However, 
unlike OC, lack of ER-α in EC correlates with activation of Wnt-, 
Sonic Hedgehog- and TGF-β signaling pathways and induction 
of EMT suggesting ER-α independent mechanisms of EMT 
regulation (181). Most recently, conditioned media from normal 
endometrial stromal factors has been found to inhibit estrogen-
induced EMT through regulation of Slug and E-cadherin expres-
sion levels (182). Metformin, a commonly used drug used to treat 
type 2 diabetes can also reduce E2-induced cell proliferation and 
EMT in EC cells through suppression of ERK1/2 signaling and 
activation of AMPKα signaling (183).

Collectively, these studies provide a compelling argument for 
the role of estrogen in promoting tumor progression by induc-
tion of EMT and in particular highlight the critical role of ER-α 
in OC and EC progression.

Cytokines/Chemokines and growth 
Factors As Drivers of eMT in Ovarian  
and eCs
Inflammatory cytokines are low-molecular weight proteins 
produced by both immune (tumor-infiltrating T-regulatory lym-
phocytes and activated macrophages) and stromal cells [cancer-
associated fibroblasts (CAFs) and vascular endothelial cells] in 
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the tumor microenvironment (184). Along with a wide variety 
of tumor cells, cytokines contribute to proliferation, cell survival, 
differentiation, immune cell activation, and cell migration, thus 
supporting tumor growth, progression, and adaptation (185).

The human OC microenvironment contains a dynamic 
inflammatory cytokine network that has been described in recent 
studies as the “TNF network.” In this network, key cytokine/
chemokine mediators of cancer-related inflammation such as 
interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and stro-
mal cell-derived factor-1 (CXCL12) promote disease progression 
by facilitating bidirectional communication between the tumor 
and the stroma (185).

Tumor necrosis factor-α is a major inflammatory cytokine 
that promotes cancer cell migration and invasion. Prolonged 
production of TNF-α in the tumor microenvironment results in 
increased myeloid cell recruitment in an IL-17-dependent manner 
(186). Moreover, a high level of TNF-α in combination with IL-6 
in ascites’ fluid and tumor tissue of OC patients is associated with 
tumor progression and resistance to chemotherapy concomitant 
with shortened progression-free survival (187, 188). TNF-α 
facilitates tumor cell migration and invasion by inducing the 
transcriptional upregulation of genes associated with EMT such 
as Snail, Twist, ZEB1, and ZEB2. This upregulation is depend-
ent upon activation of the NFκB and TGF-β signaling pathways  
(189, 190). A recent study in colorectal carcinoma demonstrated 
that TNF-α increases stability of Snail through the activa-
tion of Akt pathway and repression of GSK-3β activity (191). 
Furthermore, exposure to TNF-α stimulates the MAPK/ERK 
signaling pathway, which results in a positive feedback loop that 
helps drive EMT in colon carcinoma spheroids (192). Similarly, 
in OC, autocrine production of TNF-α within a tumor stimulates 
a constitutive network of cytokines, chemokines, and angiogenic 
factors in the stroma. These factors act to promote EMT, coloni-
zation of the peritoneum, and neovascularization of metastatic 
lesions (193). The chemokine CXCL12 has also been shown to 
promote EMT, cell proliferation, migration, and invasion of OC 
cells (194–196). These effects of CXCL12 occur via a MAPK/
ERK-dependent pathway.

As was outlined in Ref. (197), growth factors such as TGF-β, 
epidermal growth factor (EGF), HGF, and endothelin-1 (ET-1) 
are all important inducers of EMT in OC. Of these, members 
of the TGF-β superfamily have been studied extensively. By reg-
ulating cell growth and death and repressing the expression of 
oncogenes, TGF-β acts a tumor suppressor in normal cells and 
in the early stages of carcinogenesis. As the tumor develops and 
progresses, these protective effects of TFG-β are often lost leading 
to resistance to the TGF-β growth inhibitory effect concomitant 
with TGF-β-mediated promotion of cell migration, invasion, and 
metastasis (198).

By Western blot analysis, TGF-β protein has been identified 
not only in the cell lysates obtained from OC cell lines but also 
in their culture media, suggesting that TGF-β is produced by OC 
cells (199). TGF-β contributes to ovarian tumor growth through 
a number of mechanisms. For example, it is a potent activator of 
CAFs (200). CAFs isolated from OC tissues have been shown to 
induce cancer cell invasion and migration while fibroblasts iso-
lated from normal ovarian tissue did not show this ability in vitro 

(201). Yeung et al. have used coculture experiments to demon-
strate that in the tumor microenvironment TGF-β facilitates a 
cross talk between OC cells and CAFs, promoting the motility 
and invasion of OC cells by upregulating Versican in CAFs (200).

Several studies suggest that TGF-β drives dissemination of OC. 
For example, microarray analyses (GSE2109) revealed that TGF-
β signaling pathway is activated after dissemination of cancer cells 
from primary site into the peritoneal cavity (202). Expression 
of TGF-β receptor type 2 and phosphorylated SMAD2/3 were 
upregulated in omental metastases, suggesting a role for auto-
crine signaling at metastatic sites. Another study demonstrated 
that overexpression of the homeodomain transcriptional factor, 
PITX2 results in the gain of mesenchymal phenotype in OC cells, 
leading to increased cellular invasion. These effects of PITX2 are 
due to the activation of the TGF-β pathway (203).

Several mechanisms have been shown to mediate the pro-
tumorigenic effects of TGF-β in OC. Treatment of OC cell lines 
with TGF-β and EGF upregulates the gap junction protein 
Connexin43 (Cx43) by activating SMAD2/3, ERK1/2, and Akt 
signaling pathways. This upregulation in Cx43 then promotes 
cancer cell migration and proliferation (204, 205). Epigenetic 
mechanisms have also been shown to underline TGF-β-induced 
EMT as alterations in the expression of genes associated with 
EMT induced by global and gene-specific DNA-metylation 
(200, 206).

Additional TGF-β family proteins might also regulate EMT 
in OC cells. For example, increased production of BMPs by OC 
cells and surrounding stroma has been shown to promote tumor 
growth (207). Investigating the effect of BMP-2 on OC tumori-
genesis in vitro, Le Page et al. (208) demonstrated that treatment 
of OC cells with recombinant BMP-2 induces phosphorylation 
of SMAD1/5/8 and ERK/MAPKs results in the upregulation of 
Snail concomitant with increased cellular motility. BMP-4 has 
been shown to alter the morphology of OC cells by inducing 
EMT markers such as Snail and Slug and promoting an invasive 
phenotype. Furthermore, the BMP-4 inhibitor, Noggin, blocks 
BMP-4-induced EMT phenotypes, and decreases autocrine 
BMP-4-mediated OC cell motility (197, 209).

Nodal, is another member of TGF-β superfamily, and a 
morphogen during early embryonic development (210). Nodal 
promotes cellular invasion and EMT concomitant with the 
induction of Snail, Slug, and Twist in several cancers including 
breast cancer and melanoma (210–212). Nodal overexpression 
in OC cells has been associated with decreased proliferation 
(213); however, studies have not yet examined the role of this 
morphogen in OC EMT. In EC, Nodal expression is positively 
correlated with epidermal growth factor-co-receptor Cripto and 
increases dramatically in the transition from histologic Grade 1 
through 4 (214).

Several other growth factors have been shown to work 
independently or in combination with TGF-β to induce EMT 
in OC. EGF promotes EMT and cancer cell migration directly 
by activating EGF receptors and also indirectly by inducing IL-6 
(215). EGF induces cell motility and a mesenchymal morphol-
ogy in OC cell lines and this effect of EGF is associated with the 
upregulation of N-cadherin and Vimentin (216). EGF also acti-
vates JAK2 and STAT3 signaling and changes both the abundance 
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and localization of alpha6beta1 integrin in a manner that drives 
EMT induction and cancer cell migration (217). The EGF recep-
tor ERBB3 has also been shown to regulate both Vimentin and 
E-cadherin via PI3K (218).

Hepatocyte growth factor can also induce EMT in OC cells 
(219). HGF, secreted by OC cells, has been shown to promote 
peritoneal implantation and HGF levels are found to be high in 
OC ascites as compared to benign fluids (219, 220). In addition 
to promoting OC migration, HGF also induces the migration of 
peritoneal MC by activating its receptor Met, leading to down-
stream Akt and ERK1/2 pathway activation.

Endothelin-1 has been shown to promote both EMT and 
chemoresistance in OC (221, 222). In resistant OC cells, ET-1 
and Endothelin A receptor (ET(A)R) are upregulated and are 
also accompanied by enhanced MAPK and Akt phosphorylation 
and cell proliferation. When OC cells are treated with ET-1, 
expression of E-cadherin transcriptional repressors, including 
Snail, Slug, and Twist, as well as mesenchymal markers, such as 
Vimentin and N-cadherin, are all upregulated. Finally, analysis 
of tumor tissues derived from OC patients found that ET(A)R 
was overexpressed in resistant tumors and associated with an 
EMT phenotype (223). Hence, a number of cytokines and growth 
factors promote EMT in OC. These factors likely work together 
within the tumor microenvironment to promote and sustain dis-
semination and even resistance to therapy.

Most aggressive forms of EC have tumor cells that have 
migrated to nearby lymph nodes and have invaded through the 
myometrium of the uterus. Gene-expression microarrays fol-
lowed by bioinformatic analysis revealed a potentially prominent 
role for the cytokine, TGF-β in promoting invasion through the 
induction of EMT (224). Other directors of the embryo implanta-
tion process such as FOS, MMP-9, MapK1, and RHOA were also 
associated with aggressive EC cases, which hints at a possible 
parallel between the molecular events associated with controlled 
trophoblast implantation and uncontrolled endometrial tumor 
invasion (225). In HEC1A and RL95-2 EC cell lines, EMT can be 
induced by TGF-β as tested at the morphological and molecular 
levels (224, 226). TGF-β can also act as a chemo attractant for 
these in vitro cell lines, increasing their invasive capacity (224). 
Co-treatment of Ishikawa cells with the cytokine, IL-6 and  
TGF-β resulted in messenchymal-like morphological changes 
that coincided with increased expression levels of the genes, Snail, 
N-cadherin, and Twist (227). Thus, TGF-β has been hypothesized 
to play a critical role in early invasion of EC through initiating the 
process associated with EMT. ERM/ETV5 (Ets family of transcrip-
tion factors), is also upregulated in association with myometrial 
invasion (228). Overexpression of this particular transcription 
factor promotes cell migration and invasion and induces EMT 
by upregulating ZEB1 expression (229). In HEC1A EC cells, 
gene-expression microarray assays revealed Nidogen 1 (NID1) 
and Nuclear Protein 1(NUPR1) to be direct targets of the ETV5 
transcription factor when it was stably expressed in vitro (230). 
At the invasive front, both NUPR1 and NID1 had similar expres-
sion levels to ETV5 (230). Knocking down NID1, a glycoprotein 
secreted by mesenchymal cells, in cells overexpressing ETV5 led 
to a significant decrease in cell invasion (230). Inhibiting NID1 
in orthotopic EC models results in smaller tumors, an effect 

that is probably further enhanced by the microenvironment 
of the tumor (230). Additionally, inhibition of both NID1 and 
NUPR1 decreased the number of metastases (229). In HEC1A 
cells, ETV5 was shown to directly influence EMT by performing 
its function as a transcription factor and activating ZEB1. LPP, 
a protein implicated in cell-cell adhesion and cell motility is a 
transcriptional coactivator for other members of the transcrip-
tion factor family of ETV5 (231). EMT induced by ETV5, led 
to localization of LPP from cell-cell contacts to focal adhesions 
(229). This accumulation of LPP at focal adhesions could lead 
to an amplification of extracellular signals and in turn its trans-
location to the nucleus, where in it could further activate ETV5, 
propagating its transcriptional activity and promoting persistent 
EC invasion through further EMT events.

Receptor activator of nuclear factor-κB (RANK) and its 
associated ligand RANKL, have been implicated in numerous 
physiological processes such as immune responses but also have 
been shown to be critical for the formation of lymph nodes (232). 
In EC tissue, RANK/RANKL expression is significantly higher 
and overexpression of RANK in EC cell lines, results in induction 
of EMT (233). CCL20 was found at increased levels in RANKL-
treated RANK overexpressing cells. Furthermore, a neutralizing 
antibody targeting CCL20 could suppress EMT (233).

Autocrine motility factor (AMF) has also been implicated in 
EMT and, therefore, in promoting invasiveness and metastasis of 
endometrial carcinoma. Immunohistochemical analysis revealed 
high levels of AMF in EC tissue compared to normal endometrial 
tissue that showed a positive correlation with EMT markers 
(234). Silencing of AMF followed by gene-expression profiling 
showed altered expression of EMT mediators such as Snail (234). 
Additionally, treatment of EC cell lines with MAPK specific 
inhibitors downregulated EMT marker expression, suggesting 
that AMF promotes EMT in EC through the MAPK signaling 
pathway (234).

While some growth factors and cytokines such as TGF-β have 
well understood roles in both OC and EC progression through 
the promotion of EMT, more detailed study of EGF and HGF in 
EC are required before conclusions are drawn as to the strength of 
the role of those factors in the EMT process in the endometrium.

Hypoxia and Oxidative Stress As  
Drivers of eMT in Ovarian and eCs
A hypoxic microenvironment is a common phenomenon 
existing in the central region of solid tumors due to insufficient 
penetration and diffusion of oxygen and nutrition (235). Under 
hypoxic conditions, the two subunits comprising hypoxia-
inducible factor-1 (HIF-1) can form a functional complex, 
which in turn can activate the transcription of several genes 
whose expression correlates with cellular functions that pro-
mote aggressive tumor phenotypes (236).

Considerable evidence suggests that tumor hypoxia, followed 
by activation and stabilization of HIF-1 and its transcriptional 
targets, induces EMT, stem cell-like properties, neovasculariza-
tion, altered energy metabolism, invasiveness, tumor cell spread-
ing and intrinsic resistance to radiation and chemotherapy (237). 
Moreover, a meta-analysis from 25 studies of pathological and 
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prognostic significance demonstrated that overexpression of  
HIF-1α is closely associated with high histological grade, 
advanced FIGO stage, lymph node metastasis and poor 5-year 
survival rate in patients with OC (238).

Hypoxic conditions can trigger an EMT program in OC cells 
through a series of mechanisms. For example, Notch signaling 
activated by hypoxic stimulus induces EMT, increased motil-
ity, and invasiveness through two various mechanisms that 
synergistically act to modulate Snail expression (239). First, it 
has been demonstrated that Notch directly upregulates Snail 
expression. Second, Notch potentiates HIF-1α recruitment to the 
LOX promoter which results in hypoxia-induced upregulation of 
LOX expression following by stabilization of Snail protein (239). 
Additionally, HIF-1α and LOX are highly expressed in OC tissues 
and significantly correlate with tumor grade and lymph node 
metastasis. The LOX and HIF-1α protein expression are markedly 
increased under hypoxic conditions and decreased after reoxy-
genation (240). Another study has linked HIF-1α with decreased 
E-cadherin in OC (241). Specifically, the hypoxic upregulation 
of HIF-1 and subsequent transcriptional induction of LOX and 
LOXL2 leads to the repression of E-cadherin and the subsequent 
induction of EMT. A recent study demonstrated that miR-210 
is a master hypoxia sensor in OC (242). In response to hypoxia, 
miR-210 is upregulated in OC tissue as well as OC cell lines, and 
miR-210 mediates hypoxia-induced EMT by promoting Snail 
expression leading to inhibition of E-cadherin transcription. 
Additionally, miR-210 was found to increase the transcriptional 
activity of HIF-1, suggesting that a positive feedback loop may 
exist between miR-210 and HIF-1 that reciprocally modulates 
miR-210 release and thus sustains the function of miR-210 under 
hypoxia (243).

As has been described, chemokines and chemokine recep-
tors mediate OC cell motility, invasion and metastasis (194). 
Chemokine receptor CCR7 expression is induced rapidly in OC 
cells in response to hypoxia, and participates in EMT induction, 
cell migration and invasion. Hypoxia synergizes with CCL21, 
the CCR7 ligand, to induce a strong upregulation of N-cadherin, 
Snail, and MMP-9 proteins (244).

Compelling experimental and clinical evidence indicates that 
ROS can also drive the dedifferentiation of cancer cells leading to 
EMT, invasion and metastasis (121). High levels of ROS in cancer 
cells are accumulated as a result of increased metabolic activity 
and mitochondrial dysfunction due to hypoxia and peroxisome 
activity (121). Levels of ROS can also be elevated by known ROS 
sources such as NADPH oxidases, cyclooxygenases, or lipoxyge-
nases (121). Wang et al. have reported that ROS accumulation in 
OC cells leads to the HIF-1α-dependent induction of LOX which 
then represses E-cadherin expression (245).

A hypoxic microenvironment is also a substantial inducer 
of EMT in EC, as it tends to accompany rapidly growing solid 
malignancies and results from poor blood supply to surrounding 
healthy tissue. Directly or indirectly, HIF-1 has been shown to 
control Snail, ZEB and other regulators of EMT (246). In primary 
EC samples, HIF-1 was overexpressed in over 65% of cases (246). 
This elevated expression of HIF-1 coincided with increased 
expression of Twist and decreased levels of E-cadherin (246). 
It can be speculated that under low oxygen conditions HIF-1 

regulates Twist expression by direct binding to its promoter and, 
therefore, promotes EMT and aggressiveness of EC.

Cancer cells, through activation of proteasome pathways, are 
capable of tolerating oxidative stress. REGϒ-associated protea-
somes can degrade specific proteins like cell-cycle inhibitors in 
an ubiquitin and ATP-independent manner. In EC, mutant p53-
R248Q can bind to the promoter of and upregulate the expression 
of REGϒ (247). Depletion of REGϒ in EC lines reduces cell pro-
liferation, migration, and invasion where as expression of mutant 
p53-R248Q promotes EMT (247). Overexpression of p53-R248Q 
cannot restore REGϒ protein levels in REGϒ-depleted EC cells, 
hinting at an alternative mode in which the restoration of these 
cells’ malignant properties occurs (247). Insight from EC cells 
that are resistant to inhibitors of proteasomes, has led to the 
hypothesis that EMT in this environmental context is brought 
on by miR-200-ZEB1/ZEB2 protein regulation (248). p53-R248Q 
can also bind to the promoter of miR-130b, inhibiting its tran-
scription and subsequently allowing ZEB1 to bring about the 
EMT phenotype (249). Interestingly, p53-R248Q has also been 
found to promote EMT in EC through the disruption of the 
p68-Drosha complex, which is responsible for the processing of 
miR-26a (250). Reduced miR-26a levels leads to overexpression 
of its downstream target EZH2, a promoter of EC tumor progres-
sion through EMT (250).

Although further research is required to fully understand the 
extent to which hypoxia influences the onset of EMT in the con-
text of the endometrium, HIF-1 has been shown to significantly 
induce EMT in both EC and OC. Whether oxidative stress can 
also upregulate HIF-1 and bring about EMT in the endometrium 
also remains to be fully explored.

Chemotherapy As a Driver of eMT  
in Ovarian Cancer
Despite initially successful multimodal therapy including tumor 
resection and platinum-based chemotherapy, tumor recurrence 
remains a major cause of mortality in OC patients (251). A grow-
ing body of evidence suggests that EMT and CSCs play important 
roles in the acquisition of chemoresistance in OC cells. Exposure 
to chemotherapeutics increases the percentage of CSCs within a 
tumor, the presence of which is correlated with metastatic pro-
gression, resistance to therapy and a poor clinical prognosis (30). 
Significantly, a paradigm that emerges from many recent studies 
is that residual cancer cells that become resistant to chemo-
therapy often undergo complete or partial EMT (252, 253). For 
example, in a recent study, primary OC cells treated with cisplatin 
experienced a loss of cell polarity, as well as an enrichment in 
cells expressing CSC markers at the protein and mRNA level (31). 
The expression of Snail, Slug, Twist, and MMP-2 was significantly 
enhanced in response to cisplatin and correlated with increased 
migration. In parallel, cell surface expression of CSC-like mark-
ers (CD44, α2 integrin subunit, CD117, CD133, EpCAM) and 
the expression of stem cell markers Nanog and Oct-4 were also 
significantly increased in response to cisplatin. These phenotypes 
were likely mediated by the ERK1/2 signaling pathway (252). 
Further, a pathway analysis associated with platinum resistance 
in OC demonstrated a strong association between EMT, stemness 
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and resistance to platinum (254). Therefore, molecular link 
between platinum resistance, EMT and CSCs in OC has been 
supported by these data and it has been suggested that EMT may 
confer a selective survival advantage (254, 255).

eMT AND CTCs iN OvARiAN AND eCs

In the context of tumor metastasis, recent studies have linked 
EMT to the onset of CTCs in OC and EC. Increasing evidence 
suggests that the presence of CTCs in bone marrow and in 
the peripheral blood of primary OC patients correlates with  
the presence of ascites and elevated CA-125 (256). Moreover, the 
detection of CTCs during follow-up occurs more often in older 
patients with platinum resistance and associates with impaired 
clinical outcome (256). Molecular profiling of CTCs from the 
same OC patients has shown that they express both stem cell 
(CD44, ALDH1A1, Nanog, Oct-4) and EMT (N-cadherin, 
Vimentin, Snail2, CD117, CD146) markers (257) suggesting 
that EMT stem or epithelial associated CTC traits are highly 
plastic.

The idea of tumor metastasis manifesting itself due to the 
dissemination of CTCs is a relatively new concept in the study 
of EC as previously the extent of myometrial infiltration and 
involvement of lymph nodes were used to define the likelihood 
of recurrent disease (258). As tumor cells can disseminate dur-
ing early stages of tumor development, it is critical to utilize the 
most advanced technologies to detect CTCs in cancer patients to 
understand the exact mechanisms by which CTCs can contribute 
to metastatic disease. CTCs from EC patients have been immune-
isolated using EpCAM and genes related to a number of key 
metastatic events (258). The EMT phenotype stood out as one of 
the main features when CTCs from EC were molecularly profiled 
(259). ETV5, Notch1, Snail, TGF-β1, ZEB1 and ZEB2, which 
are all genes associated with cellular plasticity, were significantly 
expressed in EC CTCs (258). In vitro, upregulation of ETV5 in 
the EC cell line HEC1A recapitulated the plasticity phenotype 
observed in the high-risk EC cases from which the CTC were 
derived (258). Microarray expression analysis of CTCs has also 
detected the presence of a protein component of the extracellular 
matrix that plays a role in tissue development, remodeling and 
repair, SPARC (259). CTCs derived from the cell line HEC1A 
contained enhanced levels of SPARC expression along with 
Fibronectin, a strong indicator of EMT (259). Overexpression of 
SPARC, stimulates the migratory activity of EC cells, a phenotype 
that is associated with CTCs (259). Thus, therapies targeting 
CTCs may be successful in halting the spread of metastasis from 
the endometrium.

It is apparent that CTCs possess stem cell-like traits in OC and 
EC most likely originating from EMT events in the presence or 
absence of therapeutics. In order to combat OC and EC metas-
tasis directly, future work will need to address how the EMT 
process can be targeted to reduce the occurrence of proliferative 
and invasive forms of these carcinomas.

CONCLUSiON AND FUTURe DiReCTiONS

In the last decade, EMT has emerged as a major driver of cancer 
progression in epithelial cancers. It allows cancer cells to detach 
and migrate, whilst also enabling the acquisition of CSC pheno-
types. Cancers of the female reproductive tract, particularly OC 
and EC, also experience EMT. In OC this process is associated 
with disease progression, chemoresistance and the acquisition 
of CSC properties. Less is known about EMT in EC; however, it 
likely plays similar pro-tumorigenic roles in this disease. In order 
to combat EMT in cancer, one must fully understand how it is 
regulated. Several proteins, most notably members of the TGF-β 
superfamily, have been shown to drive EMT in cancer, by induc-
ing epigenetic changes leading to transcriptional alterations. 
It is, however, very likely that other factors play an important 
role in the regulation of EMT and that cancer cells lack control 
mechanisms designed to counteract the EMT program. In con-
trast, the EMT events that occur during the development of the 
reproductive tract as well as the normal physiological function-
ing of adult organisms are highly regulated. By understanding 
the mechanisms by which EMT is regulated, and even reversed 
during normal development, we may reveal new targets for the 
treatment of OC and EC.
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