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Epithelial–mesenchymal transition (EMT), the process by which epithelial cells can con-
vert into motile mesenchymal cells, plays an important role in development and wound 
healing but is also involved in cancer progression. It is increasingly recognized that EMT 
is a dynamic process involving multiple intermediate or “hybrid” phenotypes rather than 
an “all-or-none” process. However, the role of EMT in various cancer hallmarks, including 
metastasis, is debated. Given the complexity of EMT regulation, computational modeling 
has proven to be an invaluable tool for cancer research, i.e., to resolve apparent conflicts 
in experimental data and to guide experiments by generating testable hypotheses. In 
this review, we provide an overview of computational modeling efforts that have been 
applied to regulation of EMT in the context of cancer progression and its associated 
tumor characteristics. Moreover, we identify possibilities to bridge different modeling 
approaches and point out outstanding questions in which computational modeling can 
contribute to advance our understanding of pathological EMT.

Keywords: epithelial–mesenchymal transition, computational modeling, cancer progression, cell migration, 
stemness, cell metabolism

iNTRODUCTiON

Epithelial–mesenchymal transition (EMT) is the transition from an epithelial to a mesenchymal 
phenotype of a cell. During this transition, cells lose their epithelial properties, such as strong cell–
cell adhesion, and gain mesenchymal properties, such as spindle-like morphology and enhanced 
migratory capacity. Together with its reverse process, mesenchymal–epithelial transition (MET), 
EMT plays an important role in development (type 1 EMT), wound healing and fibrosis (type 2 
EMT), and cancer (type 3 EMT) (1).

Because of the increased migratory and invasive capacity of cells with a mesenchymal phenotype, 
it was thought that EMT at the tumor site and subsequent MET at the metastatic site were required for 
metastasis (2). Nevertheless, despite the observation of EMT in vitro, lack of evidence for EMT in vivo 

Abbreviations: ACT, amoeboid collective transition; AMT, amoeboid–mesenchymal transition; BCSC, breast cancer stem cell; 
CAT, collective amoeboid transition; CBS model, cascading bistable switches model; CFL, coupled feedback loop; CSC, cancer 
stem cell; CTC, circulating tumor cell; E/M, epithelial/mesenchymal (hybrid); ECM, extracellular matrix; EMT, epithelial 
mesenchymal transition; GoF, gain-of-function; HCC, hepatocellular carcinoma; LoF, loss-of-function; MAT, mesenchymal–
amoeboid transition; MET, mesenchymal–epithelial transition; MMPs, matrix metalloproteinases; ODE, ordinary differential 
equation; POET, Pareto optimal ensemble technique; PSF, phenotypic stability factor; TAM, tumor-associated macrophage; 
TCS model, ternary chimera switch model; TF, transcription factor.
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caused skepticism about its proposed role in tumor progression 
(3). Recently, evidence for in vivo EMT has been provided by iso-
lation of tumor cells that have undergone EMT (4) and intravital 
microscopy of such cells in epithelial breast tumors (5). However, 
the importance of EMT in tumor progression remains a source 
of debate, as other studies have shown that inhibition of EMT, 
either by deletion of SNAIL1 (SNAI1) or TWIST1 (6), key EMT 
transcription factors (EMT-TFs), or overexpression of miR-200 
(7), a microRNA that represses EMT, did not affect metastasis 
in, respectively, pancreatic and lung cancer. Rather, these studies 
show that inhibition of EMT and induction of MET (re)sensi-
tized cells to chemotherapy, suggesting that EMT contributes to 
chemoresistance rather than to metastasis (6, 7). Interestingly, a 
recent study shows that deletion of the EMT-TF ZEB1 in the same 
pancreatic cancer model does affect metastasis (8). This finding 
points to the existence of complementary subprograms of EMT 
driving cancer cell dissemination, i.e., individual EMT-TFs have 
distinct effects (8, 9).

Whereas the recent findings by Krebs et al. (8) partly resolve 
the controversy around the contribution of EMT to metastasis, 
another confounding factor is the existence of plasticity-
dependent and plasticity-independent metastatic pathways (10). 
Yet another factor that plays a role is the frequent assumption that 
EMT is an “all-or-none” process, in which a cell is either fully 
epithelial or fully mesenchymal. In contrast to this notion, recent 
studies have revealed a large flexibility in the EMT process, lead-
ing to the recognition of intermediate or “hybrid” phenotypes, 
in which cells show both epithelial and mesenchymal properties  
(11, 12). Cells with such hybrid phenotypes have the ability to 
migrate while remaining attached to other tumor cells, potentially 
dragging along epithelial tumor cells that cannot migrate on their 
own. Indeed, genes associated with a mesenchymal phenotype 
were found to be upregulated in circulating tumor cell (CTC) 
clusters detected in the blood of breast cancer patients (13), yet the 
tight adhesion of cells in a cluster suggests they are not fully mes-
enchymal. Moreover, clusters of melanoma cells can intravasate 
into blood vessels (14) and clusters of CTCs in breast and prostate 
cancer patients have a much higher (up to 50-fold) metastatic 
potential compared to single CTCs (15). Hence, partial EMT 
rather than complete EMT might be associated with metastasis.

Apart from the immense progress in our understanding of 
EMT owing to experimental studies, in recent years also com-
putational and mathematical modeling approaches have made a 
significant contribution to this understanding (16, 17). Here, we 
review such modeling approaches on (partial) EMT and how they 
have helped to elucidate regulation and implications of EMT in 
tumor progression.

UNRAveLiNG THe eMT ReGULATORY 
NeTwORK

Epithelial–mesenchymal transition is regulated by a complex 
network of interconnected pathways such as the transform-
ing growth factor-β (TGFβ), epidermal growth factor (EGF), 
insulin-like growth factor, Wnt, Hedgehog, and Notch pathway 
(18). Of these pathways, the TGFβ pathway is studied the most 

extensively in the context of EMT. TGFβ is dysregulated in many 
types of cancer and acts both as a tumor suppressor at early stages 
of tumor development (by inhibiting proliferation and inducing 
apoptosis) and as a tumor promoter at late stages (by inducing 
EMT or by suppressing immune responses against the tumor) 
(19). As a result of this multifunctional, context dependent [e.g., 
influenced by tumor extracellular matrix (ECM) rigidity (20)] 
behavior, there has been considerable interest in understanding 
the TGFβ pathway mechanistically, and various models of the 
canonical (Smad-dependent) pathway [reviewed in Ref. (21)] 
and non-canonical (Smad-independent) pathway (22) have been 
developed.

Eventually, to induce EMT the signals from the various EMT-
activating pathways converge on a network of EMT-TFs that 
repress epithelial characteristics, such as E-cadherin expression 
[the loss of which is an important hallmark of EMT (23)], and 
induce mesenchymal characteristics, such as Vimentin expres-
sion. Thus, TFs that support epithelial characteristics are inacti-
vated (24) and those that support mesenchymal characteristics 
are activated. In this section, we will discuss the modeling efforts 
that researchers have undertaken to unravel the EMT regulatory 
network, starting with an EMT “core” regulatory network and 
working our way up to systems-level approaches.

Core Regulatory Network
Obvious candidates for inclusion in the EMT core regulatory 
network are EMT-TFs such as ZEB1/2, SNAIL, SLUG (SNAI2), 
TWIST1, and PRRX1 (11, 18). Two independently developed 
ordinary differential equation (ODE) models describe a part of 
this core regulatory network by combining two double-negative 
feedback loops: one between SNAIL1 and miR-34 and one 
between ZEB1 and miR-200 (Figures 1A,B). These models were 
termed the cascading bistable switches (CBS) model [(25); later 
revised by Zhang et  al. (26)], and the ternary chimera switch 
(TCS) model (27). Both models confirm key experimental 
findings on EMT: first, the occurrence of three stable equilibria 
representing the epithelial, mesenchymal, and intermediate phe-
notype (referred to as E state, M state, and E/M state, respectively; 
see Figures 1C,D), thus allowing for a multistep EMT process. 
Second, the conditional irreversibility of a complete EMT due to 
permanent entrapment in the mesenchymal phenotype (26, 27).

The key differences between the competing models are (a) 
that the CBS model includes an autocrine TGFβ/ZEB/miR-200 
feedback loop and (b) that the TCS model includes self-activation 
of ZEB1 (Figures 1A,B). There is experimental evidence both for 
the autocrine feedback loop (28) and for a ZEB1 positive-feed-
back loop via splicing factor ESRP1 and stem cell marker CD44  
(29, 30). The two model assumptions result in qualitatively differ-
ent model predictions. First, although both models predict that a 
complete EMT occurs in two steps, they predict different roles for 
the SNAIL1/miR-34 and ZEB1/miR-200 modules. Specifically, in 
the CBS model, the SNAIL1/miR-34 module causes the transi-
tion from the epithelial (E) to the hybrid (E/M) state when the 
inducing signals are weak, whereas for strong signals, the ZEB1/
miR-200 module causes the subsequent transition from the E/M 
to the mesenchymal (M) state (25, 26). In the TCS model, the 
SNAIL1/miR-34 module acts as a noise-buffering integrator 
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FiGURe 1 | Models of the epithelial–mesenchymal transition core regulatory network and their behavior. (A,B) Network graphs of the cascading bistable switches 
(CBS) model by Tian et al. (25) and Zhang et al. (26) (A) and of the ternary chimera switch (TCS) model by Lu et al. (27) (B). (C,D) Bifurcation diagrams 
corresponding to the CBS model (C) and TCS model (D) [(B,D) based on Ref. (27); (A,C) based on Ref. (26)].
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(i.e., it makes the system less sensitive to noise in the inducing 
signal), and the ZEB1/miR-200 module acts as a ternary switch 
causing all of the E, E/M, and M states (27). Second, the models 
predict different mechanisms for the conditional irreversibility 
of a complete EMT. In the CBS model, the irreversibility of the 
transition from the E/M to the M state is caused by the autocrine 
TGFβ/ZEB/miR-200 feedback loop (Figure  1B), which is well 
established (28) yet not included in the TCS model (26). In the 
TCS model, the existence of such irreversibility depends on the 
strength of the inhibition of miR-34 by ZEB1 (27).

Zhang et al. (26) supported their CBS model with data from 
the human breast epithelial cell line MCF10A. mRNA and protein 
measurements of SNAIL1, ZEB1, E-cadherin, and Vimentin 
showed that SNAIL1 abundance is low in the E state and high in 
the E/M and M state, whereas ZEB1 abundance is high only for 
the M state. These results are consistent with the CBS model but 
not with the TCS model because the latter predicts intermedi-
ate ZEB1 levels in the hybrid state. Additional flow cytometry 
analysis indeed failed to show intermediate levels of ZEB1 for 
cells in the E and E/M states (26). However, since phenotypic 
heterogeneity can distort population-based measurements, it is 
hard to distinguish between the two core regulatory models based 
on the experimental evidence currently available. One way to 
resolve this is by the acquisition of single-cell, time-course meas-
urements. This could be achieved through time-lapse imaging 
of reporter cell lines exposed to various stimuli, thus providing 
detailed insight into the dynamics of EMT regulation.

extending the Core Regulatory Network
The core regulatory network models discussed above include  
only a limited number of regulatory components and even leave 
out well-established EMT-TFs. For example, PRRX1 cooperates 
with TWIST1 to induce EMT in a SNAIL-independent manner 
(31), and it is unclear how PRRX1 and TWIST1 connect to the 
proposed core regulatory network centered around SNAIL and 
ZEB. These network elements are thought to have different roles, 
i.e., PRRX1 and TWIST are strong mesenchymal inducers and 
weak epithelial repressors, whereas SNAIL and ZEB are strong epi-
thelial repressors and weak mesenchymal inducers (11). Another 
omission is that of EMT-TF paralogs, which can induce differ-
ent EMT programs. For example, SNAIL and its paralog SLUG 
(SNAI2) both have a mutually inhibiting loop with miR-200 (32) 
and can bind to the ZEB1 promoter; however, ZEB1 expression is 
controlled by SNAIL and not by SLUG (33). Additionally, TWIST2 
expression, and not TWIST1 expression, leads to upregulation 
of AKR1B1 that promotes basal-like breast cancer progression. 
AKR1B1 also activates NF-κB which in turn upregulates TWIST2, 
constituting an EMT-inducing positive-feedback loop (34). By 
contrast, TWIST1 needs SLUG mediation to induce EMT (35), 
further illustrating the complexity of EMT-TF interplay, and the 
need to include this in regulatory models.

Although the abovementioned core regulatory network 
models have provided insight into EMT regulation, their con-
tinued value depends on their ability to explain and predict the 
effect of newly added regulators. One class of such regulators 
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the extensions of the TCS model, this model is first simplified by considering SNAIL as input, which can be done because the tristability in that model is fully 
determined by the miR-200/ZEB module [(A,B) based on Ref. (39); (C–H) based on Ref. (43, 44)].
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has been termed “phenotypic stability factors” (PSFs) (36) 
because they can stabilize the cells in a particular (e.g., a hybrid) 
phenotype. These PSFs can be, but are not necessarily TFs. In 
this section, we will discuss extensions of the core regulatory 
network models with the PSFs OVOL, Grainyhead-like tran-
scription factor 2 (GRHL2), and miR-145.

OVOL
OVOL, a TF that regulates embryogenesis, has been reported as 
a master PSF since it suppresses several known EMT-TFs (36) 
and can drive MET (37). Moreover, its absence changes TGFβ 
from growth suppressor to EMT inducer (38). To elucidate the 
dynamics of OVOL in regulating EMT, Hong et al. (39) extended 
the CBS model with OVOL (Figure 2A). Because OVOL inhibits 
TGFβ (38), Hong and coworkers add an additional autocrine 
TGFβ/ZEB/OVOL feedback loop, strengthening the autocrine 

TGFβ signaling already present in the CBS model. An interest-
ing prediction from this extended model is the existence of two 
intermediate phenotypes (Figure 2B). These phenotypes could 
correspond to the “intermediate epithelial” and “intermediate 
mesenchymal” phenotypes identified in experiments by Huang 
et al. (40) and are consistent with a generalized view of EMT as a 
continuum where cells transition sequentially through multiple 
intermediate states (11, 41). Hong and coworkers speculate 
that the MCF10A cell line [used by Zhang et al. (26)] may be 
“intermediate epithelial” rather than epithelial. This would be 
consistent with the collective migration displayed by MCF10A 
cells, a feature associated with an intermediate phenotype (42). 
Moreover, because the cells hardly express mesenchymal mark-
ers, they are more likely “intermediate epithelial” than “inter-
mediate mesenchymal” (39). Overexpressing OVOL in MCF10A 
cells indeed induced an even more epithelial state, in which 
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E-cadherin expression was similar to the well-characterized 
epithelial MCF7 cell line (39). Another prediction by Hong 
et al.’s extended CBS model is that OVOL can induce a complete 
MET irrespective of high TGFβ levels. Finally, to determine the 
importance of the three mutual inhibition loops in the system 
(miR-34/SNAIL, miR-200/ZEB, and OVOL/ZEB), Hong et  al. 
varied the strength of these inhibitions. Although in their model 
all three loops enable and stabilize the intermediate phenotypes, 
the OVOL/ZEB loop provides the most pronounced stability, 
consistent with OVOLs proposed role as “master PSF” (36, 39).

The role of OVOL was also investigated by Jia et al. (43) who 
extended the TCS model with OVOL and applied this to prostate 
and breast cancer (Figure 2C). This extended model predicted that 
the presence of OVOL has various effects on the EMT dynamics 
(Figure 2D): first, a much higher inducing signal is required to 
initiate and complete EMT, which is due to the inhibition of ZEB1 
by OVOL. Second, the range of the inducing signal for which 
the hybrid E/M phenotype exists is larger. Third, the hybrid E/M 
phenotype becomes the only possible phenotype for a certain 
range of model parameters (43). In contrast to the CBS-OVOL 
model, OVOL could not always induce a complete MET in the 
TCS-OVOL model, which is likely caused by the absence of TGFβ 
inhibition by OVOL. Nevertheless, these findings together do 
confirm the suggested role of OVOL as “critical molecular brake 
on EMT” (38).

GRHL2 and miR-145
Jolly and coworkers also studied the role of two other proposed 
PSFs in extended TCS models: GRHL2, a well-known regulator 
of morphogenesis, and miR-145 (44). These factors couple to the 
miR-200/ZEB loop (Figures 2E,F) and the models predict they 
affect the EMT process in a way similar to OVOL (Figures 2G,H). 
Confirming these model predictions, they showed that knock-
down of GRHL2 in the lung adenocarcinoma cell line H1975, a 
stable hybrid E/M cell line, led to complete EMT. Additionally, 
analysis of the NCI-60 panel revealed that both OVOL and 
GRHL2 positively correlated with CDH3 (P-Cadherin), a pro-
posed marker of the hybrid E/M phenotype (45). High levels of 
OVOL, GRHL2, and CHD3 predict a poor prognosis in patient 
data across multiple tissue types, emphasizing the aggressiveness 
of the hybrid E/M phenotype (44).

Although most studies investigating EMT and MET focus on 
carcinomas that are of epithelial origin, there is also evidence of 
an “MET-like phenomenon” in sarcomas that arise from mesen-
chymal cells. MET in sarcomas likely involves the same factors as 
those controlling EMT in carcinomas (46). To test whether PSFs 
can also drive MET in sarcomas, Somarelli et al. investigated the 
effect of GRHL2 in RD (rhabdomyosarcoma) and 143B (osteosar-
coma) cells. Unexpectedly, GRHL2 overexpression did not have 
an effect on ZEB1 or E-cadherin levels in these cells. By contrast, 
miR-200 transfection led to a significant increase in E-cadherin, 
but without any effect on cell morphology. However, the combi-
nation of GRHL2 overexpression and miR-200 transfection had 
a synergistic effect on E-cadherin and led to a morphological 
change consistent with MET. Modification of the TCS model 
such that ZEB1 inhibited GRHL2 activity yielded model results 
consistent with the experimental data. This model-predicted 

inhibition of GRHL2 activity by ZEB1 could be caused by the 
ZEB1 cofactor BRG1: knockdown of BRG1 while GRHL2 was 
expressed led to a significant increase in E-cadherin (46).

Systems-Level Modeling of eMT
Although ODE models such as the core regulatory models 
presented above help in the quantitative understanding of the 
network, they require detailed knowledge of which regulators 
are connected and of the kinetic parameters that govern those 
interactions. This is problematic for system-level models of EMT 
that contain a large number of regulators implicated in EMT, 
including the connection to upstream and downstream signal-
ing events. To deal with these issues, researchers have employed 
several computational approaches: first, by studying classes of 
ODE models rather than single ODE models. Second, by studying 
ODE models with very different parameter combinations yet with 
similar dynamic behavior. Third, by studying Boolean models 
which need no parameter estimates. Below we discuss how these 
approaches have been applied to EMT.

Classes of ODE Models
The ERK and Wnt pathways induce EMT via activation of SNAIL 
and SLUG and are thought to be highly connected via coupled 
feedback loops (CFLs) (47). To investigate the functional roles 
in regulating EMT, Shin et al. (47) combined established, basic 
ODE models for the ERK and Wnt pathway using six established 
CFLs as connections between these pathway models. These 
connections can be turned ON (included) and OFF (excluded), 
which resulted in 26 = 64 different ODE models (for example, in 
model F1 F2 F4, CFLs 1, 2, and 4 are ON and CFLs 3, 5, and 6 are 
OFF). Since CFL F6 had only a minor effect on the response of 
the system, it was excluded from the analysis, so only 32 models 
were considered further. The behavior of these models was greatly 
affected by the exact CFL combination employed, and this shows 
that combination of a limited number of components can encode 
“biological specificity” (47), similar to Hanahan and Weinberg’s 
notion of signaling pathways as “electronic integrated circuits” 
(48). Simulations with these models predicted an important role 
for Raf kinase inhibiting protein (RKIP) in shaping the dynam-
ics of ERK activity and E-cadherin expression in response to 
activation of ERK and/or Wnt signaling. This result may explain 
why RKIP expression is inversely related to metastasis in many 
cancers (47).

The view of gene regulatory networks as “integrated circuits” is 
further illustrated by identification of basic building blocks with 
specific functional roles, the so-called “network motifs” (49). The 
two-component miRNA-TF modules of the EMT core regulatory 
network discussed earlier represent examples of such network 
motifs and have been studied in-depth to determine their func-
tional role (50, 51). Recently, this approach of determining the 
functional role of a circuit from its topology has been applied to 
larger regulatory networks (52). This new computational method 
of random circuit perturbation suggested that the topology rather 
than detailed parameter knowledge of a network determines its 
dynamics. By deriving a 22-component EMT network from 
literature and interaction databases, their approach predicted 
four possible network states: epithelial, intermediate epithelial, 
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intermediate mesenchymal, and mesenchymal. Additionally, 
their analysis suggested that SNAIL and SLUG expression is 
high in the intermediate epithelial state, whereas ZEB expression 
is high in both intermediate and full mesenchymal states (52). 
However, the most probable function of a circuit topology may 
not be its true function.

Parameter Combinations in ODE Models
Another approach to deal with unknown parameters in ODE 
models of gene regulatory networks is to exploit the “sloppiness” 
of a system. Sloppiness refers to the observation that predictions 
from multi-parameter models often mainly depend on a few 
combinations of key parameters (53). In fact, consideration of a 
“core regulatory network” for EMT presupposes such sloppiness 
in EMT regulation. Recently, Gould et  al. applied the “sloppy” 
Pareto optimal ensemble technique (POET) to study TGFβ-
induced EMT in the presence and absence of vascular endothelial 
growth factor A (VEGF-A) (54). Their literature-derived EMT 
network consists of 97 nodes and 169 edges and has 251 unknown 
model parameters. Forty-one data sets from DLD1 colon carci-
noma, MDCKII, and A375 melanoma cells were used to estimate 
these parameters. Using these data sets to fit a single model would 
result in a highly uncertain model, especially because the data sets 
are obtained from different cell lines. Instead, POETs estimate 
parameters by generating an ensemble (i.e., population) of prob-
able signaling models that can then together be used to predict 
the system’s behavior [for details, see Ref. (55)].

It has been suggested that such an ensemble can be used to 
describe heterogeneous populations (55), i.e., by considering 
that the variability in the behavior of individual cells stems 
from parameter variability as estimated within the ensemble. 
Gould et  al. tested this hypothesis by measuring the response 
of E-cadherin and vimentin to stimulation with TGFβ and/or 
VEGF-A within their model ensemble (approximately 1,400 
models). After TGFβ stimulation, the majority (>80%) of the 
models showed the expected switch from the epithelial to the 
mesenchymal phenotype. Surprisingly, concurrent VEGF-A and 
TGFβ stimulation resulted in a large subset of models achieving 
a hybrid phenotype with simultaneous E-cadherin and vimentin 
expression. This subset of models displayed upregulated NFATc 
activity and inhibition of NFATc in these models “restored” full 
EMT. Experimental stimulation with VEGF-A and TGFβ in 
MCF10A and DLD1 cell lines confirmed this prediction, i.e., 
the absence of an NFATc inhibitor led to high levels of both 
E-cadherin and vimentin (hybrid phenotype), and its presence 
led to a full EMT (54).

Boolean Models
A completely parameter-free approach is Boolean modeling. In 
Boolean models, genes or other regulators are either ON or OFF, 
and Boolean models aim to give a qualitative description of the 
system (56). One such Boolean model of EMT was developed 
by Steinway et  al. (57). Based on an extensive literature study, 
they constructed a TGFβ-driven EMT network in the context 
of hepatocellular carcinoma (HCC) with 70 nodes and 135 
edges (Figure 3A). This model was able to describe the known 
TGFβ-induced EMT processes (Figure  3B): TGFβ activates 

the canonical (SMAD) and non-canonical MAPK and AKT 
pathways, leading to induction of EMT-TFs and ultimately to 
E-cadherin loss (which is how the occurrence of EMT was defined 
in this model). Additionally, this model predicted that continued 
activation of TGFβ activates both the Wnt and Sonic hedgehog 
(SHH) pathways. This prediction was confirmed in the murine 
epithelial HCC P2E cell line and in the human epithelial-like 
HCC cell lines Huh7 and PLC/PRF/5: upon exposure to TGFβ, 
GLI2 mRNA (indicative of SHH signaling) and AXIN2 protein 
levels (indicative of Wnt signaling) were both increased to similar 
levels as in related mesenchymal cell lines (57).

In a follow-up study, Steinway et al. used their model to predict 
how knocking out various genes would inhibit TGFβ-induced 
EMT (27, 58). For single-gene knockouts, only manipulation 
of direct E-cadherin repressors suppressed EMT. For double 
knockouts involving non-E-cadherin repressors, six two-node 
combinations fully suppressed EMT (i.e., EMT was OFF in all 
simulations) and three combinations partly suppressed EMT 
(i.e., EMT was still ON in some simulations). Interestingly, these 
nine two-node combinations all involved SMAD as one of the 
nodes. An experimental test of this prediction by monitoring 
E-cadherin expression and migration behavior upon siRNA 
knockdown of these combinations in the human HCC cell line 
Huh7 revealed that almost all predicted combinations indeed 
inhibited EMT.

Given the important role of SMAD, Steinway et  al. studied 
the attractor landscape of the EMT network after in silico SMAD 
inhibition. Interestingly, in addition to the mesenchymal steady 
state observed in the unperturbed model, they found two new 
stable states: an intermediate epithelial and an intermediate 
mesenchymal state. The intermediate epithelial state still had 
epithelial properties such as E-cadherin expression, membrane-
localized β-catenin, and inactive SHH, AKT, and Wnt signaling, 
but also included mesenchymal features such as activated MEK, 
ERK, and SNAIL. The intermediate mesenchymal state shared this 
mix of epithelial and mesenchymal features, yet E-cadherin was 
not expressed, and there was no membrane localized β-catenin.

Steady-state analysis of other single node perturbations 
of the EMT network revealed a “putative spectrum” of EMT 
phenotypes. One such perturbation is knockout of ZEB, which 
induced hybrid steady states (58). Comparing this finding to the 
earlier discussed core regulatory network ODE models (TCS 
and CBS) at first sight suggests that this is only consistent with 
the CBS model because the TCS model predicts an epithelial 
phenotype upon ZEB knockdown. However, it is an unresolved 
question how the hybrid phenotypes in Boolean models relate 
to those in ODE models because in the latter case three different 
levels of, e.g., E-cadherin can be achieved (low, intermediate, and 
high). Moreover, the TCS model predicts a hybrid phenotype 
with intermediate ZEB expression (27). Such intermediate states 
can thus by definition not be achieved with a two-state Boolean 
model. An interesting question is therefore whether the use of 
many-state logic models (59) or qualitative ODE models (60) 
can reconcile the findings of these models. Another unresolved 
question concerns the robustness of the results with respect to 
the EMT regulators included in Steinway’s model. Although 
the number of regulators substantially exceeds that of the core 
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regulatory network presented earlier, the Boolean model neither 
includes the identified PSFs OVOL and GRHL2 nor several 
miRNA families (e.g., miR34) which have also been implicated 
in EMT (61). Finally, since the model includes multiple signaling 
pathways, it would be interesting to test if the model can also 
reproduce EMT induction by other pathways, such as the EGFR 
pathway (62).

eMT iN ReLATiON TO OTHeR TUMOR 
CHARACTeRiSTiCS

Despite considerable experimental and computational mod-
eling effort, the role of EMT in cancer is still not fully under-
stood (11). In particular, the connection of EMT to various 
properties of cancer cells such as stemness, metabolism, and 
metastasis (Figure 4) is heavily debated. In many studies, EMT 
is considered an all-or-nothing event, whereas partial rather 
than full EMT may be linked to these properties (42). In this 
section, we will discuss modeling approaches that have been 
applied to obtain a better understanding of the link between 
EMT and cancer cell properties related to cancer progression.

eMT and Stemness
The cancer stem cell (CSC) hypothesis states that only the small 
portion of tumor cells that has stem cell properties drives tumor 
growth in the long run because differentiated cells have a limited 
growth potential. The observation that immortalized human 
mammary epithelial cell (HMLE) populations undergoing EMT 
start expressing stem cell markers was reported independently by 
two groups in 2008 (63, 64). There are two potential explanations 
for these observations: first, EMT allows differentiated cells to 
de-differentiate into CSCs. Second, EMT leads to upregulation 
of self-renewal of preexisting CSCs. To distinguish between 
these hypotheses, Turner and Kohandel developed compartment 
models for both scenarios to study which best fitted the available 
experimental data. Because of the limited resolution and limited 

number of data points, Turner and Kohandel could not distin-
guish between the two scenarios but offered testable predictions 
that would distinguish the two (65).

The model by Turner and Kohandel (65) did not explicitly 
include EMT but merely its assumed effects (either dediffer-
entiation or upregulated self-renewal). By contrast, Jolly et  al. 
attempted to elucidate the EMT-stemness interplay by combin-
ing the decision-making modules of stemness (66) and EMT 
(27) into a single model (67). They conclude that the position 
of the “stemness window” on the “EMT axis” (i.e., which EMT 
phenotypes allow cells to gain stemness) is not universal but 
can be fine-tuned by PSFs such as OVOL and GRHL2 (44). An 
important observation from the model is that PSFs such as OVOL 
can preclude association of stemness with the mesenchymal 
phenotype and can associate stemness exclusively to the hybrid 
E/M phenotype (67).

In a recent study, Sehl et al. developed a stochastic population 
model of the breast cancer stem cell (BCSC) niche to investigate 
CSC-eradication strategies for use in the clinic (68). Apart from 
the stem cell environment, they also took the existence of different 
CSC states into account, i.e., an epithelial BCSC that is prolifera-
tive and marked by ALDH expression, and a mesenchymal BCSC 
that is quiescent yet capable of tissue invasion and metastasis, 
marked by CD44+/CD24− surface marker expression. Next, they 
studied the effect of inhibition of various environmental EMT-
inducing (e.g., IL-6 and TGFβ) and MET-inducing (e.g., BMPs, 
HER2, and miR-93) signals on tumor composition in the model. 
Inhibition of IL-6 caused an increase in the number of epithelial 
BCSCs because of their proliferative nature. Moreover, inhibition 
of BMP and miR-93 caused a decrease in total BCSCs yet also a 
high proportion of invasive mesenchymal BCSCs. Combinatorial 
treatment in the model predicted that concurrent inhibition of 
HER2 and IL-6 would strongly reduce the total number of BCSCs, 
which is in agreement with earlier experimental findings. This 
treatment will be further examined in a planned clinical trial (68). 
An interesting extension of this model would be the inclusion of 
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a hybrid E/M BCSC phenotype given the potential association of 
stemness with hybrid EMT.

These studies taken together, and in particular the potential 
association of stemness with hybrid EMT, may explain observa-
tions of stemness not being linked to EMT (5, 69). However, it 
would be useful to study additional regulators in such models, 
which will help to elucidate the difference in tumor-initiating 
capacity following EMT induction by different EMT-TFs, such as 
SLUG and SNAIL (33), and PRRX1 (31).

eMT and Tumor Metabolism
Another EMT-associated hallmark of cancer is altered tumor 
metabolism, of which the Warburg effect is the most well-
known example. The increased glucose uptake of many cancer 
cells compared to normal cells has been extensively studied in 
the context of proliferation, but there is increasing evidence for 
its role in cancer cell migration (70) and EMT (71). Examples 
include lactate-induced EMT via TGFβ (72, 73), Twist-induced 
metabolic changes through the PI3K/AKT pathway (74), and 
involvement of key EMT suppressor miR-200 (75), either by 
miR-200 suppression upon the loss of fumarate hydratase (76) or 
by miR200c-SIRT2 regulation of metabolic reprogramming (77). 
These examples illustrate the complexity of the interplay between 
EMT and metabolic reprogramming, which is why gaining new 
biological insight from the vast amount of omics data is a major 
challenge.

Computational approaches can help in integrating these 
omics data to unravel the relation between EMT and metabo-
lism. In a genome-scale metabolic model, a metabolic network 
is constructed of all biochemical transformations of the cell or 
organism of interest. This metabolic network is represented by a 
stoichiometric matrix, which contains the coefficients of meta-
bolic reactions, supplemented by a mapping of reactions to the 
involved genes and proteins. These models can be analyzed using 
constraint-based modeling and flux balance analysis (78, 79).

Choudhary et al. (80) used a genome-scale metabolic model to 
study the metabolic cross talk as a result of dysregulation of the 
EGFR pathway during EMT. A stoichiometric model of the EGFR 
signaling network was generated from the EGFR pathway map in 
the Reactome database (81). To generate EMT-specific models, 
Choudhary and coworkers constrained the stoichiometric model 
with microarray gene expression data of the human breast epithe-
lial cell line D492 and its mesenchymal-like counterpart D492M, 
resulting in a separate epithelial and mesenchymal model. Flux 
balance analysis predicted decreased signaling in the AKT 
pathway in the mesenchymal cell line, and since AKT activation 
increases glucose uptake and glycolysis (74), this suggested an 
EMT-related decrease in glycolysis. Measurements of glucose 
uptake and lactate secretion in vitro confirmed this decrease in 
glycolysis (80). In addition, they identified genes responsible 
for EMT suppression or reversion in D492 cells by studying 
how the flux through the “mesenchymal” model could be made 
more similar to the flux in the “epithelial” model, illustrating the 
model’s usefulness in understanding both cancer metabolism and 
EMT, and their combination (80).

Interestingly, these results are cell line specific: constraining 
the stoichiometric model with gene expression data from HMLE, 

MCF7, and MCF10A cells and their mesenchymal counterparts 
(i.e., after EMT induction), and repeating the flux-based analysis 
predicted that mesenchymal HMLE cells had less signaling in the 
AKT pathway compared to their epithelial counterpart, such as 
the D492 cells. However, the mesenchymal MCF7 and MCF10A 
cells had increased AKT signaling, which is in agreement with 
the increased glucose uptake and glycolysis reported in earlier 
studies (74, 82).

eMT and Migration, invasion, and 
Metastasis
Enhanced migratory and invasive capacities are well-known 
properties of mesenchymal cells and therefore a key aspect 
of EMT. By secreting matrix metalloproteinases (MMPs), 
mesenchymal cells remodel and degrade the ECM and migrate 
as “path generators.” By contrast, amoeboid cells, another 
individually migrating phenotype, do not secrete MMPs but 
have a high morphological plasticity, allowing them to squeeze 
into ECM gaps, acting as “path finders” (83). Tumor cells can 
switch between these phenotypes in a process known as the 
amoeboid–mesenchymal transition (AMT) and its reverse 
mesenchymal–amoeboid transition (MAT). First, Huang et  al. 
identified and modeled the GTPase-based Rac/Rho circuit as a 
three-way switch of AMT, allowing for partial AMT with a hybrid 
A/M phenotype (83). Next, they combined this AMT decision 
model with their previously developed EMT decision model (27) 
to offer a more detailed understanding of the observed migratory 
phenotypes and the transitions between them (84). One possible 
transition concerns the collective (hybrid E/M) to amoeboid 
transition (CAT) and its reverse ACT, observed in melanoma 
(85) and fibrosarcoma (86) cells. In general, the five phenotypes  
(E, E/M, A, A/M, and M) and the three types of transitions between 
them (EMT/MET, AMT/MAT, and CAT/ACT) illustrate the rich 
plasticity in migratory phenotypes tumor cells can employ during 
metastasis (84). For a better understanding of the dynamics of 
these transitions, specifically the spatiotemporal interplay of the 
proposed regulatory model with both cell shape and migration, 
the model could be combined with the model by Holmes et al. 
(87), who showed how the combination of intracellular Rac/Rho 
and ECM signaling regulates lamellipodial dynamics.

Although the increased migratory and invasive capacity of the 
mesenchymal phenotype suggest a role for EMT in metastasis 
(2), the prerequisites for metastasis are not yet fully understood 
regarding the role of full or partial EMT (11). This lack of under-
standing limits the applicability of computational modeling 
to the use of phenomenological models. One such model was 
developed by Cohen et  al. (88), who constructed an extensive, 
literature-derived Boolean model to predict metastasis. The out-
put of this model consists of the broad, descriptive phenomena 
“Cell Cycle Arrest,” “Apoptosis,” and “Metastasis.” “Metastasis” 
was considered to depend on the states of “EMT,” “Invasion,” 
and “Migration,” each of which connects to the gene regulatory 
network part of the model.

Using gain-of-function (GoF) and loss-of-function (LoF) per-
turbations (forcing genes in the model to be either ON or OFF), 
the model could reproduce the phenotypic results of various 
published mutations (88). Additionally, Cohen and coworkers 
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explored the model by testing single and double permutations 
and their influence on the occurrence of metastasis. One double 
mutation that always resulted in metastasis in the model was the 
synergistic notch intracellular domain GoF and p53 LoF (88), 
which indeed led to metastasis in experimental work (89). An 
unanswered question is how the results of the model depend on 
the assumption that EMT is required for metastasis, as that may 
be context dependent (6–10). Therefore, the true role of EMT in 
metastasis remains a topic for further research, especially because 
some parts of the metastatic cascade, such as intravasation, have 
received little attention (11).

eMT and Tumor Cell interactions
Because pathogenic EMT, and cancer in general, can be viewed 
as a disease of tissue development, we must ultimately also take 
into account cellular interactions and interactions with the 
environment (90, 91). This can be done by employing hybrid or 
multiscale models that include both cell-autonomous processes 
(often an ODE or stochastic model) and spatial interactions [for 
a general review of spatial models, see Ref. (92)]. These models 
can be useful to help understand spatial aspects of EMT, such as 
collective migration or tumor budding (the invasion of malig-
nant cells into the supporting stroma) (93), and spatiotemporal 
regulation of EMT taking into account different conditions in the 
primary tumor and at distant sites (94).

An example of a spatial model of EMT, albeit not on its role 
in cancer but its role in cardiac cushion formation during heart 
development (95) employed the Cellular Potts Model. This is a 
lattice-based model where each cell is represented by a collection 
of lattice sites (96, 97). This type of model is driven by differential 
adhesion properties between the epithelial and mesenchymal 
cells and the ECM, i.e., the fibrous structures within tissues that 
provide support to cells and that contain various growth factors. 
EMT was simulated by each cell having a constant probability of 
transitioning from the epithelial to the mesenchymal phenotype. 
Despite the simplicity of the model, it was able to produce struc-
tures resembling cardiac cushions.

Other studies have looked into the expected impact of signal-
ing processes between neighboring cells on pattern formation. 
One example of such a multiscale model is the individual-based 
model by Ramis-Conde et al. (98), who showed how E-cadherin–
β-catenin dynamics could lead to spatial configuration changes 
in epithelial layers. In their model, reorganization is driven by 
free β-catenin levels in the nucleus: a cell with high nuclear free 
β-catenin is prone to start migrating, after which it exerts physical 
forces on the E-cadherin–β-catenin bonds with neighboring cells. 
When these bonds break, the β-catenin in the neighboring cells 
used in the intercellular bonds becomes free β-catenin and trans-
locates to the nucleus. Repetition of this process sends a “wave” 
of detachment through the epithelial cell layer (98).

Another example of a multiscale model of EMT is the exten-
sion of the TCS model with Notch signaling by Boareto et al. (99). 
Notch signaling can cause neighboring cells to adopt a different 
fate (when the Notch receptor receives signals from the Delta 
ligand expressed in neighboring cells) or a similar fate (when the 
Notch receptor receives signals from the Jagged ligand). Because 
the Notch and EMT circuits are highly connected, Notch signaling 

can cause neighboring cells to adopt a different or similar EMT 
phenotype. Boareto and coworkers employed a hexagonal-lattice 
model in which each lattice site is a single cell and showed that 
Notch-Jagged signaling could act as a PSF because it induces 
neighbors to adopt the same phenotype. They showed that both 
types of Notch signaling could induce EMT, yet Notch-Jagged 
signaling allows for the formation of clusters of hybrid E/M cells. 
Because these CTC clusters have a high metastatic potential (15), 
this work predicts that Jagged might be an interesting therapeutic 
target to mitigate this potential (99). However, it is unknown if 
Notch-Jagged signaling indeed has a role in the formation and 
maintenance of CTC clusters.

Spatial simulations can also be employed at the scale of an 
entire tumor. Such an approach was employed by Waclaw et al. 
(100) to investigate how tumor cell dispersal assisted by EMT 
and cell turnover affect lesion growth and regrowth after targeted 
therapy. The cells in this model replicated stochastically with a 
probability proportional to the empty space around them. After 
targeted therapy, which causes sensitive cells in the lesion to die, 
the resistant cells could disperse to the area previously occupied 
by the sensitive cells, thereby accelerating regrowth of the lesion 
(100). Although EMT was included in the model only implicitly 
as a source for the short-range dispersal, these simulations sug-
gest that EMT may play a role not only in metastasis but also in 
tumor growth and regrowth.

In summary, these recent computational EMT models 
show how including spatial aspects into simulations helps in 
the understanding of tumor progression. In most cases, the 
spatial dimension was limited to cell–cell interactions within a 
“monoculture” of tumor cells. An open question is how tumor 
cells interact with other recruited cells within the tumor micro-
environment (90). These interactions are critical in invasion into 
the ECM and immune cell activity. For example, macrophages 
can take up half the mass of breast tumors, and their presence at 
the tumor site correlates with poor prognosis (101). Knútsdóttir 
et al. (102, 103) used a three-dimensional individual cell-based 
model to show how EGF/CSF-1 paracrine signaling causes 
tumor cells and macrophages to comigrate (103), which leads to 
macrophage-assisted invasion and intravasation (104). Because 
CCL18 from tumor-associated macrophages (TAMs) can induce 
EMT in breast cancer cells, and mesenchymal breast cancer cells 
can activate macrophages to a TAM-like phenotype by CSF2 
(105), it would be important to include the effect of EMT on 
the macrophage-assisted migration of tumor cells within similar 
spatial models.

PeRSPeCTive

Epithelial–mesenchymal transition has been implicated to play 
a role in various changes in tumor characteristics, and some 
of these changes have received very little modeling attention 
(Figure 4). One of these is the evasion of immune destruction, 
which is considered a hallmark of cancer (90). An indication 
that this hallmark is related to EMT is the role of TGFβ, which 
is not only a potent EMT inducer but also a critical regulator of 
T-cell development and homeostasis (106). Recent reports have 
strengthened this relation by showing that hypoxia-induced 
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EMT is linked to immune resistance (107), and that miR-200 
and ZEB1, both part of the EMT core regulatory network, are 
involved in upregulation of the immune checkpoint programmed 
death ligand-1 (108). Apart from Tripathi et  al. (109), who 
developed an ODE model to study the involvement of miR-200 
in immunoproteasome regulation, the relation between EMT 
and immune evasion has received no modeling attention. Future 
computational modeling of this relation might prove useful to 
elucidate underlying mechanisms, e.g., with respect to optimiza-
tion of immune checkpoint therapies. Another EMT-related 
tumor characteristic is resistance to chemotherapy. Radiation 
and chemotherapy can cause a phenotypic transition of cells to 
a resistant state (110, 111) while undergoing a partial EMT (42). 
Moreover, suppression of EMT in pancreatic (6) and lung cancer 
(7) (re)sensitizes cells to chemotherapy. Unraveling the underly-
ing mechanisms of EMT-related chemoresistance awaits future 
experimental and computational studies.

Over the last decade, computational biology has become 
increasingly recognized as a valuable tool in the biologists’ tool-
box. As discussed in this review, its interplay with experimental 
biology has advanced our understanding of the role of EMT in 
tumor progression in a synergistic fashion. Given the ongoing 
increase in publically available, high-quality experimental data 

sets as well as in computational tools, such multidisciplinary 
approaches are key to achieve a quantitative understanding of 
cancer biology. Thus, as foreseen by Hanahan and Weinberg 
(48), cancer research will indeed become a logical science, in 
which the complexities of the disease, such as the role of EMT, 
are understood in terms of their underlying principles.
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