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Deep genetic studies revealed that phosphatase and tensin homolog (PTEN) muta-
tions or loss of expression are not early events in cancer development but characterize 
tumor progression and invasion. Loss of PTEN function causes a full activation of the 
prosurvival phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway, but the treatment 
with specific inhibitors of PI3K/AKT/mTOR did not produce the expected results. One 
of the alternative targets of PTEN is the focal adhesion kinase (FAK) kinase, mainly 
involved in the control of cancer cell spread. The connection between PTEN and FAK 
has been demonstrated in different tumor types, with reduced PTEN activity often cor-
related with increased expression and phosphorylation of FAK. FAK inhibition may thus 
represent a promising strategy, and some clinical trials are testing FAK inhibitors alone 
or combined with other agents in a number of solid tumors. However, only few pre-
clinical and clinical data described the effects of the combination of PI3K/AKT/mTOR 
and FAK inhibitors. Increasing knowledge on the PTEN/FAK connection could confirm 
PTEN as a good prognostic marker for a combination strategy based on concomitant 
inhibition of PI3K/AKT and FAK signaling, in advanced metastatic malignancies with 
altered or reduced PTEN expression.

Keywords: phosphatase and tensin homolog, focal adhesion kinase, targeted therapy, kinase, drug combination

inTRODUCTiOn

The development of new approaches directed to evaluate molecular alterations in cancer cells rep-
resents a key goal to better define the intrinsic characteristics of tumors and to explore molecular 
targets that are commonly deregulated in cancer cells. Novel insights regarding the second most 
commonly mutated tumor suppressor gene phosphatase and tensin homolog (PTEN) have been 
reported: loss of PTEN has been documented in a variety of solid tumors, including lung (1), 
prostate (2), colorectal (3), and brain (4) cancers. Typically, loss of function of PTEN causes aber-
rant activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway, associated with increased 
malignant transformation and progression.

Recently, a series of new targets have been associated with PTEN phosphatase activity. PTEN is 
indeed a critical protein in the intracellular compartment, and controls, by its phosphatase activity, 
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several important proteins, including signal transducers and  
activators of transcription (STAT) (5), Jun N-terminal kinase 
(JNK) (6), extracellular signal regulated kinase (ERK1/2) (7), 
AKT (8), and focal adhesion kinase (FAK) (9).

In this review, we will focus on the correlation between PTEN 
and one of its kinase targets, FAK.

ReGULATiOn AnD ROLe OF PTen

Phosphatase and tensin homolog is located on chromosome 10q23 
and encodes for a lipid phosphatase that converts PtdIns(3,4,5)
P3 to PtdIns(4,5)P2 (10), by inhibiting 3-phosphoinositide-
dependent kinase (PDK1) and consequently protein kinase B 
(AKT) activation. Moreover, PTEN exerts a protein phosphatase 
activity toward different protein substrates (5–9). PTEN is a 
member of the type-I protein tyrosine phosphatase family, com-
posed by 403 amino acids organized in five functional domains: 
a PtdIns (4,5)P2 binding domain, a phosphatase domain,  
a C2 domain involved in targeting protein to cell membrane, a 
carboxyterminal region and a protein interaction (PDZ) domain 
(11). PTEN loss causes accumulation of PtdIns (3,4,5)P3, with 
recruitment and activation of AKT mediated by PDK1; PDK1 
phosphorylates AKT at the critical residue Thr308 (12), whereas 
the Ser473 residue of AKT is a substrate of mammalian target  
of rapamycin 2 complex (mTORC2) (13).

Phosphatase and tensin homolog function can be compro-
mised by different mechanisms including genetic alterations, 
transcriptional repression, microRNA regulation, promoter 
hypermethylation, and post-translational modifications.

Germ line mutations are present in 60–80% of patients with 
hamartoma tumor syndromes and Cowden disease (14). Somatic 
alterations, such as mutations, insertions and deletions have been 
found throughout the full gene and are not specific for a peculiar 
cancer type. PTEN inactivation is also a consequence of promoter 
hypermethylation (15) and reduction of transcription: Sal- 
like protein 4 and SNAIL can bind PTEN promoter mediating  
its repression through the interaction with the Mi-2/NuRD com-
plex (16), and competition with p53 (17), respectively.

At post-transcriptional level, PTEN is downregulated by small 
non-coding RNAs. Some miRNAs (a class of 20–25 nucleotide 
non-coding RNA) that partially match with the 3′UTR region 
of PTEN mRNA are able to abrogate PTEN expression: in par-
ticular, mir-21, mir-22, mir-25A, and mir-200 family member 
(miR-200a and miR-200b) stably reduce PTEN protein levels 
(18–20). More recently, miR-93 has also been reported to reduce 
PTEN expression in non-small cell lung cancer (NSCLC) by 
directly targeting PTEN mRNA (21).

Finally, PTEN can be regulated at post-translational level. 
PTEN phosphorylation at Ser380, Ser385, Thr382, and Thr383 
reduces its phosphatase activity by moving PTEN from the 
intracellular membrane level to the cytosol (22, 23). This event 
prevents its ability to interact with PtdIns(3,4,5)P3, which is 
located to the internal side of the plasma membrane. Reduction 
of PTEN activity is also observed after phosphorylation at 
residues Ser362 and Thr366 by glycogen synthase kinase 3-beta 
(GSK3-β), an enzyme activated by constitutive stimulation of the 
PI3K/AKT pathway (24).

Inactivation or loss of PTEN expression has been reported 
in different solid tumors including NSCLC, breast, colorectal, 
endometrial, and ovarian cancers (Table 1): in NSCLCs, altered 
PTEN expression, has been detected in 8.2–59% and in 2.1–46% 
of squamous cell lung cancer (SCC, squamous hystotype) and 
adenocarcinoma (AD) hystotype, respectively (25). Breast 
cancer tissues show significant reduction of PTEN expression 
compared to non-tumor tissues, and a meta-analysis (26) 
reported a positive correlation between PTEN loss and later 
TNM stage, evidencing that PTEN loss is not an early event, but 
it is associated with tumor progression. Patients with colorectal 
cancer display increasing inactivation of PTEN expression, as 
a consequence of promoter hypermethylation, decreased DNA 
copy number, and a general reduction of protein expression.  
All these alterations are associated with increased stage of 
disease; 20% of PTEN loss has been detected in stage I, while 
up to 58.9% has been found in stage IV (27). In prostate cancer, 
a high frequency of PTEN loss (between 16 and 41% of tumor 
samples) (2) has been described, being homozygous deletion 
the most frequent event. The clinical trials considering PTEN 
alteration among the inclusion criteria in different solid tumors 
are reported in Table 1.

As a regulator of the PI3K-AKT-mTOR pathway, PTEN 
controls many intracellular processes promoting cancer growth, 
cell metabolism, angiogenesis and cell motility (25, 35). In par-
ticular, it regulates the plasma membrane expression of GLUT1 
either by its lipidic phosphatase activity on PtdIns(3,4,5)
P3 or by direct dephosphorylation of AKT (8). In addition, 
PTEN decreases the levels of pyruvate kinase isozyme M2 and 
6-phosphofructo-1-kinase/fructose-2,6-biphosphatase isoform 
3, both involved in the glycolytic process, thus exerting an anti-
Warburg effect (36).

Loss of PTEN also influences cell polarization and motil-
ity, e.g., increased PtdIns (4,5)P2 level in normal cells attracts 
CDC42 to the apical membrane establishing cellular polariza-
tion after binding with PAR-6/aPKC complex (37). Loss of 
PTEN prevents the acquisition of this epithelial characteristic, 
increasing the possibility of cells to undergo epithelial to mes-
enchymal transition (EMT) (38). Similar to the effects obtained 
by complete loss of PTEN, two point inactivating mutations 
(C124S and G129E) cause acquisition of a highly malignant 
phenotype, whereas single allelic loss produces an intermediate 
effect (39).

Recently, the loss of PTEN has been described as a mechanism 
of resistance to immune checkpoint blockade in solid tumors.  
In melanoma models the loss of PTEN induces immunoresist-
ance prompting VEGF and other immunosuppressive cytokines 
expression (40); similarly, PTEN-null prostate tumors suppress 
antitumor immune response by activating the JAK2-STAT3 
pathway (41). The correlation between PTEN-loss and immuno-
therapy resistance has been also confirmed by evaluating PTEN 
expression in patients with metastatic melanoma treated with 
anti–PD-1 antibodies: PTEN expression is generally related to 
a greater reduction of tumor size in respect to PTEN-negative 
tumors (40). Accordingly, in a case report of uterine leiomyo-
sarcoma, immunotherapy resistance is associated with biallelic 
PTEN-loss (42).
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TAbLe 1 | Clinical trials with PTEN alteration as inclusion criteria (http://clinicaltrials.gov/).

Agent Target in combination with Tumors Phase Reference

GSK2636771

PI3K-β

– AST I/IIa NCT01458067
Paclitaxel Gastric I/II NCT02615730
Enzalutamide (AR inhibitor) Prostate I NCT02215096

AZD8186 Abiraterone (CYP 17 inhibitor) Prostate I NCT01884285
AZD2014 (mTOR inhibitor) SCC

Breast

BKM-120

Pan-PI3K

Lapatinib (dual EGFR/HER2 inhibitor) Breast I/II NCT01589861
Carboplatin, paclitaxel AST I (28)
Abiraterone (CYP17 inhibitor), prednisone Prostate I NCT01741753

– Thyroid II NCT01830504
Paclitaxel Breast II/III NCT01572727

– SCC II (29)
– Endometrial II NCT01550380

RAD001 Lung I NCT01470209

MK2206

AKT

– Ovarian, peritoneal II NCT01283035
– Breast II NCT01277757
– Colorectal II NCT01802320

GDC-0068 5-Fluorouracil, leucovorin, oxaliplatin Gastric II NCT01896531
Paclitaxel Breast II NCT02162719

AZD5363 – AST I NCT01226316

ARQ751

Pan-AKT
PI3K/mTOR
mTORC1

– AST I NCT02761694
BEZ235 – Perivascular epithelioid cell tumors II NCT01690871
RAD001 – AST II NCT02449538

Pazopanib (PAN-TKI) AST I NCT01430572
Paclitaxel Breast II (30)
5-Fluorouracil, epirubicin, cyclophosphamide (FEC)

CCI-779 – Prostate I NCT00235794

Erlotinib EGFR – Glioblastoma, astrocytoma I/II (31)
Panitumumab EGFR/HER-2 Carboplatin, gemcitabine Breast II (32)
Trastuzumab HER-2 RAD001 Breast I/II (33)
Sorafenib PAN-TKI RAD001 Thyroid II NCT01141309
INC-280 c-MET BKM-120 Glioblastoma II NCT01870726
ASN003 B-Raf – AST I NCT02961283
GDC-0973 MEK GDC-0068 AST I (34)
BMN 673 PARP – Endometrial II NCT02127151
MK-4827 – Endometrial II NCT03016338

PAN-TKI, multikinase inhibitor; AST, advanced solid tumor; SCC, squamous cell lung cancer.
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ReGULATiOn AnD ROLe OF FAK 
eXPReSSiOn

Focal adhesion kinase is a key regulator of the focal adhesion 
complex, which controls various intracellular processes such as 
cell motility (43), invasion (44) cell growth, and survival (45, 46), 
by regulating signals from integrin-mediated cell–extracellular 
matrix (ECM) connection (47) and from membrane receptors 
with kinase activity (48). Moreover the role of FAK as a regulator 
of tumor-infiltrating immunosuppressive cells (TILs) has been 
recently demonstrated in a mouse model of human pancreatic 
ductal AD (49). FAK maps on chromosomal region 8q24.3 and 
gene amplification has been discovered in gastric cancer (50), 
whereas increased mRNA levels have been detected in ovarian, 
head and neck and metastatic breast carcinoma (51). Currently,  
a part from some polymorphisms revealed by DNA sequencing, 
no mutational activation has been detected in this gene. As a 
kinase, it is composed by different domains: a FERM domain 
(protein band 4.1-ezrin-radixin-moesin homology domain), a 

central kinase domain, three prolin-rich regions, and the focal 
adhesion targeting domain (51).

After FAK homodimerization, as a consequence of clustering 
of integrin receptors by cellular adhesion to ECM, an autophos-
phorylation reaction occurs at Tyr397 residue (52). With the 
recruitment of the SRC-family kinases at Tyr397, FAK is then 
phosphorylated at the residue Tyr925 of the kinase domain. The 
FAK-SRC complex activates a plethora of different substrates, 
including paxillin, Shc, p120RAsGDP, and PLCy (53). The main 
targets of FAK, p130Cas and paxillin, are involved in migration, 
by modulating the expression and activation of members of 
Rho family GTPases; after FAK activation, p130Cas and paxillin 
promote focal adhesion complex formation, maturation, and 
turnover (54). FAK involvement in invasiveness might be at least 
in part explained by the fact that FAK promotes expression and 
activation of metalloprotease-9 (MMP9), as reported in breast 
(55) and lung (56) cancers. MMP9 mediates matrix degradation, 
causing tumor cell spreading. In agreement with the acquisition 
of a malignant phenotype, FAK activation also controls EMT 
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TAbLe 2 | Clinical trials involving specific focal adhesion kinase (FAK) inhibitors 
(http://clinicaltrials.gov/).

FAK inhibitor in combination 
with

Tumors Phase Reference

VS-6063 

– Mesothelioma II NCT01870609
– Mesothelioma II NCT02004028
– NSCLC, KRAS 

mutant
II NCT01951690

– AST I (63)
– AST I (64)

Pembrolizumab 
(anti PD-1)

NSCLC, 
mesothelioma, 
pancreatic 
cancer

I/IIA NCT02758587

Pembrolizumab, 
gemcitabine

AST I NCT02546531

Paclitaxel Ovarian I NCT01778803
Avelumab 
(anti-PD-L1)

Ovarian I NCT02943317

VS-5584 (dual 
PI3K/mTOR inhib)

Mesothelioma I NCT02372227

GSK2256098 Trametinib (MEK 
inhibitor)

Mesothelioma, 
AST

I NCT01938443

– AST I NCT01138033
VS-4718 Gemcitabine, 

Nab-paclitaxel
Pancreatic 
cancer

I NCT02651727

PF00562271 – AST II (65)
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process. As reported for breast cancer (57), the insulin growth 
factor receptor 1 (IGF1R)-driven migration and invasion are 
predominantly mediated by FAK activation; moreover, trans-
forming growth factor β, a well-known cytokine involved in 
EMT induction, causes FAK activation, triggers delocalization 
of E-cadherin from the plasma membrane, and increases levels 
of mesenchymal markers (58). Interestingly, some evidences 
concerning the connection between FAK and β-catenin are 
emerging: in colorectal cancer, a high expression of FAK activates 
the Wnt/β-catenin signaling by phosphorylating GSKβY216 (59) 
with subsequent stabilization of β-catenin protein. Recent data 
enforced the rationale of targeting FAK in a cohort of lung AD 
patients with KRAS mutation, which is typically detectable in 
the percentage of 15–25% of NSCLC patients. KRAS promotes 
tumor growth, by constitutive activation of RhoA, which in 
turn activates FAK, causing the acquisition of a more aggressive 
phenotype that could be reverted by pharmacological inhibition 
of FAK kinase (60).

The lack of NF2 tumor suppressor gene, coding for Merlin 
protein, is a frequent event in mesothelioma. Merlin negatively 
regulates some targets including Src-FAK complex (61), and 
its deficiency could represent a potential biomarker for the 
treatment with FAK inhibitors: specific FAK inhibition of 
Merlin-negative mesothelioma cancer cells causes a relevant 
reduction in cell viability, suggesting the potential benefit of this 
approach in NF2 negative mesothelioma cancer patients (62). 
FAK targeting strategies in different solid tumors are reported  
in Table 2.

Several evidences demonstrated that FAK could be directly 
activated by PI3K/AKT pathway. In particular, the AKT-1 isoform 
is implicated in FAK activation, by directly phosphorylating three 

critical Serine residues (Ser517/601/695). These events promote 
FAKY397 autophosphorylation and thus enzyme activation. 
Notably, the cooperation between FAK and AKT is bidirectional: 
depletion of FAK reduces AKTS473 phosphorylation, evincing that 
a mutual cooperation could be responsible for cancer progres-
sion, at least in certain tumor types (66). Interestingly, novel 
data provided further insights on FAK and AKT correlation 
(67): in a preclinical model of ovarian cancer, the protein tyrosine 
phosphatase non-receptor type 12 (PTPN12) dephosphorylates 
FAK, shutting down the migratory properties. PTPN12 is down-
regulated after Her-2 activation, with reduction of PTEN protein 
and constitutive activation of PI3K/AKT pathway. In particular, 
AKT phosphorylates and inactivates GSK3 protein that in turn 
dephosphorylates FAK at the inhibitory target Ser722, promot-
ing cell spread.

COnneCTiOn beTween PTen AnD  
FAK SiGnALinG PATHwAYS

The connection between PTEN and FAK has been explored for 
few years but only recently this has emerged as a potential drug-
gable signaling axis.

The interaction between PTEN and FAK is clearly demon-
strated in MKN28 cells, a preclinical model of gastric cancer 
(68) which shows a significant reduction of FAK expression and 
activation when overexpressing PTEN, with inhibition of cell 
motility, invasiveness and in vivo tumor growth.

A negative correlation between PTEN and FAK is also detected 
in patients with multiple myeloma (MM) (69) and urologic malig-
nancies (70) in advanced stage. Moreover, it has been reported 
that Notch1 controls PTEN expression in hepatocellular carci-
noma: the abrogation of Notch1 by siRNA approach increases 
PTEN expression and phosphorylation, with inhibition of both 
AKT and FAK activity (71).

Loss of PTEN function, a frequent event reported in endo-
metrial cancer (72), with percentage near to 60%, makes this 
mutation an attractive molecular target in this type of cancer. 
In a preclinical study, cell lines with wild-type or mutated 
PTEN show different sensitivity to the specific FAK inhibitor 
GSK2256028 given alone or combined with chemotherapy. In an 
in vivo model, the combined treatment shows a dramatic effect 
only in cells carrying mutated PTEN, with apoptosis induction, 
reduced cell growth and neo-angiogenesis. To further sustain 
this correlation, a cohort of 91 patients was analyzed for PTEN 
and FAK expression and phosphorylation at Tyr397. Patients 
with poor prognosis show reduced PTEN levels associated with 
increased FAK expression and Tyr397 phosphorylation, con-
firming that PTEN could be considered a prognostic biomarker 
and suggesting its role for predicting the response to anti-FAK 
targeted agents (73).

Phosphatase and tensin homolog mutations are detected in 
15–25% of patients with acute lymphoblastic leukemia (T-ALL). 
However, while in  vitro experiments demonstrated that the 
pharmacological inhibition of PI3K/AKT/mTOR pathway in 
PTEN null-T-ALL cells dramatically reduces cell growth and 
viability, the efficacy of this treatment is less pronounced in 
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an in vivo system. As previously reported for MM, gastric and 
endometrial cancers, PTEN null-T-ALL cells display increased 
FAK activity. Genetic deletion or pharmacological inhibition 
of FAK, associated with inhibition of PI3K pathway, produce 
a more significant effect than single monotherapy (74) in this 
cellular model.

In our recent article (75), we analyzed the correlation between 
PTEN loss and FAK activation in squamous NSCLC patients. 
As previously reported (76), PTEN levels are reduced in 70 and 
77% of patients with lung squamous (SCC) or AD histology, 
respectively. This event, observed in metastatic patients, has 
been confirmed by our analysis in a cohort of 51 patients with 
SCC, at different stage (I–IV). In particular, we demonstrated 
that loss of PTEN expression is not an early event, at least in 
SCC, but it is associated with cancer progression and acquisi-
tion of high malignancy: in fact, the majority of metastatic 
stage IV patients presents low PTEN expression associated with 
increased FAKY397 phosphorylation. Cell clones, expressing low 
level of PTEN, demonstrated increased FAKY397 and AKTS473 
phosphorylation, high miR-21 levels, and the acquisition of a 
mesenchymal phenotype.

The acquisition of mesenchymal markers caused by PTEN 
abrogation can be a consequence of increased onco-miR levels: 
in particular, the miR-130 family, highly expressed in bladder 
cancer, shuts down PTEN protein, with increase of migration 
and invasiveness, MMP9 production, AKT, and FAK phospho-
rylation (77). Similarly, miR-301a is upregulated in tumor tissue 
from melanoma patients (78), and modulation of this miRNA in 
cancer cells revealed lower PTEN expression, with activation of 
both AKT and FAK.

Notwithstanding this connection is reported for different 
tumor types, it cannot be extended to all cancers: for example, 
esophageal squamous cell carcinoma cells depleted for PTEN 
(79) show increased malignancy, but the mechanism of meta-
static spread was not correlated with FAK activation.

Finally, in most studies the connection between PTEN and 
FAK is based on the phosphatase activity of PTEN, but recent 
data (80) demonstrated that FAK could in turn phosphorylate 
PTENY336, increasing protein stability and phosphatase activity. 
This result shows a novel mechanism of PTEN regulation provid-
ing new insights for the role of FAK.

TARGeTinG PTen/FAK SiGnALinG

Taking into account the relevance of genetic PTEN aberrations 
such as loss or reduced expression, point mutations or post-trans-
lational events, and the critical role of PTEN enzyme as lipid and 
protein phosphatase, it is of particular interest to approach new 
targeted strategies based on PTEN status evaluation (Table 1). 
PTEN, as tumor suppressor gene, cannot be considered a clas-
sical oncogenic driver such as EGFR or EML4/ALK in NSCLC 
patients or BRAF in melanoma patients, but it can constitutively 
regulate some intracellular oncogenic signaling pathways, such 
as the PI3K/AKT/mTOR axis. A high number of specific or 

pan inhibitors of this pathway have been developed, and novel 
molecules are continuously synthesized, but to date, no specific 
therapies are approved for patients with PTEN deficiency. This 
could be a consequence of the pleiotropic effects exerted by 
PTEN depletion; as reported, abrogation of this protein causes 
not only activation of PI3K/AKT pathway, but increases JNK, 
MAPK, STAT, and FAK activity, making problematic targeting 
this multiple molecular alterations. Moreover, PTEN alterations 
are often acquired during the last phase of tumor progression; 
in particular loss of PTEN can be associated with the develop-
ment of metastatic disease and it can be considered a marker of 
advanced tumor stage.

Another important aspect emerging from preclinical 
studies is the pivotal role of PI3K-β as an enzyme often over-
expressed in the presence of PTEN loss (2, 81). This enzyme 
can be targeted by specific (GSK-2636771, AZD8186 or TGX-
221), pan (GDC-0032, XL-147, GDC-0941, NVP-BKM120, 
PX-866, BAY 80-6946), or dual PI3K/mTOR (NVP-BEZ235, 
XL-765) inhibitors. In a preclinical in  vivo model character-
ized by PTEN loss, the selective inhibition of the β subunit 
of PI3K caused tumor shrinkage (82). Recently, a correlation 
between PTEN loss and high PI3K-β was reported in a cohort 
of NSCLC patients, with prevalence of squamous histology 
(83). Currently, four clinical trials (Table 1) (NCT01458067, 
NCT02215096, NCT02615730, and NCT01884285) are evalu-
ating the role of specific PI3K-β inhibitors in patients with 
altered PTEN expression.

In view of the fact that PTEN is one of the most important 
regulators of FAK kinase, loss of PTEN can be regarded as a 
good biomarker for a combined therapy with PI3K and FAK 
inhibitors. Currently, this strategy (74) provides a better treat-
ment for PTEN-null T-ALL cells compared to the inhibition 
of PI3K/AKT alone. The same approach has been tested by 
our group in a preclinical model on SCC with stable PTEN 
abrogation, demonstrating that a simultaneous inhibition of 
both targets induces synergistic reduction of cell growth and 
invasiveness (75).

This new combination deserves further investigations in 
the clinical practice. However, to date there is only a phase I 
clinical trial (NCT02372227) exploring the safety of the PI3K/
AKT/mTOR inhibitor VS-5584 combined with the FAK inhibi-
tor VS-6063 in patients with relapsed malignant mesothelioma 
(Table  2). Remarkably, since PTEN loss is typically both in 
advanced primary tumors and in metastatic sites, the develop-
ment of a combined strategy directed to inhibiting PI3K aberrant 
activation caused by PTEN loss and FAK kinase could represent 
a promising strategy to target metastases, which are the leading 
cause of death in cancer patients.
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