
September 2017 | Volume 7 | Article 1951

Review
published: 08 September 2017
doi: 10.3389/fonc.2017.00195

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Joshua Pesach Rosenzweig,  

Cell-El Ltd., Israel

Reviewed by: 
Zong Sheng Guo,  

Harvard University, United States  
Jean-Baptiste Ange,  

Philippe Guillerme,  
Université Nantes Angers Le Mans, 

France

*Correspondence:
Yaohe Wang 

yaohe.wang@qmul.ac.uk

†These authors have contributed 
equally to this work.

Specialty section: 
This article was submitted to Cancer 

Immunity and Immunotherapy,  
a section of the journal  

Frontiers in Oncology

Received: 06 June 2017
Accepted: 15 August 2017

Published: 08 September 2017

Citation: 
Howells A, Marelli G, Lemoine NR 

and Wang Y (2017) Oncolytic 
Viruses—Interaction of Virus and 

Tumor Cells in the Battle  
to Eliminate Cancer. 
Front. Oncol. 7:195. 

doi: 10.3389/fonc.2017.00195

Oncolytic viruses—interaction of 
virus and Tumor Cells in the Battle  
to eliminate Cancer
Anwen Howells1†, Giulia Marelli1†, Nicholas R. Lemoine1,2 and Yaohe Wang1,2*

1 Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom, 
2 National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, 
Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China

Oncolytic viruses (OVs) are an emerging treatment option for many cancer types and 
have recently been the focus of extensive research aiming to develop their therapeutic 
potential. The ultimate aim is to design a virus which can effectively replicate within the 
host, specifically target and lyse tumor cells and induce robust, long lasting tumor-specific  
immunity. There are a number of viruses which are either naturally tumor-selective or 
can be modified to specifically target and eliminate tumor cells. This means they are 
able to infect only tumor cells and healthy tissue remains unharmed. This specificity 
is imperative in order to reduce the side effects of oncolytic virotherapy. These viruses 
can also be modified by various methods including insertion and deletion of specific 
genes with the aim of improving their efficacy and safety profiles. In this review, we have 
provided an overview of the various virus species currently being investigated for their 
oncolytic potential and the positive and negative effects of a multitude of modifications 
used to increase their infectivity, anti-tumor immunity, and treatment safety, in particular 
focusing on the interaction of tumor cells and OVs.
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iNTRODUCTiON

One of the most promising developments in cancer therapy to emerge over the past few decades 
is oncolytic virotherapy (OVT). Many of the more traditional treatment options routinely used to 
combat cancer in the clinic are not efficacious enough and have considerable side effects for patients. 
Although these treatments, such as chemotherapy and radiotherapy, are advancing and becoming 
more tolerable, we are yet to discover an alternative treatment option that has a high level of potency 
with minimal side effects that will dramatically change the overall survival of cancer patients.

Oncolytic viruses (OVs) have the potential to deliver this goal and much effort has been put into 
improvement of their efficacy and safety profiles in recent years. There are numerous viruses which 
either have naturally oncolytic properties or have been engineered to specifically lyse tumor cells. 
The great advantage of this therapy is that these viruses are able to specifically target tumor cells and 
therefore healthy tissue is not damaged during the course of the treatment. There are various ways 
to improve the specificity of OVs, for example, taking advantage of pathways which are upregulated 
in tumor cells and not healthy cells and engineering a virus which relies on such a pathway for 
successful infection thereby rendering the virus incapable of infecting healthy tissue (see Figure 1).

Another factor of oncolytic viral therapy that makes it a promising candidate is that while viral 
infection can directly lyse tumor cells, the resultant immune response will be generated not only 
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FigURe 1 | Overview of oncolytic viral therapy. Genetic engineering has made it possible to modify oncolytic viruses (OVs) to make them safer and more effective 
against tumor cells. Various genes can be deleted to produce a safer virus, e.g., thymidine kinase (TK), while others can be inserted into the viral genome to increase 
efficacy, e.g., immune stimulators like IL-12. By carrying out these modifications, OVs can be made safer as they require target cells to provide the essential deleted 
gene, e.g., TK which is upregulated in tumor cells and not in healthy cells. They can also generate long lasting immunity as a result of stimulation of a potent immune 
response in which tumor cell antigens (along with viral antigens) can be targeted by T-cells. Also, when the virally infected tumor cells die, they release progeny 
virions into the tumor microenvironment which can in turn infect neighboring cells, improving the efficiency of viral treatment. Systemically delivered OVs also have 
the potential to eliminate metastatic tumor cells.
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to viral antigens but also to tumor cell antigens. This unique 
feature of oncolytic viral therapy makes it a very exciting avenue 
of research as not only can the viruses act to eradicate existing 
tumors but they can also potentially generate lasting immunity in 
the form of memory T-cells which are primed against tumor cell 
antigens (see Figure 1).

In addition to causing direct lysis of cells, OVs can also be 
used as delivery vectors for therapeutic genes. In this case, the 
virus can be genetically modified to include the gene of interest 
which upon infection and viral replication will be produced at 
high levels in infected tumor cells where it can exert its function. 
There are a multitude of anti-cancer genes that can be incorpo-
rated into OVs in this way in order to maximize the efficacy of 
the virus and improve the anti-tumor response generated (see 
Figure 1).

Also, OVs have great potential as combination therapies used 
together with more traditional approaches. In this way, various 
treatment options can be used synergistically to combat cancer 
from more than one angle at a time which will likely give rise to 
a more positive response to treatment. This combination therapy 
approach can lead to improved tolerance of treatment in patients 
as the synergistic effect allows lower doses of each individual 
therapy to be used to gain similar effects compared with the use 
of one treatment alone.

As stated, much research effort has been put into improving 
this area of cancer therapy and the various viruses used and 
important advances made in their development are discussed 
here.

HiSTORY OF Ov THeRAPY

The use of OVs was first conceived following the observation 
of the fact that during or after an infection, tumor regression is 
occasionally observed (1–3). Based on this observation, patients 
with Hodgkin’s lymphoma were treated with serum containing 
hepatitis virus (4).

In the following years, a lot of effort was put in to achieving 
better and safer results. For 30 years, from 1950 to 1980, many 
studies were performed without reaching good clinical outcomes 
or providing long-term results (5–7). This was mainly due to 
the fact that viral treatments were unsafe because there were no 
methods to control virulence nor to obtain tumor specificity. 
Finally, in the late 1980s, with the advent of genetic engineering, 
a renewed interest for OVT rose again and in recent years many 
advances have been made in this field.

SeLeCTiviTY OF Ovs

There are various ways in which different OVs are able to infect 
cells. Some viruses, like vaccinia virus (VV) or Newcastle disease 
virus (NDV) lack specific receptors for attachment so enter cells 
via endocytosis. Other viruses have a specific receptor that they 
use to enter host cells; for example, adenoviruses (Ads) are able 
to bind coxsackie and adenovirus receptor (CAR), integrins, or 
cluster of differentiation 46 (CD46). Measles can also use CD46 
for entry, whereas herpes simplex virus (HSV) uses nectin or 
herpesvirus entry mediator (8, 9). Despite the observed tendency 
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of tumor cells to upregulate some of these receptors, they are also 
expressed on many normal cells.

There are a variety of ways in which OVs can be targeted to 
tumor cells in order to minimize damage to healthy cells. These 
include exploitation of various pathways which are aberrantly 
expressed in tumor cells to ensure engineered viruses are only 
capable of productive infection in cells which have abnormal 
levels of certain genes. Also, control of viral replication with 
microRNA differentially expressed in tumor cells compared with 
healthy cells can restrict viral replication specifically to tumor 
cells. Viral coat proteins can also be manipulated to ensure viral 
infection only occurs in cells with certain receptors, e.g., recep-
tors found on tumor cells only. These strategies will be discussed 
in more detail here.

As it is essential that OVs only successfully infect tumor cells 
to avoid the spread of virus in healthy tissue, many different 
approaches have been investigated to increase specificity. One of 
these is to take advantage of the aberrant expression of various 
proteins in pathways which can have an effect on viral replication. 
Of these pathways, OVs commonly exploit aberrant expression 
of proteins involved in the Ras pathway. This pathway is gener-
ally silent in normal cells but activated in tumor cells and the 
downstream effects of this can be beneficial for OV infection (10, 
11). There are a number of ways in which upregulation of the Ras 
pathway in tumor cells can influence the outcome of oncolytic 
viral infection. For example, it has been shown that the Ras/MEK 
pathway can downregulate specific interferon-inducible genes 
which may have an effect on anti-viral responses and apoptosis 
control (12). It has also been seen that apoptosis can be involved 
in the increased efficiency of OVs in tumor cells. In the case of 
Reovirus, this OV can cause an accumulation of Ras within the 
Golgi body which leads to triggering of apoptosis signaling path-
ways and subsequent release and spread of progeny virions (13).

Because of aberrant expression, genes involved in the Ras 
pathway (among others) can favor replication of viruses in tumor 
cells and many viruses have been engineered to exploit this to 
increase their selectivity for transformed cells. For example, engi-
neering viruses which are only able to express certain critical viral 
proteins upon upregulation of transcription factors downstream 
of the Ras pathway renders the virus only able to replicate in cells 
with an upregulated Ras pathway (14).

Other strategies used to produce tumor-targeted replicating 
OVs include control of certain genes using microRNA. Hikicki 
et al. have shown that it is possible to place critical viral genes 
under the control of an miRNA which has low expression levels 
in tumor cells. This renders the virus unable to successfully 
infect healthy cells where normal levels of this miRNA are 
expressed, facilitating interference with production of the criti-
cal viral gene (15).

Also, modification of viral coat proteins can be used to specifi-
cally direct viral infection to tumor cells. There are various ways to 
achieve this, for example, covering the viral surface with polymer 
to “cloak” the existing receptor and addition of epidermal growth 
factor (EGF) to target the virus to tumor cells which tend to have 
upregulated EGF receptor (EGFR) expression (16). This strategy 
not only reduces the broad tropism conferred by the existing 
viral receptor but also replaces this with tumor specific receptors 

to direct oncolytic viral infection to target cells, leaving healthy 
tissue unharmed.

Another approach involves the use of antibodies to target OVs 
to tumor cells. As an example of this strategy, it was found by 
Watkins et al. that antibodies can be engineered which contain 
an Ad fiber protein targeting single-chain variable fragment 
(scFv), linked to EGF. This facilitated targeting of Ad to EGFR-
upregulated tumor cells (17). This antibody focused approach was 
further developed to allow incorporation of scFv into the viral 
envelope. For example, HSV type-1 (HSV-1) relies on various 
glycoproteins for entry into cells and one of these glycoproteins 
(gD) is responsible for interaction with the viral entry receptors. 
If an scFv targeting EGFR is fused to this glycoprotein, the virus 
is then able to use EGFR as an entry receptor which improves 
tumor targeting (18).

In parallel to the attempt to create safer viruses, a new strategy 
is developing with the aim of incorporating transgenes within the 
virus to target the tumor microenvironment or to activate the 
immune system.

MODiFiCATiONS OF Ovs

This new strategy is achieved by modification of viral genomes 
by insertion or deletion of selected genes which aid or hinder 
oncolytic potential and some of the strategies being explored will 
be discussed in more detail here.

The ability to modify the genome to our advantage is one of 
the most promising aspects of OVs. These modifications have a 
variety of functions including improvement of tumor tropism 
and increased recruitment of the immune system to aid anti-
tumor responses. Also, improved safety and efficacy of OVs are of 
utmost importance and are another aspect that can be controlled 
by genetic engineering. Some examples of gene editing include 
deleting replication-related genes to reduce replication efficiency 
(as attenuation improves safety) and/or addition of genes that 
induce pathways to promote tumor cell death, for example, the 
apoptosis pathway (19).

As previously mentioned, pathways which are alternatively 
regulated in tumor cells compared with healthy cells can be 
exploited to produce selective viruses. For example, genes can 
be deleted resulting in a virus that can only successfully infect 
certain tumor types which over-express MEK (20). This strategy 
can also be used with HSV whereby genes can be deleted to 
produce a virus which preferentially replicates in tumor cells 
which unlike healthy cells tend to have a constitutively activated 
Ras pathway (21). As this virus initiates apoptosis in infected and 
bystander cells and preferentially infects tumor cells, it can be 
used as oncolytic agent with this deletion (21, 22).

geNe DeLeTiON STRATegieS

Many OVs have been modified with specific gene deletions to tar-
get the virus to tumor cells and inhibit infectivity in healthy cells. 
An example of this strategy is thymidine kinase (TK) deletion 
from VV. As the wild-type virus usually encodes this kinase it is 
able to replicate in healthy cells, however, when the gene is deleted 
the virus can no longer replicate efficiently in healthy cells. As 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


4

Howells et al. OV for Cancer Treatment

Frontiers in Oncology | www.frontiersin.org September 2017 | Volume 7 | Article 195

tumor cells produce higher levels of TK, even though the gene 
is deleted the virus is still able to replicate in these cells (23, 24).

Another strategy used to improve tumor specificity is to delete 
apoptosis-inhibiting genes (usually used with Ad). In wild-type 
infections, Ad encodes genes which block apoptosis which is an 
advantage as infected cells then become viral factories given that 
they will not enter apoptosis in response to infection. As tumor 
cells often block apoptotic pathways as a survival mechanism, Ads 
with deleted apoptosis-inhibiting genes can undergo prolonged 
infection while infection of healthy cells will lead to lysis of the 
cell and clearance of virus (25).

Gene deletion strategies can also be used to improve the 
efficiency of virus delivery systems which are designed to deliver 
OVs to target cells without interference from the host immune 
system. In these systems, viruses are delivered within host cells 
(e.g., mesenchymal stem cells) that provide shelter from immune 
attack and subvert the problem of clearance of virus (by neutral-
izing antibodies) before they reach their target cells. This method 
has been improved in Ad by modification of the virus in order to 
make it more infective in MSC and more efficient at killing tumor 
cells. Oncolytic Ad can also be engineered through deletion of 
an anti-apoptotic gene, improving virus release from MSC, and 
allowing more potent anti-tumoral activity (26).

Although gene deletion often improves efficacy of OVs, the 
chosen candidates need to be selected very carefully. Various gene 
deletions have the potential to alter viral infectivity in ways which 
can either improve or diminish oncolytic potential. For example, 
deletion of E3-6.7K/gp19K leads to more rapid viral clearance 
which on one hand improves safety but on the other hand only 
allows a short time-frame for inserted therapeutic genes to be 
delivered to target cells and produced in a significant amount. 
Therefore, this particular deletion can only successfully be used 
for delivery of genes which can act quickly to have the desired 
effect (27). Another study has shown that deletion of a combi-
nation of viral genes will enhance tumor selectivity but reduce 
viral potency, highlighting the problems faced in engineering the 
perfect oncolytic viral therapy (28). There are also genes encoded 
by OVs that can act to inhibit oncolytic potential, for example, 
E4orf1 encoded by Ad leads to increased levels of survival in 
infected cells thereby reducing the ability of the virus to directly 
lyse infected tumor cells (29). This effect can lead to diminished 
efficacy and therefore needs to be addressed in order to maximize 
the potential of this virus to treat cancer.

geNe iNSeRTiON STRATegieS

Another advantage of gene deletion is the opportunity to 
insert therapeutic genes in their place without disrupting 
the reading frame (30). There are a multitude of therapeutic 
genes and immune stimulators which can be delivered within 
OVs to combat cancer (for example, the interleukin family of 
genes used to stimulate the immune system thereby improving 
anti-tumor immune responses). However, this approach is not 
perfect and the combination of deleting a gene and inserting a 
new one can result in problems of its own. For example, dele-
tion of the E1B55K gene leads to improved virus spread (as it 
facilitates apoptosis), however, this may result in low levels of 

production of the inserted gene as the cell undergoes apoptosis 
before high quantities of the gene are expressed. The combina-
tions of deletion and insertion need to be specifically studied 
in order to ascertain which ones complement each other and 
which have negative effects on each other (31, 32). Addition of 
cytokines or other genes may also give rise to toxicity, for exam-
ple, the IL-12 cytokine has been seen to result in side effects that 
cause a poor safety profile. This problem has been combated 
in a range of ways with varying results; these include using a 
single-chain version of the cytokine and anchoring IL-12 to 
the membrane of cells through fusion with the CD4 trans-
membrane region. These methods did not produce the desired 
reduction in toxicity without reducing anti-tumor efficacy, 
however, using a helper-dependent Ad vector with an induc-
ible expression system was successful in allowing production 
of IL-12 without high levels of toxicity (33). Another strategy 
to reduce potency of the IL-12 cytokine is to deliver it within 
conditionally replicative Ad rather than replication competent 
strains. For example, on delivery within an adenoviral vector 
which can only replicate in hypoxic conditions typical of tumor 
masses, IL-12 was still effective but resulted in less toxicity and 
more specific delivery to target cells compared with replication 
competent viral delivery (34).

OTHeR STRATegieS TO iMPROve Ovs

As well as addition and deletion, control of gene promoters can 
be used to modify viral behavior. For example, promoters that 
are activated more highly in tumor cells can be used to control an 
essential viral gene rendering that virus incapable of replicating 
in healthy cells (32). They can, however, replicate successfully in 
tumor cells as these cells have a higher activation of that promoter 
(e.g., use of Cyclin E promoter to target Ad infection to tumor 
cells) (35). It is also possible to use promoter control of virus 
genes in order to attenuate virus and make the therapy safer. If 
genes essential to virus replication are expressed under the con-
trol of a promoter downregulated in tumor cells, then delivery of 
such a tumor-selective virus into those cells will only allow a low 
level of infection which results in improved safety with retention 
of oncolytic activity (although at a lower level than wild-type 
infection) (15).

A constantly evolving area of research is the combination of 
OVs with other treatments for synergistic effect. For example, 
combining oncolytic Ad with a cytotoxic drug currently used in 
the clinic enhanced the anti-tumor efficacy of this treatment (36). 
These combinations can improve the activity of OVs in various 
ways, including promoting better replication or compensating 
for certain deletions without compromising tumor selectivity. 
For example, if a deleted gene has more than one function, it can 
be eliminated to improve selectivity in combination with delivery 
of a compound that can be administered to improve replication 
efficiency which may have been lost through deletion; an example 
is the use of 2-aminopurine to enhance the oncolytic activity of 
an E1B-deleted Ad (37). Combining treatments can also facilitate 
administration of each agent at lower and safer doses given their 
synergistic effect (38). Also, the combination of oncolytic Ad 
with CAR upregulation can improve the efficacy of this treatment 
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due to the use of these receptor molecules for Ad infection (39). 
Various tumor cell types express different levels of CAR and this 
will have an impact on the ability of the virus to effectively treat 
different tumors. Therefore, administration of an agent which can 
upregulate CAR expression before oncolytic Ad therapy could 
increase the efficacy of adenoviral treatment.

There are numerous viruses which have been found to have 
natural or engineered oncolytic activity and some of the most 
promising candidates will be explored in more detail in the fol-
lowing sections.

vACCiNiA viRUS

Vaccinia virus is a naturally oncolytic virus which was found to 
have a natural tropism for tumor cells due to its sensitivity to 
type I interferon (40). It is a double-stranded DNA virus of the 
Poxviridae family. There are many different strains of the virus 
and of these; Lister, Wyeth, and Western Reserve strains are 
the most used in research. VV is a very promising anti-cancer 
agent (41) for many reasons including its very short life cycle 
(around 8 h) and its ability to replicate in hypoxic conditions (42). 
Moreover, it does not have a specific receptor and viral fusion 
with the plasma membrane facilitates entry (43) which makes it a 
potential candidate for treatment of all tumor types. Furthermore, 
VV does not depend on the host cell for mRNA transcription and 
its entire life cycle takes place in the cytoplasm, eliminating the 
risk of genomic integration (44). The virus, which can infect both 
human and mouse cells, is infectious at four different stages of its 
life cycle: intracellular mature virion released by cell disruption, 
intracellular enveloped virion, cell-associated enveloped virion, 
or extracellular enveloped virion released by endocytosis from 
the membrane.

To make oncolytic VV safer, two deletions have been made; 
one in the TK region (45) (as for HSV) and one in the vaccinia 
growth factor gene region increasing its specificity for tumor cells 
(23). As well as this, many efforts have been made to generate 
a strain that results in viral attenuation, rendering the virus 
harmless in normal tissue. For this purpose, mutations in the 
F14.5L and A56R genes have been engineered. The F14.5L gene 
encodes a secretory signal peptide, while the A56R gene generates 
hemagglutinin.

In addition to these safety measures, many different genes 
have been integrated into the VV genome in order to increase its 
anti-tumor efficacy such as cytokines and antibodies, as reviewed 
by Badrinath et al. (9). As an example, JX-594 is a VV with TK 
gene deletion and GM-CSF (a cytokine able to stimulate the 
immune system to kill tumor cells) gene insertion and is currently 
undergoing phase III trials. Phase I trials have shown promising 
results and acceptable safety profiles (46) and phase II studies 
were designed to investigate the optimal dose of intravenously 
delivered JX-594 (47). The results of a randomized, dose-finding 
phase II clinical trial reported by Heo et  al. showed that high 
dose JX-594 resulted in higher overall survival duration than low 
dose administration in patients with advanced hepatocellular 
carcinoma. This study also demonstrated both anti-viral and 
anti-tumor immunity generated in clinical patients in response 
to OV administration (48).

There are many other modifications which can improve the 
anti-tumor efficacy of VV. For example, the addition of IL-10 was 
found to improve the oncolytic activity of VV through dampen-
ing of anti-viral immunity (prolonging viral infection) without 
reducing anti-tumor immunity (49).

The major concern in using VV as oncolytic therapy is the 
fact that it is easily recognized by the immune system. Indeed, 
the strains of VV exploited in clinical OVT are derived from 
the vaccine formulations used for smallpox eradication and so 
there is an activation of the immune system in those patients 
that were administered with the vaccination. Despite this, 
Breitbach et al. demonstrate in a clinical study that the intrave-
nous administration of the modified VV JX-594 was safe and 
that the virus was able to replicate and to express the transgene 
only in tumor cells (50).

ADeNOviRUS

Adenovirus is one of the most commonly studied viruses in onco-
lytic therapy and was the first to be given regulatory approval, 
granted by the State Food and Drug Administration in China 
in 2005 (51). It is a non-enveloped, double-stranded DNA virus 
of the Adenoviridae family. There are several strains of Ad and 
of these, Ad5 is the most commonly used in oncolytic therapy. 
As this virus is widely studied, there are a multitude of various 
modifications which have been shown to improve its efficacy and 
safety which will be further discussed below.

It has been seen that addition of various genes to oncolytic Ads 
can improve their anti-tumor efficacy. For example, the combi-
nation of p53 addition to suppress tumor growth with GM-CSF 
addition to induce the apoptotic pathway elicits a synergistic 
effect which is effective in combating hepatocellular cancer stem 
cells (52). This is especially exciting as it potentially provides a 
mechanism to combat cancer stem cells which are considered to 
be integral to cancer recurrence after current treatment options. 
GM-CSF addition has been tested in phase I clinical trials and was 
shown to be non-toxic and tolerable at the doses used, however, 
the efficacy showed room for improvement in terms of anti-tumor 
efficacy and long-term immunity (53).

It is also possible to improve oncolytic Ad by incorporation of 
a short-hairpin RNA which functions to downregulate Dicer (an 
endoribonuclease which has a role in processing virus-associated 
RNA). Downregulation of this protein inhibits the destruction 
of viral RNA and allows Ad to replicate efficiently and therefore 
improves the efficacy of this OV (54).

Gene silencing techniques can also be used in order to down-
regulate certain oncogenes in order to suppress tumor growth. 
For example, downregulation of EphA3 by insertion of siRNA 
targeting this gene into the genome of an Ad whose replica-
tion is made conditional under the control of TERTp (which 
increases specificity for tumor cells) results in increased levels of 
autophagy through inhibition of the AKT/mTOR pathway. This 
allows the virus to both inhibit tumor cell proliferation and kill 
infected cells (55).

In terms of important features of OVs on which to focus 
research efforts, it has been shown that the T-cell immune 
response to oncolytic adenoviral infection is more efficacious in 
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combating tumors than direct lysis of tumor cells by viral infec-
tion (56).

It has been previously shown that treatment of tumors with 
immune checkpoint inhibitors (e.g., PD-L1 blockade) allows 
immune-boosting viral treatments to have a longer lasting effect. 
It has recently been found that encoding a PD-L1 blocking anti-
body within Ad vectors leads to production of this antibody in 
the local vicinity of tumors by host cells and this approach gives 
rise to better anti-tumor effects than with infusion of the antibody 
into tumors. When combined with chimeric antigen receptor-
modified T-cell treatment targeting HER2 positive tumor cells, 
this approach to PD-L1 antibody delivery increased treatment 
efficacy (57).

In addition to investigating methods of improving current 
Ad strains used in oncolytic therapy, it is also important to find 
potentially new strains which may prove to be more appropriate 
for therapy. For example, Ad11 was found to have higher levels 
of receptor availability and lower levels of neutralizing antibody 
than Ad5 (which is the most commonly utilized strain in OV 
engineering). When this strain is modified to replace its E1A 
enhancer-promoter region with that of Ad5 (leading to higher 
levels of E1A mRNA) it can become a more potent OV. With 
additional modifications to increase tumor specificity, the Ad11/
Ad5 strain could prove to be a more successful OV than the 
more commonly studied Ad5 strain (58). Also, another group B 
oncolytic Ad is enadenotucirev, this virus is able to infect both 
at apical and basolateral surfaces of polarized cells and results in 
progeny being released via the apical surface which directs them 
into the tumor mass rather than out into the blood stream (59). 
This proves to be an improvement on the traditional Ad5 strains 
used in the design of oncolytic therapy as type 5 Ads seem to 
infect preferentially via the apical surface which could pose a 
problem when delivered systemically.

Even once a promising candidate has been identified for 
oncolytic therapy, one of the major obstacles to effective use of 
OVs is clearance by the host immune response (namely anti-viral 
T-cells) but it would be extremely useful to use this response 
to our advantage. In a recent study, it has been found that it is 
possible to engage and therefore redirect these T-cells to react to 
specific antigens (in this case EGFR which is often overexpressed 
on tumor cells) in order to redirect the anti-viral response into an 
anti-tumor response (60). Also, the generation of T-cell responses 
both to virus and tumor was found to be more important in viral 
efficacy than direct oncolysis (56). Therefore, a balance between 
increasing T-cell production to improve anti-tumor immunity 
and controlling T-cell response to reduce viral clearance is 
necessary.

In the constant effort to find new and improved oncolytic 
therapies, it was found that certain cancer cell types produce a 
peptide which inhibits the ability of the Ad to escape endosomes 
and be released (61). This inhibition presents a barrier to effective 
viral spread and successful oncolytic therapy. However, type 3 
Ad has evolved to manufacture a decoy capsid which sequesters 
HD5 and renders the virus able to escape endosomes (62). This 
finding suggests that the mechanism used by this strain of Ad can 
be mimicked in order to improve efficacy of existing or potential 
oncolytic Ad therapies.

Another obstacle facing oncolytic therapy is the tumor 
microenvironment and its immuno-suppressive properties. For 
example, expression of TGF-β in the tumor microenvironment 
results in diminished ability of virally delivered IL-12 to boost 
anti-tumor immune responses. One method to overcome this 
problem is to co-express decorin which leads to attenuated 
TGF-β expression in tumors (63). This is just one example of 
therapeutic gene addition which improves the action of onco-
lytic Ads armed with cytokines aimed at boosting anti-tumor 
immune responses.

Combination therapy, whereby OVs are used in combination 
with conventional therapy is a growing area of research with many 
promising leads. For example, it has been shown recently that Ad 
encoding pro-inflammatory IL-18 cytokine has a synergistic effect 
when delivered in combination with dacarbazine, which is con-
ventionally used to treat melanoma by alkylation of DNA strands. 
When used in combination, it was seen that these treatments 
together result in inhibition of tumor cell growth and increase in 
apoptosis (64). A similar strategy was employed in another study 
whereby IL-12 was used as an immune stimulator and a VEGF-
silencing ribonucleic acid was co-expressed in order to overcome 
the immune suppressive action of VEGF produced by tumor cells 
(65). Many studies have been undertaken to assess which combi-
nations work best and promising results have been reported, for 
example, oncolytic Ad combined with Temozolomide treatment 
(alkylating agent) leads to increased levels of viral replication 
and tumor cell death via various mechanisms thought to include 
upregulation of autophagy and apoptosis pathways (66). Another 
combinatorial approach to cancer treatment is to combine OV 
with anti-tumor antibody treatment. It was found that the gene 
for an anti-HER2 antibody used in the clinic (Trastuzumab) to 
combat HER2 positive breast cancers could be inserted into an 
oncolytic vector and successfully translated into antibody within 
tumor cells. This was then released upon lysis of infected cells 
(aiding treatment specificity) and provided an answer to some of 
the difficulties in delivery of antibodies systemically, specifically 
the infiltration of tumor masses as virus can infect, and spread 
throughout the tumor delivering the antibody with it (67).

Another approach to combination therapy is to use two 
antigenically distinct OVs sequentially (whereby the second to 
be delivered is not cleared by immunological memory to the first 
dose). This strategy was reported to be successful when oncolytic 
VV was used after first administering adenoviral therapy. In this 
case, it was seen that the increased efficacy was dependent on 
T-cell activity (68). Subsequent to this finding, various other 
regimes have also been found to improve the efficacy of OVs. 
For example, sequential delivery of oncolytic Ad and NDV which 
are both engineered to express an immuno-stimulatory cytokine 
leads to significant anti-tumor responses even though when 
administered alone, each virus showed limited efficacy against 
tumors (69).

Another exciting avenue being explored to improve the 
oncolytic potential of Ads is to combine oncolytic therapy with 
induction of the autophagy pathway. It was found that this 
pathway is involved in viral antigen presentation and therefore 
its upregulation could increase presentation of virally delivered 
tumor-associated antigens (TAAs) at the cell surface in order to 
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induce a more potent anti-tumor immune response than with 
antigen delivery alone (70).

Existing neutralizing antibodies pose yet another problem 
in the design of OVs. Certain viral strains may have been 
previously encountered/vaccinated against and therefore neu-
tralizing antibodies can be rapidly produced by the host upon 
treatment (especially when virus is delivered intravenously) 
and clear the virus before it can have an effect on tumor cells. To 
combat this problem, it was found that coating virus in albumin 
provided a protective barrier from neutralizing antibodies in 
the host and therefore facilitated systemic delivery without the 
threat of viral clearance due to previously generated immuno-
logical memory (71).

One of the main barriers to viral spread in tumor masses is 
the interstitial matrix (including extracellular DNA). OVs have 
therefore been modified to encode proteins which will degrade 
the interstitial matrix along with expression of DNaseI to degrade 
the extracellular DNA, therefore allowing more efficient spread of 
OV throughout tumor masses (72).

Oncolytic viruses can also be exploited as carriers for anti-
cancer drugs using more than one method. In a recent study, it 
was found that electrostatic attraction between viral capsid and 
the drug molecules themselves was an efficient way to deliver 
anti-cancer drugs which would then act synergistically with the 
oncolytic adenoviral therapy (73).

HeRPeS SiMPLeX viRUS

Herpes simplex virus type-1 is a double-stranded DNA virus 
belonging to the Herpesviridae family. HSV-1 was the first virus in 
which TK gene mutation was engineered. In 1991, Martuza et al. 
demonstrated that human glioblastoma cells can be destroyed 
by HSV-1 carrying a mutation in the TK region and this was 
observed in cell culture as well as in nude mice (74). A lot of effort 
has since been put into making HSV more active against tumor 
cells and safer for normal cells culminating in the approval of 
Talimogene laherparepvec (T-Vec), an engineered HSV-1 for the 
treatment of melanoma in 2015 (75). Phase III trials in patients 
with non-resectable melanoma showed that T-Vec had higher 
efficacy in patients with stage IIIB–IV melanoma than GM-CSF 
treatment alone (76). It was also found that T-Vec in combina-
tion with a CTLA-4 inhibitor (Ipilimumab) showed encouraging 
preliminary results in a phase Ib trial (77), though there is much 
more work to be done to fully evaluate the effects and outcomes 
of this treatment combination.

Talimogene laherparepvec has two viral gene deletions (one 
in the γ34.5 gene and one in the α47 gene) and it has the human 
GM-CSF gene inserted in place of the deleted γ34.5 gene. The 
function of γ34.5 is to prevent infected cells from switching off 
protein synthesis upon viral infection. Considering that tumor 
cells have a defect in this mechanism, a γ34.5-deleted virus is still 
able to replicate in these cells. This modified virus is therefore safer 
as it is only able to replicate in tumor cells. The α47 gene is associ-
ated with the downregulation of antigen presentation. A deletion 
in this region has a double function: first, it is able to increase the 
anti-tumoral immune response, and second, it is associated with 
the expression of another gene (US11) which results in boosted 

viral replication in tumor cells. Finally, the insertion of GM-CSF 
results in increased anti-tumoral immunity as demonstrated in a 
phase II study. The study reported an increase in tumor specific 
CD8+ lymphocytes along with a decrease in CD4+FoxP3+ regula-
tory T-cells and CD8+FoxP3+ T-suppressor cells (78, 79).

Another oncolytic HSV is G47Δ, a third generation HSV-1 
with three different mutations. It was created by Todo et al. by 
the deletion of the ICP6 gene from the genome of G207 virus, 
which already has two mutations (γ34.5 and α47); the Escherichia 
coli LacZ gene was added in place of ICP6 (80). ICP6 encodes 
the large subunit of ribonucleotide reductase (RR), an enzyme 
essential for viral DNA synthesis. If this enzyme is missing, the 
virus fails to replicate. However, tumor cells synthesize a huge 
amount of RR which can compensate for its deletion from the 
viral genome. In this way, mutated virus is able to replicate only 
in tumor cells, becoming safer in normal tissue.

Another example of HSV used as OV is the NV1020 virus 
which is based on the R7020 construct developed by Meignier 
et al. (81). NV1020 virus has deletions in the ICP0 and ICP4 gene 
regions and has only one copy of the γ34.5 gene. Moreover, the 
α4 promoter which controls TK expression has been inserted, 
making the virus sensitive to common drugs (such as acyclovir) 
and improving its safety. This virus has been reported to stabilize 
metastasis in phase I/II clinical trials involving patients with 
advanced metastatic colorectal cancer and showed minimal levels 
of side effects (82).

It has also been found that modification of HSV to include 
an scFv fragment against HER2 increased viral tropism to HER2 
positive tumor cells (83). HSV encodes various glycoproteins to 
facilitate viral entry and these are: gD, gH/gL, and gB. Usually, 
receptor recognition leads to modifications in gD and gH/gL 
which in turn activates gB. Interestingly, this redirected tropism 
to HER2 positive cells was conferred even when the scFv fragment 
was engineered into gB (a glycoprotein with a role in virus-cell 
fusion rather than receptor recognition), thereby bypassing the 
requirement for receptor mediated activation of gD and gH/gL. 
This provides a method of improving selectivity and therefore 
efficacy and safety of oncolytic HSV.

These data indicate a promising route for the clinical use of 
HSV-1. Many clinical trials have been carried out to treat differ-
ent types of solid cancer with encouraging results (82, 84, 85). 
However, some limitations still have to be overcome. A major 
obstacle for HSV-1 is the way it infects host cells. This virus is 
able to spread from one cell to another without causing viremia 
which makes it suitable for intra-tumoral but not intra-venous 
injection. This could cause some problems in the treatment of 
tumor lesions which are very difficult to reach directly, like those 
of pancreatic cancer.

Alongside HSV-1, HSV-2 has also shown promise as an 
OV. For example, HSV-2 with a deletion of ICP10 to improve 
selectivity was engineered and found to be even more effec-
tive than HSV-1 for treatment of metastatic ovarian cancer in 
mouse models (86). Building on this initial success, many more 
studies have been conducted to improve HSV-2 as an OV. These 
include co-administration of cyclophosphamide, a drug which 
has chemotherapeutic effects as well as causing a dampen-
ing of the innate immune response. This combination works 
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synergistically as reduced innate immunity can facilitate more 
potent viral infection. Li et al. showed that this combination of 
therapies leads to enhanced anti-tumor effects when used to treat 
lung carcinoma in mice and could prove to be a good combina-
tion in clinical trials (87). It has also more recently been found 
that HSV-2 can act in synergy with adoptive T-cell treatment. 
Administration of oncolytic HSV-2 directly into tumor sites was 
found to improve the homing of adoptively transferred T-cells 
(engineered to target tumor cells) to the tumor mass. This was 
achieved, at least in part, by elevated levels of various chemokines 
such as CXCL9 and CXCL10 (88, 89). It was also found that in 
addition to increasing attraction of these T-cells to the tumor, 
the various chemokines were also able to maintain persistence of 
these T-cells at the tumor site.

NewCASTLe DiSeASe viRUS

A more recently developed, naturally oncolytic virus is NDV. It 
has been found that NDV can effectively kill a variety of tumor 
cell types and that this activity occurs by induction of immu-
nogenic cell death which in turn leads to adaptive anti-tumor 
immunity (90).

The initial suggestion of a mechanism for NDV tumor 
selectivity was that there is a lack of robust/normal anti-viral 
response in tumor cells. However, it seems that some tumor 
cells with intact anti-viral pathways are still killed by NDV. It 
was then found that the lack of apoptosis in tumor cells is what 
makes NDV tumor-selective (91). Interestingly, it was found that 
certain strains of NDV can induce apoptosis in tumor cells (92) 
and that the apoptosis pathway stimulated in infected tumor cells 
is p53-independent and perhaps triggered by endoplasmic stress 
(93). It was also found that apoptosis of infected cells occurs 
predominantly via the intrinsic mitochondrial pathway and is 
caspase dependent (94). This induction of apoptosis results in 
tumor cell death.

Although NDV is naturally tumor-selective, there are inherent 
problems with the virus which need to be overcome in order to 
improve its ability to infect and spread within solid tumors as 
viral spread is limited by factors such as the extra-cellular matrix 
(95). Again, there are many studies looking at ways to modify 
this virus to make it safer and more efficacious; for example, 
insertion of the IL-2 gene into the NP/P site has proved effective 
(96). Inclusion of IL-2 and/or TRAIL has been shown to increase 
apoptosis levels in infected cells resulting in the tumor-selective 
parental virus becoming an even more potent anti-cancer agent 
(97–101). Further improvement of oncolytic NDV is found with 
IL-2 addition in combination with expression of TAA. This com-
bination, delivered by oncolytic NDV, improves tumor-specific 
T-cell responses leading to higher efficacy than delivery of TAA 
alone (102). Another strategy to boost the efficacy of oncolytic 
NDV is to insert the ICOS gene (usually upregulated by viral 
infection) in order to induce higher levels of T-cell infiltration 
into the local tumor and distant tumor sites (103).

As well as arming viruses with immune stimulators, other 
therapeutic genes are also able to increase anti-tumor effects of 
viral therapies. For example, NDV engineered to encode TNF 
receptor Fas shows greater oncolytic effect as Fas is responsible 

for increased apoptosis of infected cells via both the intrinsic 
and extrinsic apoptosis pathways, thereby increasing cell death 
and in turn anti-tumor efficacy (104). NDV’s naturally oncolytic 
properties could also be augmented by arming the virus with 
GM-CSF (105).

In addition to arming the OV with various therapeutic genes 
and immune stimulators, it is also beneficial to work toward 
increased virulence (within safety limits). Using a more infectious 
strain of NDV can produce better cytotoxic effects in tumor cells 
than arming less virulent strains with immune-modulating genes 
(106). However, a potential problem encountered with NDV is its 
ability to infect avian species. This introduces an added difficulty 
in that any oncolytic therapy involving NDV needs to ensure 
attenuation of the virus in avian hosts without reduced potency 
in mammalian cells (107).

It is also important to consider that modification of OVs does 
not always produce the desired result, for example, viral attenua-
tion to improve safety needs to be carefully tested as production 
of an attenuated virus which may establish persistent infection 
could lead to tumors which are not effectively killed by OV and 
thereby become resistant to treatment. It has previously been 
reported that NDV has the potential to cause persistent infection 
in certain cell types (108). This highlights the fact that it is impor-
tant to carefully engineer OVs in order to maximize efficiency 
and broaden tropism for a range of cancer types.

Frequently, viral therapies are able to target tumor cells but 
are not efficacious enough when administered alone or they are 
potent but toxic at high doses. These problems could potentially 
be overcome by combining various viral therapies which act syn-
ergistically to combat tumor growth. For example, two antigeni-
cally distinct viruses which both encode immune stimulators can 
be sequentially administered and allow two cycles of transgene 
expression without interference from neutralizing antibodies. 
This approach allows lower doses to be used (making the treat-
ments safer) and allows a multi-faceted approach which is likely 
to be more effective than single treatments (69). Oncolytic NDV 
can also be used in combination with traditional therapies to gain 
synergistic effects which enhance its action and the overall effect 
of treatment (109). Also, localized NDV therapy was shown to 
sensitize distant tumors to treatment with immune checkpoint 
inhibitors through induction of inflammatory immune infiltrates 
in these distant sites (110). This study provides a strong basis for 
developing this combination treatment with potential for entry 
into clinical trials.

ReTROviRUS

In order to overcome the problem of viral infection causing lysis 
of infected cells and potentially harmful inflammatory responses, 
a method has been developed whereby retroviral particles which 
retain their replicative ability can be delivered and will selectively 
replicate only in cells which are undergoing proliferation (tumor 
cells) and are compromised in their ability to trigger innate 
immune responses (again, tumor cells are often unable to trigger 
innate immunity due to disruption in the signaling pathway). The 
ability of these particles to integrate into the host genome and 
replicate without causing lysis of the cell makes them efficient and 
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long lasting producers of the therapeutic gene they are delivering 
without the consequences of productive viral infection (111).

As is the case for traditional oncolytic viral therapy, this 
method can be designed using a variety of retroviruses and with 
the addition of various therapeutic genes. For example, suicide 
genes which trigger cell death can be delivered to tumor cells via 
particles from various leukemia viruses with varying levels of 
success (112).

As well as delivering therapeutic genes, replicating retroviral 
vectors can also be used in order to enhance the response to 
anti-cancer drug therapy. For example, delivery of an activator 
of a therapeutic drug by replication competent retroviral vector 
resulted in significant anti-tumor effect and prolonged survival 
time in a murine model of malignant mesothelioma (113).

These vectors can also be delivered within a “gutted” Ad 
genome and the outcome of this combination is improved trans-
fer efficiency of the retroviral genome into the tumor tissue and 
therefore increased production of the therapeutic gene and better 
treatment efficacy (114).

MeASLeS viRUS (Mv)

Measles virus is a single-stranded, negative sense enveloped 
RNA virus of the Paramyxoviridae family. There are a number 
of receptors that can be utilized by MV to successfully infect 
cells including CD150, CD46, and nectin-4. Of these, CD46 has 
been attributed to increased specificity of MV to tumor cells that 
express increased levels of this receptor compared with healthy 
cells. This increased expression leads to increased levels of cell 
lysis upon infection of tumors compared with healthy tissue (115). 
Selectivity can also be increased by engineering a MV which is 
blinded to its usual receptors and redirected to recognize specific 
tumor cell markers as target antigens (116). Also, as tumor cells 
often have a defective interferon system they tend to be more sus-
ceptible to viral infection leading to increased lysis of these cells 
by MV in comparison with healthy cells (117). Another method 
of increasing oncolytic MV selectivity is to engineer miRNA 
sensitive viruses which can only successfully infect cells in which 
certain miRNAs are downregulated (i.e., cancer cells). For exam-
ple, a virus has been developed which shows sensitivity to three 
host miRNAs through insertion of specific miRNA target sites 
into the viral genome, rendering the virus incapable of infecting 
healthy cells which express one or more of these miRNAs but 
still able to infect specific cancer cells which have downregulated 
levels of these miRNAs (118).

As well as showing selectivity to tumor cells, oncolytic MV 
therapy has been shown to recruit certain aspects of the host 
immune response including neutrophils (119) and dendritic cells 
(120) to augment tumor cell lysis by also stimulating anti-tumor 
immune responses to clear the tumor mass. This discovery has 
prompted development of oncolytic MVs which are engineered 
to stimulate the immune system at the tumor site in order to 
exploit the role it plays in anti-tumor immunity. For example, 
molecules known to stimulate potent immune responses, such as 
neutrophil-activating protein (NAP) derived from Helicobacter 
pylori, can be engineered into the MV genome to enhance 
anti-tumor effects generated by oncolytic MV (121). Immune 

responses can also be manipulated by encoding immune 
checkpoint blocking antibodies in oncolytic MV genomes. 
These viruses will result in soluble antibodies against inhibitory 
immune checkpoints being produced in infected cells which 
will act to dampen the ability of the immune response to limit 
itself. Blocking of inhibitory immune checkpoints allows OVs to 
exploit the immune system to a greater extent than would occur 
naturally as the immune cells are deprived of negative signals 
which usually regulate the immune response. This approach has 
been explored by Engeland et al. with promising results warrant-
ing further investigation (122).

One potential problem encountered with oncolytic MV 
is the widespread immunity in the population, gained from 
measles vaccinations. This immunity could dampen the effect 
of oncolytic MV therapy by rapidly clearing the virus before it 
can take effect on tumor cells. There are a number of potential 
ways to overcome this, for example, administering immuno-
suppressants along with oncolytic MV, however, this approach 
has drawbacks as immuno-suppression must be carefully man-
aged to ensure patients do not become susceptible to infection 
by otherwise harmless agents. The most promising solution 
so far is to “hide” the virus within mesenchymal stem cells, 
allowing delivery of the virus to the target site without recogni-
tion by the immune system and thereby bypassing the effect 
of neutralizing antibodies (123). It is also possible to exchange 
measles coat proteins (which are recognized by existing neutral-
izing antibodies) for those of a virus to which patients are not 
immune. For example, Miest et al. successfully replaced measles 
envelope glycoproteins with those from a related virus (canine 
distemper virus) which allowed the MV genome to be trans-
ported without detection by existing neutralizing antibodies 
against MV envelope proteins (124).

Much progress has been made with MV over the years and 
this has resulted in many clinical trials being started to ascertain 
the suitability of oncolytic MV as a clinical treatment. Various 
cancer types have been targeted for clinical trials of oncolytic MV 
including myeloma (125) and ovarian cancer (126). Encouraging 
results have been obtained, especially with regard to safety pro-
files, and this warrants further studies into optimal oncolytic MV 
treatments (127).

OTHeR Ovs

Reovirus is a double-stranded, non-enveloped RNA virus of the 
Reoviridae family and is considered a naturally occurring OV. 
Reoviruses are thought to selectively infect tumor cells because 
their oncolytic functions depend on the activation of the Ras 
pathway (128) which tends to be upregulated in transformed 
cells. Reolysin is a type 3 Reovirus and is so far the only wild-
type Reovirus undergoing studies for use as a therapeutic agent. 
Many clinical trials have been performed or are ongoing and are 
being conducted on various tumor types as discussed by Gong 
et  al. (129). In 2015, the FDA and EMA granted Reolysin an 
orphan drug designation for various cancers including gastric, 
pancreatic, and ovarian cancer (130).

Other viruses are now being tested as therapeutic agents for 
cancer treatment. As melanoma is easily targeted, many current 
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studies are focused on this neoplasm (131). In recent years, two 
promising viruses have come out as possible OVs: coxsackievirus 
and echovirus. The former is responsible for the common cold 
and enters target cells via ICAM-1, while the latter is a positive 
sense single-stranded RNA virus from the Picornaviridae family 
responsible for many human disorders. As these two strains are 
the cause of very common diseases in humans, it is very important 
to ensure their safety.

TUMOR CeLL BiOLOgY AND viRAL 
THeRAPY

In the search for the most effective viral therapy to treat cancer, 
alongside the focus on how to improve the virus we can also 
attempt to influence tumor cell biology to our advantage. This 
strategy has been adopted by various groups and research has 
so far shown that there are many tumor cell genes which can be 
manipulated to increase the efficacy of OVs.

For example, tumor cell genes can play a role in the targeting 
of OVs to tumor cells. It was found by Cuddington and Mossman 
that a certain OV (Bovine herpesvirus-1) is better able to infect 
cells which have increased levels of KRAS expression (e.g., tumor 
cells) (132). This represents a method of tumor targeting which 
relies on tumor cell factors to ensure oncolytic therapy is delivered 
to tumor cells, leaving healthy cells unharmed. This knowledge 
could potentially be applied to other oncolytic viral therapies by 
engineering entry mechanisms specific to tumor cells.

The aberrant expression of components of the Raf/MEK/
ERK pathway in tumor cells can also have an effect on the regu-
lation of Ad receptor and therefore levels of viral infectivity. As 
this pathway tends to be upregulated in tumor cells compared 
with healthy cells, it can have a significant effect on oncolytic 
viral therapy. It was found that this pathway plays a role in 
downregulation of CAR (Ad receptor) and therefore oncolytic 
Ad will be less able to infect target tumor cells. To overcome 
this, it is possible to inhibit MEK either directly or indirectly 
in order to inhibit the Raf/MEK/ERK pathway and re-establish 
expression of CAR on the cell surface (133). However, it has 
subsequently been shown that phosphorylation of ERK during 
the later stage of adenoviral infection can actually play a role in 
facilitating the sustained levels of viral protein within the cell 
required to produce enhanced levels of progeny virions (134). 
Taken together, this evidence highlights the need to balance ini-
tial inhibition of this pathway to increase CAR expression with 
later enhancement of the same pathway to facilitate sustained 
progeny production.

As well as mutations, regulation of certain genes using micro-
RNA can also be used to enhance viral specificity for tumor cells. 
For example, using an miRNA which is downregulated in tumor 
cells (such as let-7a) to control expression of an essential viral 
gene in VV (such as B5R which increases both pathogenicity 
and oncolytic activity) results in a virus which can only express 
sufficient amounts of B5R in cells which have low levels of let-7a 
expression, i.e., tumor cells (15).

Another gene found in tumor cells that can influence OV 
therapy is VEGF. Our group has demonstrated that VEGF-A 
increases VV internalization and in turn replication levels (135). 

Therefore, oncolytic VV can take advantage of the increased 
expression of VEGF by tumor cells to increase delivery of thera-
peutic genes which in turn increases the efficacy and potency of 
the treatment. In addition to this, Arulanandam et al. found that 
the increase in VEGF expression upon infection with VV leads 
to upregulation of PRD1-BF1 (a transcription repressor) which 
increases sensitivity of tumor vascular endothelial cells to infec-
tion with vaccinia via repression of type-1 interferon anti-viral 
signaling. This increase in viral tropism in turn allows the OV to 
spread through the tumor more efficiently and therefore increases 
the efficacy of this oncolytic therapy (136). This natural repression 
of interferon signaling highlights the potential of using interferon 
inhibitors to increase the efficacy of oncolytic viral therapy, as 
seen by Stewart et al. (137).

It has also been found that a properly functioning host inter-
feron response pathway is a critical factor in measles infection 
of malignant pleural mesothelioma. It was seen that in cell lines, 
there is a correlation between sensitivity of cells to measles infec-
tion and an inability of the cell to elicit a full interferon response 
in the presence of MV (138). This warrants further investigation 
as it suggests that inhibition of the interferon pathway could 
prove to be critical in ensuring the efficiency of oncolytic therapy. 
Previous to this study, it was also found that VV infection is greatly 
increased through downregulation of c-Jun NH2-terminal kinase 
(JNK). Inhibition of the JNK signaling cascade leads to lower 
levels of double-stranded RNA dependent protein kinase which 
in turn allows increased replication of VV genomes (139). This 
knowledge provides an avenue of exploration for improvement 
of OV efficacy.

Also, it has been reported that another gene found in tumor 
cells (CEACAM6) has an effect on oncolytic viral therapy. This 
tumor-associated gene has various functions including a role 
in promotion of tumor adhesion and invasion among other 
factors (140). It was shown by Wang et al. that over-expression 
of CEACAM6 did not have an effect on Ad receptor expression 
or at attachment and internalization steps of infection but did 
interfere with cytoplasmic virus trafficking to the nucleus via 
reduced expression of cytoskeletal proteins (141). As this cell 
adhesion molecule is able to inhibit adenoviral infection of tumor 
cells, systemic pre-treatment with siRNA targeting this protein 
could significantly enhance the anti-tumor response generated 
by adenoviral vectors.

Another host system which can have a significant effect on 
oncolytic viral efficacy is the stress response pathway. In the 
case of oncolytic rhabdovirus, inhibition of certain ER stress 
response factors can significantly increase efficacy of subse-
quently delivered oncolytic rhabdovirus (142). This method of 
pre-conditioning tumor cells to improve subsequent viral infec-
tion warrants further study as a potential method of increasing 
efficacy of oncolytic therapy in patients.

In addition to this, induction of the unfolded protein response 
in tumor cells has been found to increase the efficacy of oncolytic 
Ad by improving viral spread and tumor cell killing (143).

Recently, it has been reported that host microRNAs are able to 
regulate infection of cells with various viruses and in various ways. 
One of these is the control of Ad replication by miR-27a/b which 
downregulates SNAP25 and TXN2. This leads to a reduction in 
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Ad entry into cells and cell cycle arrest, respectively (which in 
turn reduce replication of Ad within the cell) (144). Controlling 
expression of host miRNA by inhibition of miRNA processing 
factors could therefore be a promising way to ensure maximal 
efficacy of oncolytic Ad therapies.

These examples open new insight in the field of oncolytic 
viral therapy revealing the possibility to manipulate virus–host 
interaction. We are still far from the optimum and new studies 
should be focused on the long-term effects of this interaction and 
the possible side effects.

CONCLUSiON AND THe FUTURe  
OF THe FieLD

Oncolytic viral therapy is a promising treatment for cancer. New 
knowledge regarding both viral biology and tumor cell biology 
has made it possible to improve several aspects of OV therapy 
including safety, potency, and delivery methods. Also, the pos-
sibility of relying not only on direct lysis of tumor cells by viral 
infection but also mounting a multi-faceted approach involving 
viral lysis, immune stimulation, and gene therapy has become an 
important aspect of research in this field.

As the current treatment options for cancer tend to rely on 
only one method of attack, formulating a therapy which has 
the ability to act in multiple ways against cancer is an extremely 
exciting prospect. In order to effectively kill tumor cells and also 
reduce the chance of recurrence, it is necessary to utilize both the 
ability of virus infection to lyse the cells which are infected along 
with the ability of virus infection to stimulate a potent immune 
response, generating long lasting immunity against the antigens 
present on tumor cells.

If we can also bring into play gene therapy which can act in 
multiple ways, ultimately leading to reduction in tumor volume, 
we can make oncolytic viral therapy an even more formidable 
weapon in the fight against cancer.

The next step in this area should be to improve efficacy 
through arming with immuno-modulatory genes. These genes 
can influence the host response to viral infection, stimulating 
long-term immunity in the form of memory T-cells and attracting 

immune cells to the tumor mass through stimulation of cytokine 
production. In addition, combined therapy with conventional 
agents should be another relevant field of research, in order to 
increase viral action. This area of research involves a multitude of 
possibilities including ways to increase the host response to virus 
(for example, blocking immune checkpoints) and also the use of 
oncolytic therapy to augment the action of conventional therapy 
like chemotherapy and radiotherapy.

We also need to focus on exploiting the range of genes found 
to be differentially expressed in tumor cells which have recently 
been seen to play a role in potency of OVs. If we are able to gain a 
better understanding of the interaction between virus and tumor 
cells, we can overcome some of the obstacles in OVT by modulat-
ing the expression of tumor cell genes to enhance viral infectivity 
and efficacy.

Ultimately, the long-term goal is to formulate a treatment which 
can target solid tumors and circulating tumor cells in a number of 
ways simultaneously (145), with the aim of mounting a response that 
is effective even if the tumor cells become resistant to one approach. 
In order to do this, we need to take into consideration the interac-
tions between tumor cells, virus, and the host. The most effective 
treatments will be designed to improve viral infection of tumor cells, 
boost immune responses to tumor antigens and manipulate tumor 
cell gene expression and pathways to favor successful viral infection. 
This can improve on current therapies which are ineffective once 
the tumor cells gain resistance, an issue which occurs often given 
the heterogeneous and rapidly mutating nature of many cancers.
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