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Membrane-bound organelles are integrated into cellular networks and work together for 
a common goal: regulating cell metabolism, cell signaling pathways, cell fate, cellular 
maintenance, and pathogen defense. Many of these interactions are well established, 
but little is known about the interplay between mitochondria and lysosomes, and their 
deregulation in cancer. The present review focuses on the common signaling pathways 
of both organelles, as well as the processes in which they both physically interact, their 
changes under pathological conditions, and the impact on targeting those organelles for 
treating cancer.
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INTRODUCTION

Cancer is characterized by the unrestricted cellular growth and proliferation of abnormal cells. It 
exhibits properties of motility, invasion, angiogenesis, and metastasis. Recent studies identified 
diverse mechanisms of metabolic plasticity in cancer cells. These include increased glucose uptake 
in most tumors, elevated glycolytic intermediates, increased pentose phosphate pathway activities, 
increased glutamine catabolism, and increased use of lactate as a fuel in selective tumors (1).

According to the American Cancer Society, it is estimated that, in the US, almost 1.7 million new 
cases of cancer will be diagnosed in 2017. Mostly, general cancer treatments are limited to radia-
tion, chemotherapy, and surgery. However, these treatments encounter non-specific distribution 
of chemotherapeutic agents, insufficient drug concentrations to reach the tumor, and restricted 
ability to survey therapeutic responses (2). More efforts are targeted to find new therapies to help 
overpass these obstacles. Subcellular targeting is beneficial for therapy in several scenarios (3):  
(1) basic organelle malfunctions could be targeted, making the process more selective; (2) the quantity 
of drug required could be significantly reduced because of its specificity, which eventually helps in 
decreasing side effects; and (3) most importantly, intracellular drug targeting may surpass dangerous 
drawbacks of drug actions in cancer therapy, i.e., multidrug resistance (4, 5).

In most of the mechanisms of cancer initiation and progression, different organelles are involved, 
especially mitochondria and lysosomes, for their relevance in energy homeostasis and cell death 
(6). The purpose of this review is to shed light on the roles of mitochondria and lysosomes in cancer, 
as well as them being prominent targets for cancer therapy.

THE ROLE OF MITOCHONDRIA IN CANCER

Mitochondria, also called “powerhouses” of cells, are double membrane organelles, with their own 
genome, thought to have been originated from an ancient symbiosis that resulted when a nucleated 
cell engulfed an aerobic prokaryote. Through evolution, mitochondria conserved only a small part 
of prokaryotic bacterial genes, including the ones encoding 13 proteins of the respiratory chain (7).  
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In this manner, mitochondria gained a central role in the regula-
tion of metabolism, cell proliferation, and apoptosis, while many 
tasks were transmitted to the host cells (8).

Other than being cell’s powerhouses, mitochondria func-
tion as signaling organelles. They coordinate distinct metabolic 
pathways, producing metabolites required for cell survival and 
proliferation (9). In fact, mitochondria are key players in the 
calcium-signaling pathway (10). When toxic stimuli damage 
the cell, mitochondria release pro-apoptotic molecules, such as 
cytochrome c, thus regulating cell death (11). Moreover, mito-
chondria are established as the major site of production of free 
radicals, which are major signaling molecules in the cell (12). 
Recently, it has been shown that mitochondrial metabolites do 
not only have intermediary roles in energy generation but can 
also promote regulatory effects on post-translational modifica-
tions of proteins (13), as well as affecting chromatin structure and 
function (14).

Multiple human diseases have been strongly associated with 
impaired mitochondrial homeostasis. These include liver and 
cardiovascular diseases, neurological and muscular disorders, 
seizures, susceptibility to infections, and cancer (15–18). In 
cancer, mitochondrial roles vary as a function of genetic and 
environmental differences, as well as the tissue-of-origin of the 
diverse types of cancer. The main mitochondrial processes con-
tributing to tumorigenesis include mitochondrial biogenesis and 
mitophagy, fission and fusion dynamics, metabolism, oxidative 
stress, and cell death (19).

Compared to normal cells, cancer cells show many alterations 
in energy metabolism. In the 1920s, cancer metabolism studies 
commenced with Otto Warburg’s observation: to produce energy, 
cancer cells rely less on mitochondrial respiration and more on 
glycolysis. Warburg hypothesized that mitochondria must be 
dysfunctional, taking into consideration that glycolysis gives a 
lot less energy as compared to mitochondrial respiration (20). 
However, other scientists believed that the reduced mitochon-
drial activity is due to higher glycolysis. In some cases, Warburg’s 
proposal holds true. Nevertheless, there are reports showing that 
the mitochondrial function in cancer cells in some cases is intact, 
or mitochondrial biogenesis is increased (21).

Mitochondrial biogenesis could be described as the division 
and growth of pre-existing mitochondria. It is regulated at the 
transcriptional and post-transcriptional levels of gene expres-
sion (22). Regulating mitochondrial biogenesis is an attractive 
target of key oncogenic signaling pathways, since cancer cells 
induce it to increase ATP production for cellular proliferation. 
PGC-1α, through its interactions with numerous transcription 
factors, is a central regulator of mitochondrial biogenesis (23). 
It portrays a dual effect on cancer viability. On the one hand, 
PGC-1α acts as a tumor suppressor in some cancers, resulting 
in induced apoptosis upon overexpression. In human epithelial 
ovarian cancer, apoptosis was induced via the organized regula-
tion of Bcl-2 and Bcl-2-associated X protein (BAX) expression 
by PGC-1α (24). PGC-1α is considered a tumor suppressor not 
only because it induces apoptosis but also because it has been 
found to suppress the metastatic abilities of tumor cells via the 
direct regulation of transcriptional machinery (25, 26). For 
example, PGC-1α directly increases ID2 transcription that binds 

to the transcription factor TCF4, rendering it inactive. This in 
turn leads to a downregulation in metastasis-related genes, such 
as integrins, that are able to influence metastasis and invasion 
(25). On the other hand, the ability of PGC-1α in sustaining 
metabolic homeostasis can also promote cancer cell survival and 
tumor metastasis (27). In cancer cells, silencing PGC-1α resulted 
in deferred invasive potential and weakened metastatic ability 
without affecting proliferation and tumor growth. Consistently, 
the transition from primary lung tumor cells to metastatic can-
cer cells was coupled with more dependence on mitochondrial 
respiration, via PGC-1α, leading to an upregulation of PGC-1β, 
ERRα, and NRF1, which are mitochondrial-related biogenesis 
genes (28).

Another key activator of mitochondrial biogenesis in cancer is 
c-Myc, a transcription factor regulating cell cycle, proliferation, 
metabolism and cell death. Studies have demonstrated that the 
loss or gain of Myc decreases or increases mitochondrial mass, 
respectively. This is due to the fact that over 400 mitochondrial 
genes are identified as targets of c-Myc (29). A third effector of 
mitochondrial biogenesis is mammalian target of rapamycin 
(mTOR). It controls mitochondrial gene expression through the 
activation of PGC-1α/YY1 and represses the inhibitory 4E-BPs 
(eukaryotic translation initiation factor 4E-binding protein 1) 
that downregulates the translation of mitochondrial proteins (30).

During tumorigenesis, mitochondrial dynamics is very impor
tant. It determines the equilibrium between cell death programs 
and mitochondrial energy production. Several studies demon-
strated, in cancer, an imbalance in mitochondrial fission and 
fusion activities, depicted in decreased fusion, and/or elevated 
fission that resulted in fragmented mitochondrial networks via 
the K-Ras-DRK1/2-Drp1 pathway (31, 32). Also, c-Myc affects 
mitochondrial dynamics by altering the expression of proteins 
implicated in the fission and fusion processes (33).

Furthermore, mitochondria have a tight relationship with the 
intrinsic (also called mitochondrial) apoptotic cell death program, 
since B-cell lymphoma-2 (BCL-2) family of proteins regulates the 
integrity of the outer mitochondrial membrane (OMM). Mainly 
two members of this family, BAX and Bcl-2-associated killer 
(BAK) can break the OMM in response to apoptotic stimuli. This 
releases apoptogenic factors from inside mitochondria, such as 
cytocrome c, inducing activation of caspases and subsequent cell 
death. In some cases, mitochondria can also participate in the 
extrinsic apoptotic pathway, which is initiated by cell membrane 
death receptors. For example, FAS receptor can truncate Bid 
protein, another member of the BCL-2 family, via caspase 8. Trun
cated Bid (tBid) can then translocate to mitochondria to induce 
apoptosis (34).

Mitochondrial morphology is a hallmark for apoptotic suscep-
tibility. Even though fission and fusion do not regulate apoptosis 
per  se, the generated mitochondrial morphology supports the 
interaction with pro-apoptotic Bcl-2 proteins. Thus, mitochon-
drial hyper-fragmentation causes resistance to apoptosis due to 
the inability of mitochondrial membranes to interact with pro-
apoptotic proteins (35).

Mitochondria play major roles in metabolic reprograming, 
including the synthesis of macromolecules and cellular survival 
(1). One mechanism by which cancer drives these alterations in 
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metabolism is limiting pyruvate utilization by the mitochondria. 
This is achieved by regulating pyruvate kinases such as PKM 
isoforms (36), as well as downregulating mitochondrial pyruvate 
carriers: MPC1 and MPC2 (37). Moreover, in some tumor types, 
mutations in the enzymes of the tricarboxylic acid (TCA) cycle 
render the mitochondria dysfunctional. Cells from such tumors 
use glutamine-dependent reductive carboxylation rather than 
oxidative metabolism as the major pathway of citrate formation. 
This, in turn, leads to the major reprograming of amino acid 
metabolism and lipid synthesis (38).

There are multiple levels at which both mitochondrial biology 
and tumorigenic signaling vastly intersect. First, cellular physiol-
ogy and tumorigenesis are affected by direct signals from mito-
chondria. Metabolites generated by the mitochondrial pathways 
affect gene transcription through chromatin modification, and 
cytosolic signaling pathways (19). For example, the TCA cycle 
intermediate α-ketoglutarate (α-KG) is a co-substrate for many 
enzymes in the cytoplasm and nucleus, including families of 
chromatin-modifying ones. In the case of chromatin regulation, 
glutamine-derived α-KG contributes to TET-dependent dem-
ethylation reactions (38). Second, many mutations were identi-
fied as directly associated with cancer risk (39). Cancer can be 
caused by mutations in nuclear-encoding genes, such as electron 
transporter chain (ETC) genes. For example, patients suffering 
from paraganglioma often presents dysfunctions in succinate 
dehydrogenase (SDH). Mutations of the same complex have also 
been found in other cancers, such as gastrointestinal stromal 
cancer, breast cancer, or renal carcinomas. Other enzymes such 
as fumarate hydratase (FH) have also found to be mutated in 
other cancers. When the function of these enzymes is lost, the 
metabolic intermediates fumarate and succinate accumulate, 
which in turn function as oncometabolites when found in excess 
(40, 41). In addition, mitochondrial DNA mutations (amplifica-
tions, deletions, point mutations, etc.) have been associated with 
various cancers (42). For example, point mutations in MT-ND1 
gene modify complex I activity, having an influence on the tumo-
rigenic characteristics of cells. Finally, and in order to support 
tumorigenesis, classical oncogenic signaling pathways alter mito-
chondrial functions. These include the c-Myc, p53, mTOR, and 
k-Ras signaling pathways (19). In addition, a main function of 
mitochondria is synthesizing aspartate for nucleotide synthesis, 
inducing cellular proliferation (43).

Mitochondria are complex organelles affecting cancer at many 
levels: initiation, proliferation, survival, or metastasis. One type 
of the various organelles that communicate with mitochondria 
is lysosomes. Mainly, this crosstalk depends on mitochondrial 
stress and/or destabilization of lysosomal membranes (44).

THE ROLE OF LYSOSOMES IN CANCER

Also known as “suicidal bags,” lysosomes were first described 
in 1950s by Christian de Duve as membrane-enclosed vesicles 
containing hydrolases. Functioning as a digestive system, they are 
found in all eukaryotic cells, except for mature erythrocytes. The 
hydrolytic enzymes that they contain include proteases, nucle-
ases, and lipases that can break down proteins, nucleic acids, and 
lipids, respectively, to their simplest subunits (45).

Lysosomes are formed when material from outside the cell is 
internalized in clathrin-coated endocytic vesicles forming early 
endosomes. Endosomal maturation occurs with the delivery 
of lysosomal acid hydrolases from the trans Golgi network, 
which contribute lowering of the internal pH to about 5.5. Late 
endosomes then mature into lysosomes as they acquire a full 
complement of acid hydrolases, which digest the molecules origi-
nally taken up by endocytosis, phagocytosis, and autophagy (46). 
Nevertheless, many investigations have proved that lysosomes are 
not only degradative organelles but also participate in metabo-
lism of the entire cell at different levels, and their modifications 
can promote or repress cell proliferation.

On one hand, lysosomes undergo Ca2+ regulated exocytosis, 
which is secreting their content into the extracellular space, and 
repairing their damaged plasma membranes; when the plasma 
membrane is injured, lysosomes quickly move to the site of 
damage and fuse with the plasma membrane. This allows effec-
tive resealing (47). On the other hand, they can sense nutrient 
availability, which controls energy metabolism and mediates the 
starvation response (48). Zoncu et al. proposed that amino acids 
have to be detected in the lysosomal lumen, signaling to the Rag 
GTPases in a manner that is vacuolar H+-ATPase (V-ATPase)-
dependent. This is known as the “inside-out” mechanism (49). 
Leucine, among other amino acids, must accumulate in the lumen 
of the lysosome to trigger the central regulator of cellular and 
organismal growth, mammalian target of rapamycin complex I 
(mTORC1) (50). mTORC1 is recruited by Rag GTPases on the 
lysosomal surface in response to amino acids, the site of activa-
tion by Rheb (Ras homolog enriched in brain), when growth 
factor-stimulated PI3K–Akt signaling is on (51, 52). Upon amino 
acid and growth factors removal, Rag GTPases releases mTORC1, 
causing it to become cytoplasmic and inactive. In those condi-
tions, the negative regulator of Rheb, tuberous sclerosis complex 2 
(TSC2), is lysosomally localized. Thus, lysosomal proteins change 
depending on the nutrient status of the cells (53, 54).

Lysosomal biogenesis as well as autophagy is controlled by the 
main regulator of lysosomal genes, known as TFEB or transcrip-
tion factor EB; when mTORC1 is active, TFEB remains inactive 
at the lysosomal membrane. Inactivated mTORC1 induces TFEB 
localization to the nucleus to activate lysosomal gene transcrip-
tion (52, 55).

Since lysosomes also serve as platforms of activation of 
mTORC1, it is important to mention the dysregulation of this 
pathway in cancer. Indeed, mTORC1 regulates several anabolic 
processes that are critical for tumorigenesis: it promotes protein 
synthesis, aerobic glycolysis, de novo lipid synthesis, de novo 
nucleotide synthesis, and represses autophagy and lysosomal 
biogenesis (56–59). Genes that encode components of the 
PI3K–Akt–mTOR pathway are frequently mutated in cancer, but 
despite few mutations have been characterized in mTOR, many 
tumor types present mTOR hyperactivation, thus promoting 
tumorigenesis (60, 61).

In addition, lysosomal intracellular positioning is impor-
tant for adhesion and motility (62), and important for mTOR 
signaling, autophagosome formation, and autophagosome-
lysosome fusion, and changes depending on the nutrient avail-
ability. During starvation, mTORC1 activity is repressed, which 
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induces autophagosome formation. Starvation increases pH, 
causing lysosomes to cluster near the microtubule-organizing 
center (MTOC), facilitating autophagosome–lysosome fusion. 
Conversely, nutrient replenishment restores basal pH inducing 
lysosomal scattering, which brings lysosomal mTORC1 to the cell 
periphery and stimulates its activity by increasing its coupling to 
the gradient of signaling molecules emanating from the plasma 
membrane (63). Given that peripheral lysosomes inside the cell 
are responsible for cell adhesion and motility, targeting those 
lysosomes in cancer cells is also a good strategy for cancer treat-
ment (62).

As de Duve already stated in the 1950s, lysosomal membrane 
permeabilization (LMP), consequently leading to the leakage of 
lysosomal content into the cytoplasm, induced what is known as 
“lysosomal cell death” (45, 64). Major players of this mechanism 
are lysosomal cathepsin proteases. They have apoptotic and/
or necrotic features, depending on the cellular context and the 
extent of leakage occurring into the cytosol (65).

Lysosomes in cancer cells undergo major changes. In some 
cases, they have an increased volume and protease activity, along 
with an improved lysosomal protease secretion, as compared to 
lysosomes in normal cells. Thus, they become hyperactivated as a 
reaction to fulfill the needs of the challenging microenvironment 
of the tumorigenic cells (62). For example, they require the inges-
tion of huge amounts of adhesion molecules and extracellular 
matrix molecules, leading to an upregulation in exocytosis. Also, 
they have to move inside the cell to repair damaged membranes 
(66, 67). Recently, a correlation between lysosomal movement 
and tumor cell invasion was also established, which was induced 
by tumor microenvironment stimuli (68). In particular, acidic 
extracellular pH induced lysosomal movement toward the cell 
peripheries, successively leading to Cathepsin B exocytosis from 
the lysosomes. This eventually promoted protease-dependent 
tumor invasion (69, 70). In vitro studies with glioma cells have 
shown that inhibition of lysosomal exocytosis with vacuolin-1 
is a good strategy for fighting against invasion in cancer (71).

As explained above, changes in the lysosomal compartment, in 
the presence of increased secretions of cysteine cathepsins, ren-
der these lysosomes pro-oncogenic. This results in an increased 
neoplastic progression, via proteolytic pathway initiation (72). 
Other than matrix remodeling, lysosomal role in degradation 
is crucial in tumorigenesis. This has been observed in reports 
revealing that specific intracellular cathepsin inhibitors are able 
to block collagen degradation, promoting tumor viability (73). 
However, cathepsins are also depicted as proteases with tumor 
suppressor abilities for their role in inducing cell death through 
LMP (74, 75).

Due to their role in cell death, autophagy, and deregulating 
metabolism, targeting lysosomes have a great therapeutic poten-
tial in cancer. Lysosomal proteins are indeed good targets for 
cancer treatment (76), such as lysosome-associated membrane 
protein 1 (LAMP-1). LAMP-1 is suggested to have a role in cell–
cell adhesion and migration, since it was detected on the surface 
of highly metastatic cancer cells, particularly from colon cancer 
(77). V-ATPase is another significant lysosomal membrane pro-
tein participating in cancer. It functions as a pump of protons to 
create an acidic pH of lysosomes. Also, it regulates endocytotic 

trafficking and affects the tumor microenvironment, by extruding 
protons into the extracellular matrix (78). Moreover, in tumor 
malignancy, V-ATPase participates not only in the dysregulation 
of lysosomal trafficking but also in mTORC1 activation and 
autophagy (79).

In addition, lysosomes are key players in cancer drug resist-
ance. They can sequester cancer drugs into their acidic milieu, 
thus, blunting the drugs’ effects (80). This further proves that 
targeting lysosomes may be a promising new therapeutic strategy 
for cancer.

Since both organelles, mitochondria and lysosomes, share the 
power of majorly impacting the process of tumorigenesis, we 
will next further describe the main crosstalk between these two 
important organelles, shedding light on their interplay in cancer 
and their impact on cancer therapy.

THE MITOCHONDRIAL–LYSOSOMAL 
INTERPLAY IN CANCER

In cancer, several important changes occur in all the organelles. 
However, the interplay between mitochondria and lysosomes 
is of high importance, because both organelles can interact to 
promote, in some cases cell death and in others tumorigenesis. 
There are two processes in which mitochondria and lysosomes 
work together: the first is LMP, a process in which enzymes from 
lysosomes can induce mitochondrial death pathway, and the 
second is mitophagy, a process in which lysosomes can degrade 
mitochondria, resulting in cell survival or cell death. Other than 
these two processes, there are several common effectors that play 
important roles in both organelles, which are also affected in 
cancer.

Mitochondrial–Lysosomal Mechanisms
Lysosomal Membrane Permeabilization
As mentioned above, LMP is a mechanism that induces two types 
of cell death: apoptosis induced by partial and selective LMP, 
and necrosis provoked by the complete disruption of lysosomes. 
One of the causes of apoptosis during LMP is the activation of 
caspases in the mitochondrial death pathway by mitochondrial 
outer membrane permeabilization (MOMP) (65).

Reactive oxygen species (ROS) and cathepsins are well-
known mediators of LMP-triggered cell death (81). It has been 
reported that only cathepsin D in the cytoplasm is enough to 
induce MOMP and apoptosis in human fibroblasts. However, 
cathepsin D alone is not in all cases of LMP sufficient to induce 
cell death (65).

As shown in Figure 1, MOMP can be triggered by LMP in 
two manners: either Bid dependent or Bid independent. Bid is 
known as BH3-interacting-domain death agonist and belongs 
to the pro-apoptotic BH3-only Bcl-2 family. The Bid-dependent 
process occurs when Bid is cleaved by the active cathepsins at 
cytosolic pH (specially cathepsins B and D), after which Bid is 
capable to form pores at the OMM inducing MOMP and releas-
ing cytochrome c from the mitochondria (81). Despite tBid is 
also known to activate BAX and BAK, in some cases, LMP can 
induce MOMP in a Bid-independent manner; cathepsins or 
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FIGURE 1 | From lysosomal membrane permeabilization (LMP) to cell death through mitochondrial outer membrane permeabilization (MOMP). LMP is a process in 
which intralysosomal content (mostly cathepsins but also ROS) is leaked to the cytoplasm. Massive disruption of lysosomes induces cell death by necrosis, but 
selective LMP can induce apoptosis by MOMP. Cathepsins can promote, on the one hand, the cleavage of the pro-apoptotic protein Bid; and on the other hand, 
the translocation of Bcl-2-associated killer (BAK) and BAX to the outer mitochondrial membrane (OMM) where they form pores. Truncated Bid (tBid) can itself form 
pores to the OMM but can also activate BAK/BAX. These two processes can induce apoptosis, via release of cytocrome c and in a caspase-dependent way or 
independently of caspases. A positive feedback loop exists given that caspases and cathepsins are also inducers of LMP.
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stress stimuli can directly activate the proteins BAX and/or BAK 
(82, 83). After their activation and translocation to the mito-
chondria, BAX and BAK make pores at the OMM. This permits 
the translocation of numerous molecules bigger than 100 kDa, 
without inducing membrane rupture leading to apoptosis 
(84–86). Furthermore, cathepsin B has a major role in linking 
LMP to MOMP via the generation of lipid mediators, such as 
arachidonic acid that induces MOMP (87). Alternatively, other 
than ROS and cathepsins, there is a large list of agents capable 
of inducing this mitochondrial membrane permeabilization, 
such as sphingolipids, phospholipase A2, etc. (64). Some of these 
stimuli, like the pro-apoptotic proteins or caspases, are derived 
from mitochondria, suggesting that there is a positive feedback 
loop: mitochondrial damage also induces LMP (Figure 1).

In addition, the mechanism by which cathepsins are released 
from the lysosomes is not yet clear. There are three possible 
hypotheses: (i) through the rupture of the lysosomal membrane, 
(ii) through specific pores, or (iii) by special transporters. In an 
attempt to find which of the three hypotheses is valid, fluorescently 
labeled dextran molecules of different sizes were used. When 
inducing LMP, it was shown that only small molecules (size of 
10 kDa) were released to the cytoplasm in most of the cells. In 
almost half of the cells, 40-kDa molecules were redistributed to 
the cytoplasm, and molecules larger that 70 kDa remained inside 
lysosomes. Based on the fact that cathepsins are relatively small 
proteins, around 40 kDa in size, it is inferred that cathepsins are 
among these released molecules. Furthermore, the low intralyso-
somal pH was maintained, suggesting that lysosomes were still 
active (88). However, it is still not enough to rule out any of the 
possible mechanisms.

Until now, several explanations may account for the higher 
vulnerability to LMP of cancer cell lysosomes. Since lysosomes 
are relatively large in cancer cells (89), one possibility would be 
that they are more prone to inducing cell death than lysosomes 
with normal sizes (90). Another possibility lies in the observation 
that cancer cells have higher metabolic rates. This is accompanied 
by an elevated turnover of proteins that contains iron, leading 
to iron accumulation in the lysosomes. Subsequently, these lys
osomes will undergo an iron-mediated predisposition to a ROS-
induced LMP (91). In other words, a characteristic of cancer 
cells is the increased levels of ROS, which is associated with an 
amplified release of cathepsins from the lysosomes. Since cancer 
cells appear to be more susceptible to LMP, its induction will 
eventually facilitate cancer cell death (92).

Autophagy and Mitophagy
Macroautophagy is a process in which intracellular proteins or 
organelles are degraded in the lysosomes. Degraded products 
are then released from lysosomes and recycled into biosynthetic 
and metabolic pathways. Through the elimination of those dam-
aged components, autophagy basically provides quality control 
over proteins and organelles, as well as sustains mitochondrial 
metabolic function and energy homeostasis (93). More than 
30 proteins coordinate the autophagic processes, generating 
autophagosomes from essentially all membrane sources from 
the cell. Autophagy-related genes (Atg) control the processes of 
autophagy. The products of Atg genes are regulated by nutrients 
(mTOR), energy [AMP-activated protein kinase (AMPK)], and 
stress [hypoxia-inducible factor (HIF)], which can turn the path-
way on and off (94). Nevertheless, autophagy may also induce cell 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FIGURE 2 | Mitochondria and lysosomes downstream mammalian target of 
rapamycin complex I (mTORC1). Under nutrient rich conditions, active 
mTORC1 can induce the transcription of different genes involved in 
mitochondrial function and biogenesis. At the same time, it can repress TFEB 
transcription factor, which is the main responsible for transcription of genes 
involved in lysosomal and mitochondrial biogenesis, autophagy, etc.
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death, known as autophagic cell death (ACD). This specifically 
occurs when chromatin condensation is absent (95).

Autophagy’s role in cancer is still not clear. Some cancers 
are dependent on autophagy for survival and other cancers 
use autophagy as a mechanism of cell death. In some models, 
autophagy suppresses cancer initiation by evading the toxic accu-
mulation of damaged organelles, specifically mitochondria. On 
the short run, this helps in limiting oxidative stress. On the long 
run, it restricts chronic tissue damage and oncogenic signaling. 
So, in this context, autophagy stimulation might help suppress 
and/or prevent cancer initiation. Though, other cancers depend 
on autophagy for survival. In order to fit the high metabolic needs 
of growth and proliferation, cancers (such as the pancreatic) 
use autophagy-mediated recycling to their own advantage (96). 
Hence, inhibiting autophagy in this case could be an insight for 
selective cancer therapy, since these tumors are more dependent 
on autophagy than normal tissues (93).

Degradation of entire organelles can also occur: mitophagy 
(mitochondria), reticulophagy (endoplasmic reticulum), 
lipophagy (lipid droplets), peroxophagy (peroxisomes), and 
xenophagy (microbes). Mitophagy or autophagy of mitochondria 
is required to eliminate dysfunctional mitochondria to maintain 
appropriate metabolic and cell survival signals (97). Here, we will 
focus only on mitophagy, a key process for the control of mito-
chondrial quality. It is of substantial importance for the normal 
development of cells and tissues. The most studied mechanism 
of mitophagy initiation involves the E3 ubiquitin ligase Parkin 
and the serine–threonine kinase PINK1 (PTEN-induced putative 
kinase 1). PINK1 is a mitophagy receptor found at the OMM 
that accumulates when mitochondria are damaged or undergo 
any stress leading to mitochondrial membrane potential loss. 
This PINK1 accumulation at the OMM recruits Parkin from the 
cytosol. Parkin ubiquitinates proteins at the OMM. These ubiquit-
inated proteins are recognized by p62, also known as Sequestrome 
1 (SQSTM 1). P-62 binds to LC3/Atg8 and takes p62-containing 
aggregates to the autophagosome to be degraded (98).

In the recent years, the role of mitophagy in cancer has been 
extensively reviewed. Parkin is frequently genetically inactivated 
in cancer. Although certain cancers, such as sarcomas and uter-
ine cancer, have amplifications in PARK2 gene, the majority of 
tumors with lesions in PARK2, including ovarian, breast, and 
lung cancers, harbor deletions or loss of function mutations. This 
is mainly because the PARK2 gene is found on a fragile location 
on chromosome 6 (99). Parkin has been evidenced to control 
cell cycle regulators, such as cyclin-dependent kinases (CDKs) 
and cyclins, promoting acceleration of cell cycle progression. 
It can also lead to the accumulation of damaged mitochondria 
and elevated ROS production, triggering DNA damage and 
tumorigenesis (100). In addition, PINK1 and Parkin can promote 
apoptosis through targeting and ubiquitinating anti-apoptotic 
Mcl-1 leading to degradation; they operate as molecular switches 
by dictating cell fate as a response to diverse cellular stresses 
(101, 102). However, mitophagy can happen in cancer cells 
without active Parkin, known as mitophagy-independent Parkin 
function. OMM proteins, such as FUNDC1, BNIP3, and NIX, 
are autophagy receptors, independently of ubiquitinization. 
Furthermore, other factors such as the phospholipid cardiolipin 

can induce mitophagy, as well as ubiquitin ligases, such as 
SMURF1 and MAPL (103–105).

During hypoxia, HIFs can induce mitophagy through the 
transcription of NIX and BNIP3. In addition to its transcrip-
tional activation by HIF-1, FoxO3A, PPARα, RB/E2Fs, NF-κB, 
oncogenic Ras, and p53 also transcriptionally regulate BNIP3 
(103), while NIX is transcriptionally regulated by HIF-1 and 
p53 (106, 107). Upon hypoxia or high oxidative phosphoryla-
tion, the small GTPase Rheb translocates to the OMM, where 
it can interact with BNIP3 and NIX to induce mitophagy, 
resulting in mTOR inactivation (108, 109). The role of BNIP3-
dependent mitophagy in cancer presents some controversies. 
BNIP3-dependent mitophagy is required to limit mitochondrial 
mass and ROS levels in growing tumors; its loss leads to HIF-1α-
dependent increases in tumor growth and increased progression 
to metastasis (110). However, other studies show that BNIP3 has 
a pro-tumorigenic role; its inactivation reduced cell migration 
and its upregulation suppressed the mTOR/S6K1 pathway. It is 
hypothesized that the dual role of BNIP3 can be explained by 
alternative splicing or variable transcriptional regulation via 
transcription factor Sp3 (111, 112).

Contrary to BNIP3, the role of NIX and FUNDC1 in tumor 
progression remains relatively unknown, requiring further 
investigation. They can induce mitophagy under hypoxic condi-
tions (113). However, their role in cancer mitophagy is still to be 
raveled (107).

Signaling Pathways Involved in the 
Mitochondria–Lysosomal Crosstalk
As shown in Figure 2, the master regulator of cell growth and 
metabolism mTORC1 and proteins of the same pathway are 
the main linkers of mitochondria and lysosomes. As described 
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earlier, under nutrient-rich conditions, mTORC1 is activated at 
the lysosomal surface. mRNA translation of many genes occurs, 
via the activation and repression of S6K and 4E-BP1, respectively. 
Among the genes repressed by 4E-BP are TFAM, Complex I and 
Complex V of the mitochondria, regulating mitochondrial activ-
ity and biogenesis (114).

On the other hand, under starvation conditions, mTORC1 is 
inhibited and TFEB positively regulates the expression of lysoso-
mal and autophagy genes, as well as the expression of PGC-1α. 
PGC-1α coactivates numerous biological programs in diverse 
tissues; it is a key regulator of lipid metabolism (115), but also it 
promotes mitochondrial biogenesis (30). Notably, TFEB activa-
tion can be induced by mitophagy as well, in an attempt to induce 
mitochondrial biogenesis after eliminating malfunctioning or 
damaged ones. The mechanism of TFEB activation by mitophagy 
is different than that under starvation conditions. Parkin 
promotes TFEB nuclear translocation, inducing lysosomal and 
mitochondrial biogenesis (98). In addition to that, upon energy 
depletion, AMPK is activated. AMPK serves as a fuel gage as it 
becomes active when ATP/AMP ratio is low, thus maintaining 
energy homeostasis (116). AMPK inhibits mTORC1 by the direct 
phosphorylation of Raptor, a molecule of the mTORC1 complex. 
This explains why AMPK has been considered as a tumor suppres-
sor. AMPK activation is essential for increased mitochondrial bio-
genesis under glucose-limited conditions, since AMPK activation 
increases the expression of PGC-1α and TFAM (117) (Figure 2).

When mTORC1 is active, there is an increase of mitochondrial 
biogenesis. This increase in mitochondrial biogenesis will result 
in a gain of ATP production capacity, a mandatory energy source 
for translation (114). By contrast, mitochondrial biogenesis 
induced by AMPK is an attempt to accelerate ATP generation, for 
restoring its level in favor of cell survival. This takes place under 
limiting nutrient availability or metabolic stress (118).

To further emphasize the link between mitochondria and 
lysosomes, it has been shown that mTOR not only binds to 
lysosomes (when mTORC1 is activated when amino acids are 
present) but it can also be associated with MOM. This is needed 
to integrate different stress signals that affect the function of 
mitochondria and regulate a checkpoint implicating p70S6K, 
one of the well-known targets of mTORC1 (119). Recent studies 
link mitochondrial dynamics to the equilibrium between nutri-
ent supply and energy demand, suggesting variations in mito-
chondrial architecture as an adaptive mechanism to metabolic 
demands (120).

Another important regulator is Rab7, which belongs to the 
RAB family, a RAS-related group of GTP-binding proteins. 
This family of proteins includes important regulators of vesicle 
transportation and is localized in certain intracellular compart-
ments (121). Numerous studies indicate that Rab7 plays major 
roles in controlling maturation of endosomes and transportation 
to lysosomes, as well as in phagocytosis, retromere regulation, 
cytoskeleton regulation, autophagy, and mitophagy (122, 123).

Normally, Rab7 is found on late endosomes and this acquisi-
tion is complemented by Rab5 loss, an early endosome marker. 
The switch from Rab5 to Rab7 is a process in which both pro-
teins cooperate sequentially and dynamically. This determines 
Rab5 recruitment to early endosomes and Rab7 recruitment 

and Rab5 loss at late endosomes (124–126). Late endosomes 
can fuse with lysosomes and other late endosomes, only if the 
Rab5 to Rab7 switch is accompanied by variations in fusion 
and tethering machinery. This allows direct contact in between 
organelles (127).

Other than being a marker of late endosomes, Rab7 is vital 
for mitophagy (Figure 3), as it is a downstream effector of Parkin 
(128). This occurs with the help of TBC1D15/17 and Fis1. The 
first protein belongs to the TBC family (Tre2/Bub2/Cdc16), 
having RabGAP functions (129, 130), while the latter is a fission 
protein with cytosolic N-terminal, bound to the OMM at its 
C-terminal (131, 132). In the absence or inactivity of TBC1D15, 
membranes that are labeled with LC3 excessively accumulate and 
lose their cargo orientation. In turn, membrane tubules are sent 
along microtubule tracks away from the mitochondria. Therefore, 
it is inferred that, during mitophagy, TBC1D15 binds to Fis1 and 
LC3 inducing Rab7 activity, which leads to the shaping of the 
autophagosome isolation membrane. In fact, besides promoting 
microtubule-associated trafficking and autophagosomal mem-
brane growth, the activity of Rab7 is affected by TBC1D15/17 
activity, inducing autophagosomal membrane expansion to cor-
rectly surround the mitochondria (128). This indicates that, in 
case of Parkin-regulated mitophagy, Rab7 is essential for expand-
ing LC3-labeled isolation membranes. Otherwise, inactive Rab7 
might help in mediating the release of LC3-positive membranes 
from microtubules (133). The above-described model substan-
tially differs from the well-known role of Rab7 in controlling 
autophagosome maturation and fusion with lysosomes (134, 135). 
In addition, it was shown an increase in the interaction between 
Rab7 and Mitofusin2 (MFN2), a mitochondrial fusion-related 
protein, as a response to starvation. This suggests the contribu-
tion of Rab7 during autophagosomal membrane maturation, as 
an adaptor protein used by MFN2 (136). Hence, Rab7 has a dual 
role in mitophagy, i.e., autophagosome formation and maturation.

As shown in Figure  3, this multifaceted small GTPase also 
participates in other important processes in the cell, such as in 
apoptosis and the activation of stress response pathways (137). 
One of these pathways is the mTORC1 pathway, through which 
mTORC1 moves toward a Rab7-containing compartment in the 
presence of amino acids (138). The direct interaction between 
Rab7 and mTOR has been proved by co-immunoprecipitation 
experiments (139). During bioenergetic stress, several groups 
showed a Rab7-dependent lysosomal crosstalk with apoptosis 
and its regulatory machinery, i.e., intramitochondrial recruit-
ment of endolysosomes mediates apoptosis. As explained 
before, in the presence of growth factors, mTOR and AKT are 
activated initiating downstream signaling cascades. Under these 
conditions, nutrient transporter proteins facilitate the import 
of extracellular nutrients, supporting cellular bioenergetics by 
supplying the mitochondria with metabolic substrates. In this 
case, one important apoptotic mediator, cytochrome c is retained 
at the mitochondrial intermembrane. When there is nutrient 
starvation, these same signaling cascades are silenced, and genes 
are no longer transcribed. Existing transporters are trafficked to 
the lysosomes by Rab7, where they are degraded and removed 
from the cell. This decrease in cellular bioenergetics results in 
substrate limitation at the mitochondrial site, loss of homeostasis, 
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and cytochrome c release, eventually leading to apoptosis. This 
process can be rescued by inhibiting Rab7. For example, trans-
porter proteins destined to enter the endocytic pathway and be 
trafficked to lysosomes for degradation, instead, are recycled and 
re-expressed on the cellular surface. As a result, extracellular 
nutrients are continually imported, and cellular bioenergetics is 
maintained, as well as mitochondrial homeostasis, in the absence 
of growth factors (140). In this case, Rab7 has a proapoptotic 
function, by limiting cell autonomous uptake of extracellular 
nutrients (141).

In cancer, the specific role of Rab7 is not fully understood. 
In the literature, Rab7 has been depicted as either a tumor sup-
pressor (68, 141, 142) or a proto-oncogene (143–146), depending 
on tumor type, morphology, and metastatic and invasive abilities 
(122) (Figure 3). Particularly, synergy between HSP90 inhibition 
and Rab7 depletion decreases EGFR and Her2 levels, through 
proteasomal degradation, and promotes apoptosis, depicting 

a proto-oncogenic role of Rab7 (147, 148). During melanoma 
development, Myc is activated, inducing Rab7 overexpression. 
Subsequently, Rab7 expression is downregulated to support the 
invasive and metastatic characteristics of melanoma (145). More
over, the knockdown of Rab7 in prostate cancer cells led to the 
overexpression of c-Met, a protein involved in the promotion of 
cell invasion and metastasis (149).

In fact, since Rab7 is mainly accountable for intracellular 
trafficking, which is linked to the metastatic/invasive ability of 
tumors, and the degradation of many organelles and molecules, 
such as adhesion molecules and signaling receptors, it is a key 
regulator in governing cellular homeostasis. Certainly, Rab7 is a 
central molecule of cell survival, differentiation, and apoptosis. 
Current data suggest that the regulation of Rab7 expression 
and activity can reduce several pathologies, such as cancer 
(122). Of course, further work will be needed to investigate this 
possibility.
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THERAPEUTIC APPROACHES IN CANCER 
TREATMENT

Cancer cells exhibit a significant number of metabolic alterations 
associated with mitochondria, lysosomes, and other sub-cellular 
organelles. These organelles exhibit a number of deregulations, 
which have been identified as potential drug targets for successful 
rational drug design and therapy. For their involvement in bio-
energetics, redox balancing, and survival, targeting mitochondria 
for therapeutic benefits is already in practice to induce apoptotic 
cell death (150, 151). In addition, the advances in lysosome 
research have highlighted their importance for degradation, 
signaling pathways, and cell death in pathophysiological condi-
tions; thus, targeting lysosomes has also been considered a new 
therapeutic strategy for cancer treatment (76).

In this review, we highlighted the interplay between lysosomes 
and mitochondria and its importance in cell fate. We propose 
that targeting this crosstalk between both organelles might be 
crucial for fighting cancer.

Inducing LMP
Indeed, many compounds are described to induce LMP and subse-
quent cell death in various human cancer cells and animal models 
but are not in clinical use (152, 153). Besides, little is known about 
the endogenous inhibitors preventing LMP and which mecha-
nisms suppress lysosomal hydrolases in the cytoplasm of both, 
normal and cancer cells. Inducing LMP-dependent death could 
activate self-destructive processes in tumor cells, particularly if 
those cells were dependent on such inhibitors. Future investiga-
tions are needed to clarify if antagonists of LMP inducers may be 
useful synergistically with the current clinical treatments (64).

Interestingly, a minimally invasive anticancer modality called 
Photodynamic therapy (PDT) is able to induce LMP. PDT 
combines a drug (a photosensitizing agent) with a precise light 
wavelength, inducing ROS generation and killing tumor cells 
(154). The location where the photosensitizing agent is directed 
is very important, as it determines where the primary damage 
occurs. Usually photosensitizing agents accumulate either in 
mitochondria, inducing rapid apoptosis, or in lysosomes, induc-
ing LMP and subsequent cell death (64). To date, PDT is used for 
treating or relieving the symptoms of non-small cell lung cancer 
patients and esophageal cancer patients. PDT still presents some 
limitations, since only tumors on the skin or just underneath it, 
or in internal organ linings and/or cavities can be treated with 
this technique. But it cannot be used for treating large tumors or 
metastasis (155–158).

Targeting Mitophagy
Targeting mitophagy as an approach to adjuvant chemotherapy 
has been already questioned by Chourasia et al. (107). They claim 
that the deletion or inhibition of Parkin and BNIP3 induces the 
Warburg effect, thus favoring tumorigenesis. Nevertheless, acute 
chemical inhibition of mitophagy is still an effective approach for 
advanced tumors that have switched to glycolytic metabolism 
but still depend on mitochondria for further metabolic purposes 
(107). Of course, this approach has still to be therapeutically 
tested.

Targeting Common Effectors between 
Mitochondria and Lysosomes
Other than targeting processes in which mitochondria and 
lysosomes are linked, inhibitors of their main common effectors, 
i.e., AMPK or mTOR have been already tested for cancer therapy. 
The role of AMPK in cancer cells is paradoxical. It can be a tumor 
suppressor, but can also promote tumorigenesis, stimulating cell 
survival in glucose-deficient situations and preserving metabolic 
homeostasis (117). Despite that, the use of the anti-diabetic 
drug Metformin, non-steroidal anti-inflammatory drugs, such 
as Aspirin, AICAR, and some natural products known to be 
AMPK activators, has shown to decrease tumorigenesis in animal 
models and cancer cell lines (159, 160). In addition, preclinical 
evidence suggests that Metformin appears to prevent the prolif-
eration and growth of certain tumor types. There are currently 
more than 100 ongoing or clinical studies assessing the role of 
metformin in the therapy cancer (161, 162). It is well understood 
that metformin targets the mitochondrial complex I. However, it 
has been suggested that metformin could directly influence the 
V-ATPase activity of lysosomes (163), so this fact further sup-
ports the importance of lysosomal–mitochondrial link for cancer 
treatment.

Targeting mTOR may be crucial for cancer treatment not only 
for cell growth and proliferation but also for reversing the Warburg 
effect characteristic of tumor cells (164). At the molecular level, 
mTORC1 inhibition may induce mitochondrial biogenesis via 
PGC-1α, as well as repression of transcription of mitochondrial 
genes via 4E-BP1 (114) depending on the model. mTORC1 
inhibition induces lysosomal biogenesis and also initiates several 
feedback loops to upstream pathways, activation of which might 
be beneficial for the survival of tumor cells and metastasis. The 
best-known mTOR inhibitor is Rapamycin, which does not 
inhibit directly mTOR’s kinase (catalytic) activity. Together with 
FKBP12, it binds specifically to mTORC1 (at high concentrations 
also to mTORC2). The binding occurs next to the kinase active 
site. Consequently, it can only inhibit a number of mTORC1 
functions. Given this, and the importance of mTOR for cancer, 
several groups have developed other inhibitors to target mTOR’s 
catalytic subunit (PP242, Torin 1 and 2, etc.). As reviewed by Xie 
and al., some mTOR inhibitors are already in clinical trials for 
treating cancer (165). Despite that, the utility of such inhibitors in 
oncology still appears to be limited, given that autophagy can be 
induced by mTOR inhibition, thus promoting cancer cell survival.

As reviewed above, RAB7 is a prominent target for cancer 
treatment (143). In addition, there are already drugs that target 
RAB7. It has been shown that liensinine, a major isoquinoline 
alkaloid that inhibits RAB7A recruitment to lysosomes, not 
autophagosomes. In this way, autophagy/mitophagy is impaired, 
enhancing the efficacy of chemotherapy in breast cancer cell 
lines (166).

Using Nanomedicine for Inducing Cell 
Death
Nanotechnology is the science of controlling matter, at the molec-
ular level, to generate devices with new biological, physical, and/
or chemical characteristics. It is in the spotlight of therapeutic 
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innovation. The use of nanomaterial is a particularly promising 
tool not only to improve the diagnosis but also to generate new 
cancer treatments and overcome the drawbacks of traditional 
therapies (167). In particular, the discovery of gold nanorods 
(GNRs) has provided a new method to induce apoptosis specifi-
cally in cancer cells, while posing a negligible impact on normal 
cells. They are able to induce apoptosis in cancer cells through 
lysosomal permeability, as indicated by cathepsin D release, and 
a decrease in mitochondrial membrane potential (168). These 
findings are promising for the further implementation of nano-
technology at the clinical practice.

CONCLUSION AND FUTURE 
PERSPECTIVES

Intracellular organelles, as thoroughly discussed, are the major 
players of cellular networks. Even though physical contact among 
these organelles was exhaustively described through out the 
years, research is now shifting toward revealing the crosstalk of 
these entities on the signaling levels, as well as their physiological 
relevance. Mainly, organelle interactions are needed for metabo-
lite exchange, and more interestingly, in membrane dynamics, 
intracellular organelle distribution, and the assembly of dynamic 
signaling platforms depending on cellular requirements.

In tumors, cells significantly display metabolic aberrations, 
associated directly or indirectly with mitochondria and lys-
osomes. These anomalies promote cancer cell growth and sur-
vival, while exhibiting distinctive properties that render cancer 
cells vulnerable to specific anticancer agents. In other words, the 
deregulation of these organelles in cancer cells as compared to 
their counterparts in healthy cells is a main reason for promis-
ing targeted drug therapy. Though substantial advancement has 
been made regarding elucidating the role of these anomalies in 
oncogenesis and chemotherapy-resistance, a better interpretation 
of the main pathophysiological differences between organelles of 

normal and tumor cells can undoubtedly compliment the efforts 
to improve selective targeted anti-cancer agents.

Lysosomes and mitochondria have common regulators and 
can physically interact to maintain cell homeostasis or induce 
cell death. However, in cancer everything becomes a paradox; all 
of the processes in which lysosomes and mitochondria interact, 
except for LMP, and the common regulators (mTOR, AMPK, 
Rab7, etc.) present a dual role: on the one hand, they can pro-
mote tumorigenesis and, on the other hand, they can induce cell 
death. The relative contribution of these pathways would depend 
on tumor type, state, metastatic ability, microenvironment, 
metabolic reprograming, etc. This reflects the importance of 
these two organelles for cancer treatment. New potential targets 
have been proposed, i.e., PGC-1α, TFEB, Rab7, etc. However, will 
these targets overpass the problem of having a paradoxical role in 
cancer treatment? As we have seen already, every case needs to 
be studied independently, in order to predict whether the treat-
ment would be beneficial or not. This is known as personalized 
medicine.
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