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Although most cases of myeloid neoplasms are sporadic, a small subset has been 
associated with germline mutations. The 2016 revision of the World Health Organization 
classification included these cases in a myeloid neoplasm group with a predisposing 
germline mutational background. These patients must have a different management and 
their families should get genetic counseling. Cases identification and outline of the major 
known syndromes characteristics will be discussed in this text.
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iNTRODUCTiON

Most cases of myeloid neoplasms are sporadic; however, a small subset has been associated with 
germline mutations (1–3). The 2016 revision of the World Health Organization (WHO) classifica-
tion included a group of myeloid neoplasms—such as myelodysplastic syndrome (MDS), MDS/
myeloproliferative neoplasms, and acute myeloid leukemia (AML)—with a predisposing, germline 
mutational background. The presence of underlying genetic alterations or predisposition syndromes 
is crucial for diagnosing these familial cases (4).

In familial neoplasms, mutations are present in the heterozygous condition, most commonly 
resulting in loss of functional alleles and subsequent haploinsufficiency, although gain-of-
function mutations have also been reported (5). It seems likely, although still unknown, that 
progression to hematologic malignancy requires the additional acquisition of somatic mutations 
in bone marrow stem or progenitor cells, probably in the same genes previously affected by 
germline mutations.

As many genes related to familial predisposition to myeloid neoplasms were also found to be 
recurrently mutated in sporadic cases, investigation of familial myeloid neoplasms may further 
provide insights into normal and malignant hematopoiesis and pathogenic mechanisms underly-
ing hematologic malignancies. Moreover, the presence of germline genetic alterations associated to 
myeloid neoplasms should not be limited to the proband: family members might be at higher risk  
of developing myeloid neoplasms (6, 7).

Despite efforts to identify familial cases, only a minority with germline mutation can be 
explained by known genetic factors. The use of next-generation gene sequencing is allowing more 
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FiGURe 1 | How to identify acute myeloid leukemia (AML) familial cases.
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cases of the syndrome to be diagnosed, including those without 
gene mutation (8). However, it is crucial for the germline mate-
rial availability from the proband and affected family members 
for this analysis.

Therapy-related MDS/AML seems to be associated with 
germline mutations in familial cancer predisposition genes. This 
increases the possibility of these mutations being susceptibility 
factors for AML development (9, 10).

Given the above clinical conditions, physicians should be 
trained to identify highly suspicious cases of familial neoplasms. 
A detailed family medical history, collected in all cases of myeloid 
neoplasms, especially in younger patients, must be mandatory. 
Close collaboration between hematologists and experienced 
geneticists in suspected familial cases is crucial. In this review, 
we will discuss the specific germline alterations associated to 
familial myeloid malignancies aiming to provide hematologists 
with diagnosis tools (Figure 1).

MYeLOiD NeOPLASMS wiTH  
GeRMLiNe PReDiSPOSiTiON

The 2016 revision of the WHO classification included, in a new 
subset of hematological malignancies associated to germline 
mutations, the following conditions: (1) myeloid neoplasms 
with germline predisposition without a preexisting disorder or 
organ dysfunction, (2) myeloid neoplasms with germline pre-
disposition and preexisting platelet disorders, and (3) myeloid 
neoplasms with germline predisposition and other organ dys-
function (Table 1) (4).

MYeLOiD NeOPLASMS wiTH GeRMLiNe 
PReDiSPOSiTiON wiTHOUT A 
PReeXiSTiNG DiSORDeR OR ORGAN 
DYSFUNCTiON

AML with Germline CCAAT/enhancer-
Binding Protein-A (CEBPA) Mutation
The transcription factor CEBPA is allocated in 19q13.1. This 
gene, consisting of a single exon, is involved in myeloid differ-
entiation. Familial AML with mutated CEBPA is an inherited 
autosomal dominant condition with complete or near-complete 
penetrance (11, 12). There is not a specific genotype–phenotype 
presentation. On the other hand, 10–15% of sporadic acute mye-
loid leukemia with normal karyotype (NK-AML) presents the 
somatic CEBPA mutations. Somatic, bi-allelic CEBPA mutations 
(CEBPAdm), found in 10–15% of NK-AML, confer a favorable 
prognosis, a reason why the identification of CEBPA mutation is 
currently incorporated in routine diagnosis (13, 14). The iden-
tification of the germline origin of CEBPA mutations in patients 
with CEBPAdm is recommended for discriminating between 
sporadic and familial cases. Family history is helpful since type 
or location differences between somatic and germline mutations 
are presently unknown.

Acute myeloid leukemia diagnosis may be difficult considering 
the lack of (i) specific clinical features preceding hematological 
history, (ii) anticipation, and (iii) genotype–phenotype cor-
relation, thus making family history the only source of data for 
somatic versus familial cases distinction. Identification of familial 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


TABLe 1 | Classification of myeloid neoplasms with germline predisposition (4).

Myeloid neoplasms with germline predisposition without a preexisting  
disorder or organ dysfunction
Acute myeloid leukemia with germline CCAAT/enhancer-binding  
protein-A mutation
Myeloid neoplasm with germline DDX41 mutation

Myeloid neoplasms with germline predisposition and preexisting platelet 
disorders
Myeloid neoplasms with germline RUNX1 mutation
Myeloid neoplasms with germline ANKRD26 mutation
Myeloid neoplasms with germline ETV6 mutation

Myeloid neoplasms with germline predisposition and other organ 
dysfunction
Myeloid neoplasms with germline GATA2 mutation
Myeloid neoplasms with germline predisposition with BM failure syndromes
Myeloid neoplasms with germline predisposition with telomere biology disorders
Juvenile myelomonocytic leukemia associated with neurofibromatosis,  
Noonan syndrome, or Noonan syndrome-like disorders
Myeloid neoplasms associated with Down syndrome
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cases may be impaired by occurrence of de novo mutations in 
a proband or early death of an affected parent without evident 
clinical AML manifestations. The replacement of the mutated 
allele in bone marrow can only be achieved by allogeneic stem  
cell transplantation from a previously tested related donor in 
whom the mutated allele has been excluded (15).

Finally, the recognition of familial AML with mutated 
CEBPA is essential since penetrance is nearly complete. Genetic  
counseling is key for managing these cases (16).

Myeloid Neoplasm with Germline DDX41 
Mutation
DEAD/H-box helicase gene (DDX41), allocated in 5q35.3, con-
tains 17 exons and encodes an RNA helicase protein apparently 
involved in RNA splicing. Its role in hematopoiesis and leuke-
mogenesis remains unknown. Prevalence and penetrance of 
DDX41 mutations, as well as prognosis, are unclear (4). However, 
DDX41 mutations were present in 1.5% of patients with myeloid 
neoplasm in a cohort of 1,000 patients. Fifty percent of DDX41 
mutations were germline suggesting that a germline analysis 
should be considered in these cases (17).

Familial AML with mutated DDX41 displays a pattern of 
autosomal dominant inheritance with the characteristics of other 
MDS/AML syndromes, including a long latency (18). Apart 
from the family history, there are no preceding clinical signs or 
symptoms suggesting increased risk for hematologic malignancy.

The majority of familial cases previously identified with this 
leukemia harbor a heterozygous germline frameshift mutation, 
DDX41 c.415_418dupGATG (p.D140Gfs*2), although mis-
sense and splice variants have also been described. Another 
mutation in the other DDX41 allele occurs in 50% of germline 
mutation carriers developing MDS or AML, thereby suggesting 
that DDX41 is a tumor suppressor gene (17). DDX41 may play 
a role in the pathogenesis of myeloid neoplasms with del(5q), 
since some of these deletions include DDX41 locus, leading to 
haploinsufficiency. The DDX41 defects in cases with del(5q) 
were associated with advanced disease and responsiveness to 

lenalidomide, a possible therapeutic intervention for otherwise 
poor-risk disease (19). The overall survival seems to be inferior 
in DDX41 mutations or deletions cases and a decreased DDX41 
expression seems to be associated with worse outcomes (14).

Unfortunately, surveillance of unaffected individuals in 
the general population is not possible. Nevertheless, a bone 
marrow biopsy with cytogenetic analysis and blood count may 
be recommended at regular intervals to families with known 
DDX41 mutations or deletions and other predisposition syn-
dromes (4).

MYeLOiD NeOPLASMS wiTH GeRMLiNe 
PReDiSPOSiTiON AND PReeXiSTiNG 
PLATeLeT DiSORDeRS

Myeloid Neoplasms with Germline RUNX1 
Mutation
Runt-related transcription factor 1 (RUNX1) is a protein cod-
ing gene allocated in 21q22.12, which contains nine exons.  
It encodes the DNA-binding subunit of the core-binding factor 
transcription complex that is essential for normal hematopoiesis 
(20). Myeloid neoplasms with germline RUNX1 mutations 
result from monoallelic RUNX1 mutations occurring all along 
this gene, including missense, nonsense, frameshift, insertions, 
deletions, and, a recently reported, disrupting congenital trans-
location (21).

Monoallelic RUNX1 mutations carriers show a heterogene-
ous range of clinical manifestations: from moderate thrombo-
cytopenia, bleeding, or myeloid neoplasm with frequent strong 
anticipation, to asymptomatic family members (22).

Management of patients with myeloid neoplasms and 
germ line RUNX1 mutations depends on clinical presentation. 
Diagnosis of underlying germline mutations requires allogeneic 
stem cell transplantation as consolidation therapy provided 
that RUNX1 mutations are not carried by related donors (6). 
Management of asymptomatic RUNX1 mutation carriers is 
difficult because guidelines are not presently available for 
this recently described condition. Considering that myeloid 
neoplasms with germline RUNX1 mutations occur with strong 
anticipation, close follow-ups of the younger members of 
an affected family are necessary: a baseline blood count with 
annual checkups, and a bone marrow biopsy in the event of 
significant changes in peripheral blood counts (7). Finally, as 
RUNX1 mutations are found in 32% of sporadic AML (23, 24), 
translational studies might be relevant for clarifying leukemo-
genesis in familial platelet disorders (FDP) (23, 24).

Myeloid Neoplasm with Germline 
ANKRD26 Mutation
The Ankyrin repeat domain-containing protein 26 gene 
(ANKRD26), located in 10p12.1, contains 34 exons. Mutations 
affecting this gene interfere with controlling mechanisms of 
ANKRD26 expression, impacting upon megakaryopoieses and 
platelet production (25). In 9 of 20 unrelated families with auto-
somal dominant non-syndromic thrombocytopenia-2 (THC2), 
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6 different mutations were localized in the 5′ promoter region of 
this gene (26). The overall incidence of these hematologic malig-
nancies was 240/100,000, with acute leukemia accounting for 
167/100,000, both above the expected incidences. THC2 has been 
characterized by platelet dysfunction. The thrombocytopenia is 
moderate, the mean platelet volume is normal with the presence 
of aggregation defect, and the bone marrow shows dysmega-
karyopoiesis (27, 28). To date, the presence of familial cases of 
thrombocytopenia and predisposition to myeloid malignancies 
are the milestones for ANKRD26 mutations diagnosis (29).

The RUNX1 or ANKRD26 mutations should be suspected 
among patients with thrombocytopenia with a family history of 
bleeding and/or MDS/AML. If the presence of the mutations is 
confirmed, patients and family members should be referred to 
genetic counseling and evaluation of risk of developing myeloid 
malignancies (7).

Myeloid Neoplasm with Germline ETV6 
Mutation
The ETS variant gene (ETV6), located in 12p13.2, contains eight 
exons and is essential in the development of the embryo and 
hematopoietic regulation (30). ETV6 mutations also play a role 
in hematologic malignancies (31, 32).

The hereditary syndrome of thrombocytopenia with normal 
platelet size has susceptibility to the development of diverse 
hematologic malignances. It is transmitted as a dominant trait 
associated with germline and missense ETV6 mutations (33). 
Patients present bleeding and thrombocytopenia and are often 
misdiagnosed with immune thrombocytopenia (34).

Three hotspot positions were identified in ETV6 accounting 
for p.A369G and p.A399C, at the highly conserved ETS, and 
p.Pro214L, thereby affecting DNA binding. These mutations 
were found to deter DNA binding, alter subcellular localization, 
and decrease the repression of transcription in a dominant-
negative pattern, thereby impairing hematopoiesis (25). Most 
recently, five more possibly pathogenic variants were described: 
p.I358M, p.A377T, p.R396G, p.Y401N, and p.Y401H (35).

The ETV6 mutations, such as RUNX1 and ANKRD26 muta-
tions, should be suspected among patients with thrombocy-
topenia with a family history of bleeding and/or hematologic 
malignances (36). If the presence of the mutations is confirmed, 
the patient and family members should be referred to genetic 
counseling. However, until now, there are not sufficient data in 
literature to suggest standardized treatment guidelines for these 
patients and their families.

MYeLOiD NeOPLASMS wiTH GeRMLiNe 
PReDiSPOSiTiON OTHeR ORGAN 
DYSFUNCTiON

Myeloid Neoplasms with Germline GATA2 
Mutation
GATA-binding protein 2 gene (GATA2), located in 3q21.3, con-
tains seven exons and encodes a GATA transcription factor family 
zinc finger that is essential in normal hematopoietic (37, 38).

In affected families, GATA2 mutations were transmitted as 
highly penetrant autosomal dominant traits with early MDS or 
AML onset. Onset at early age was reported in patients with syn-
dromic presentations (39). Several families with GATA2 muta-
tions have been described without any distinctive phenotypic or 
cytogenetic abnormality (2).

Some clinical syndromes, such as Emberger, MonoMAC, 
congenital neutropenia, and DCML (dendritic cell, monocyte, 
and lymphocyte deficiency), are associated with germline GATA2 
mutations (40). Emberger syndrome is associated with predispo-
sition to MDS/AL and the presence of systemic manifestations 
such as primary lymphedema confined to lower extremities  
and genitals, lymphopenia with low CD4/CD8 count ratio, cuta-
neous warts, and sensorineural deafness. Emberger syndrome 
also seems to be associated with eight independent GATA2 
variants (41). The MonoMAC syndrome is connected to MDS/
AL predisposition and immunologic defects—such as immu-
nodeficiency, monocytopenia, NK cell, B cell, and macrophage 
deficiencies—that lead to predisposition to atypical infections 
and pulmonary alveolar proteinosis (42).

Pedigree analysis showed four different GATA2 mutations: 
two in familial AML (p.T354M and p.T355del, both in the  
second zinc finger domains) (21, 43) and two other in de novo 
AML (p.R308P and p.A350N351ins8) (43).

Transformation to MDS/AL rapidly occurs conferring  
an adverse prognosis, while indication of allogeneic hematopoi-
etic stem cell transplantation appears to be the most adequate 
treatment (43).

Myeloid Neoplasms Associated with  
Bone Marrow Failure Syndromes
Inherited bone marrow failure syndromes (IBMFS) are rare 
genetic disorders with characteristic hematopoietic dysfunction 
and ensuing cytopenias, with high risk of transformation to 
clonal myeloid malignancies (CMMT) including MDS, AML, or 
isolated clonal cytogenetic abnormalities (44–48). Hematological 
neoplasms may occur as the initial manifestation of IBMF; 
approximately 25% of Fanconi anemia patients lack the typical 
disease phenotype such as short stature and radial ray anomalies 
(49, 50). Adult and pediatric de novo CMMT are not precisely 
defined, although diagnosis is based on peripheral blood cell 
counts and types, bone marrow blasts, cellularity, cytogenetic 
analysis, and dysplasia presence. A widely accepted definition of 
IBMFS-associated CMMT is, however, not presently available. 
Diagnosis of pediatric MDS is based on peripheral blood counts, 
marrow morphologic dysplasia, and blasts (51, 52). These are 
valuable indicators for defining MDS. Nevertheless, their applica-
bility to IBMFS-associated MDS in the absence of transformation 
has not been tested. The risk of developing CMMT in patients 
with IBMFS has been estimated to be 2,284-fold higher than in 
general population (53).

The differential risk of developing CMMT among patients 
with various IBMFS types has not been precisely estimated due 
to dearth population-based data (54). Despite IBMFS types shar-
ing several clinical and morphological phenotypes, IBMFS genes 
might be involved in different pathways, a reason why mutations 
in different IBMFS genes might have disparate malignant effects. 
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This provides a rationale for routine leukemia surveillance in chil-
dren with Fanconi anemia and Shwachman–Diamond syndrome.

Myeloid Neoplasms Associated with 
Telomere Biology Disorders
Malignancies associated with telomere biology disorders result 
from mutations in nine different genes that induce an abnormal 
maintenance of telomeres leading to chromosome instabil-
ity and apoptosis (55, 56). Dyskeratosis congenita (DKC), an 
X-linked recessive disease, is characterized by nail dystrophy, 
abnormal reticular skin pigmentation, and oral leukoplakia (57).  
The clinical presentation may vary, resulting in patients with 
constitutional defects while cancer and MDS predisposition 
are distinctive. Excessive telomere shortening in Xq28, where 
the X-linked gene DKC1 (Dyskerin) is located, leads to genetic 
instability and high cancer risk (58, 59). A high frequency of 
hematological malignancies is observed in DKC: approximately 
200-fold for AML and 2,500-fold for MDS in relation to the 
normal population, a reason why the affected patient must be 
properly screened (60). Deleterious mutations affecting TERT 
(telomerase reverse transcriptase), a gene in 5p15.33, or TERC 
(telomerase RNA component), a gene in 3q26.2, are transmitted 
as autosomal dominant traits with heterogeneous phenotypes 
and incomplete penetrance (61). Phenotypes range from normal 
to severe hematological neoplasms, with variable age at onset 
and anticipation (62). This fact should not be ignored since 
children inheriting TERT/TERC mutations might present earlier 
clinical manifestations although their parents carrying the same 
mutations may not. Clinical presentation may include isolated 
idiopathic pulmonary fibrosis, hepatic cirrhosis, early-onset 
anogenital or head and neck cancer, and combinations of these 
features. The frequency of these associated manifestations is  
still unknown. These findings point out the need of TERC and 
TERT screening in families with more than one case of MDS/
AL and/or patients with subtle blood abnormalities, failure to 
mobilize stem cells or clinical manifestations in other organs or 
systems (6).

Juvenile Myelomonocytic Leukemia 
(JMML) Associated with 
Neurofibromatosis, Noonan Syndrome,  
or Noonan Syndrome-Like Disorders
Juvenile myelomonocytic leukemia is an aggressive myelodys-
plastic/myeloproliferative malignancy. Most JMML cases are 
associated with somatic gain-of-function mutations in com-
ponents of the RAS/MAPK signal transduction pathway (63).  
A minority of cases arise in young children with Noonan syn-
drome, a genetic disorder with increased RAS/MAPK signaling. 
Fifty percent of Noonan syndrome patients and 35% of JMML 
cases carry gain-of-function mutations in PTPN11 (protein-
tyrosine phosphatase, non-receptor-type, 11), altering SHP-2, 
a tyrosine phosphatase involved in the regulation of the RAS/
MAPK pathway (64).

In Noonan syndrome, JMML may occur due to PTPN11 
germline mutations with similar clinical features to children with 
JMML arising from PTPN11 somatic mutations, although with a 

generally better outcome. Mutations in PTPN11, RAS, NF1, and 
CBL are exclusive in JMML indicating that one hit in the RAS/
MAPK pathway is sufficient for leukemogenesis (65).

Neurofibromatosis
Approximately 10–15% of pediatric JMML occur in association 
with neurofibromatosis type I, disease resulting from mutations 
in the neurofibromatosis type I gene (NF1) that encodes neu-
rofibromin. Neurofibromin is a molecule that regulates several 
intracellular processes, such as the RAS–MAPK pathway (66). 
Neu rofibromatosis type I is an autosomal dominant disorder 
with a clinical presentation that includes café au lait spots, ocular 
Lisch nodules, and skin fibromatous tumors. The development  
of benign and malignant tumors is high in these individuals.

Noonan Syndrome-Like Disorders
Germline mutations affecting CBL (casitas-B-lineage lym-
phoma protooncogene), a gene located in 11q23.3, may result in 
variable Noonan syndrome-like phenotypes (OMIM#613563). 
In these patients, presence of neurologic features is relatively 
high, with predisposition to JMML, low prevalence of cardiac 
abnormalities, reduced growth, and cryptorchidism (67).

Finally, germline mutations affecting SHOC2 (suppressor of 
clear, C. elegans, homolog), a gene located in 10q25.2, usually 
result in Noonan syndrome-like phenotypes (OMIM#607721) 
and JMML, and a classic Noonan syndrome in a small pro-
portion of affected individuals. A recurrent missense SHOC2 
mutation (4A>G) has been identified in a NS subgroup with 
growth hormone deficiency, hyperactive behavior improving 
with age, hair anomalies, darkly pigmented skin with eczema 
or ichthyosis, hypernasal speech, and mitral valve dysplasia and 
septal defects respective with classic NS (68).

Myeloid Neoplasms Associated with  
Down Syndrome
The myeloid neoplasms associated with Down syndrome are 
Down syndrome transient abnormal myelopoiesis (DS-TAM) 
and myeloid leukemia Down syndrome (ML-DS). The GATA-
binding protein 1 gene (GATA1), located in Xp11.23, encodes a 
zinc finger DNA-binding transcription factor that is critical for 
the normal development of hematopoietic cells. GATA1 muta-
tions are a hallmark of DS-TAM and ML-DS (69). All GATA1 
mutations have been allocated to exon 2 (or rarely exon 3) (70). 
Regardless of mutation types, all of them have been found to gen-
erate a premature stop codon, with transcription initiating from 
an in-frame ATG triplet in codon 84 resulting in a short GATA1 
isoform (~40  kDa), called “GATA1s,” lacking an N-terminal 
transactivation domain. DS-TAM/ML is associated with a typi-
cally constitutional trisomy 21, although some patients have been 
shown to be mosaics for trisomy 21 or carriers of translocations 
involving chromosome 21. The lack of a typical DS phenotype 
cannot, therefore, exclude DS-TAM. DS-TAM is clinically and 
morphologically undistinguishable from AML, with blasts with 
morphologic and immunologic characteristics of the megakaryo-
cytic lineage. It is unique to Down syndrome newborns, present 
in approximately 10% of DS but infrequent in phenotypically 
normal trisomy 21 mosaics (71).
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Down syndrome transient abnormal myelopoiesis shows 
a heterogeneous clinical presentation and most patients are 
asymptomatic. This is the reason why it is incidentally diagnosed 
in peripheral blood checkups showing thrombocytopenia or 
thrombocytosis, high white blood cell counts, excess of blasts, 
and, frequently, nucleated red blood cells. Hepatomegaly is a 
common feature, while infrequent severe manifestations may 
include fetal hydrops, liver failure, jaundice, coagulation defects, 
bleeding diathesis, heart failure, pleural effusions, ascites, and/or 
respiratory failure. Symptoms may appear as early first 3 weeks 
of life. In most patients, DS-TAM undergoes spontaneous remis-
sion within the first 3 months of life (72). ML-DS is frequently 
preceded by a MDS-like phase that may last for months, char-
acterized by decreasing thrombocytopenia, ineffective eryth-
ropoiesis with subsequent anemia, and dysplastic alterations  
in bone marrow (73).

While coexisting GATA1 mutations and trisomy 21 might 
account for DS-TAM, additional alterations in preexisting 
DS-TAM—GATA1 seem to be necessary for generating ML-DS. 
These include trisomy 8 and 21, partial or complete deletions 
of chromosome 5 and 7, dup(1q), del(16q) (74) and somatic 
mutations in JAK1, JAK2, JAK3 (75), TP53 (76), FLT3, and MPL 
in small subsets of cases.

Individuals with DS have a 50-fold increase in the incidence 
of acute leukemia during the first 5  years of life compared to 
non-DS individuals. The great majority of DS children with 
ML-DS are under 5 years of age (77). ML-DS occurs in 20–30% 
of children with prior history of TAM and leukemia usually 
occurs 1–3 years after TAM. ML is usually acute megakaryoblas-
tic leukemia in 50% of cases. The clinical course in children with 
less than 20% blast cells in bone marrow appears to be indolent, 

with initial presentation of a period of thrombocytopenia. AML 
prognosis for infants with DS is more favorable than for patients 
with non-DS AMKL. Treatment with current chemotherapy 
protocols is associated with 80% rates of event-free survival. 
Despite the excellent response to therapy, death resulting from 
toxicity remains a problem, occurring in approximately 7% of 
cases. Gene expression signatures differ between ML-DS and 
non-DS AMKL (78). These differences cannot be attributed 
to the simple presence of an additional set of chromosome 21 
genes. Overexpression of c-Kit, c-MYC, and GATA2, occurs in 
ML-DS, in contrast to non-DS AMKL cases, indicating that these 
malignancies are different entities (72).

CONCLUSiON

Diagnosis of inherited forms of MDS/AML in adults has 
recently increased. The family history of young adults with 
MDS/AML should be investigated. Following diagnosis of 
genetic predisposition syndromes, critical clinical conducts 
must include therapy, HSCT, cancer surveillance, and genetic 
counseling.
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