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In the current era of molecularly targeted therapies and precision medicine, choice of 
cancer treatment has been increasingly tailored according to the molecular or genomic 
characterization of the cancer the individual has. Previously, the clinical observation of 
inadequate control of brain metastases was widely attributed to a lack of central nervous 
system (CNS) penetration of the anticancer drugs. However, more recent data have 
suggested that there are genetic explanations for such observations. Genomic analyses 
of brain metastases and matching primary tumor and other extracranial metastases 
have revealed that brain metastases can harbor potentially actionable driver mutations 
that are unique to them. Identification of genomic alterations specific to brain metastases 
and targeted therapies against these mutations represent an important research area 
to potentially improve survival outcomes for patients who develop brain metastases. 
Novel approaches in genomic testing such as that using cell-free circulating tumor DNA 
(ctDNA) in the cerebrospinal fluid (CSF) facilitate advancing our understanding of the 
genomics of brain metastases, which is critical for precision medicine. CSF-derived 
ctDNA sequencing may be particularly useful in patients who are unfit for surgical resec-
tion or have multiple brain metastases, which can harbor mutations that are distinct from 
their primary tumors. Compared to the traditional chemotherapeutics, novel targeted 
agents appear to be more effective in controlling the CNS disease with better safety 
profiles. Several brain metastases-dedicated trials of various targeted therapies are 
currently underway to address the role of these agents in the treatment of CNS disease. 
This review focuses on recent advances in genomic profiling of brain metastases and 
current knowledge of targeted therapies in the management of brain metastases from 
cancers of the breast, lung, colorectum, kidneys, and ovaries as well as melanoma.
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iNTRODUCTiON

Brain metastases are the most common central nervous system (CNS) tumors in adults but represent 
an unmet need in current oncologic practice. The reported incidence of brain metastases is 9–17%; 
however, the true incidence in the current era of modern cancer therapies is thought to be higher (1). 
The incidence of brain metastases is rising due, in part, to improved diagnostic techniques and 
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increased patient survival through advanced systemic treatment 
approaches. Some types of cancers have greater tropism of 
metastasizing to the brain with most common cancers being lung 
cancer (39–56%), breast cancer (13–30%), melanoma (6–11%), 
gastrointestinal cancers (3–8%), and renal cell carcinoma (2–4%) 
(2). The underlying mechanisms of this organotropism toward 
specific secondary sites remain poorly understood.

Prognosis remains poor with a median survival ranging from 
3 to 27 months after developing brain metastases (3). Treatment 
options are limited and usually involve multimodality approaches 
that include radiotherapy, surgery, and sometimes systemic 
therapy, depending on number of lesions, location, and primary 
tumor type. Historically, patients with brain metastases were 
uniformly treated with whole-brain radiotherapy, especially if 
multiple lesions are present, or surgical resection followed by 
radiotherapy for a solitary or large symptomatic lesion. More 
recently, stereotactic radiosurgery has been increasingly used 
for smaller lesions (<3 cm) in oligometastatic disease, which is 
commonly defined as up to four brain metastases. CNS-directed 
systemic treatment options are limited, and patients with brain 
metastases are commonly excluded from clinical trials, includ-
ing those investigating novel targeted therapies. Differential 
responses to systemic treatments between brain metastases 
and extracranial disease are often observed, particularly with 
the traditional chemotherapy agents, where systemic disease is 
adequately controlled while brain disease progresses. This is at 
least partly explained by inadequate blood–brain barrier (BBB) 
penetration by systemic therapies (4). Although the BBB is 
frequently compromised by brain metastases as shown by brain 
imaging contrast enhancement, the residual BBB permeability 
limits drug delivery to subtherapeutic concentrations in brain 
metastases compared with extracranial tumors. With molecu-
larly targeted therapies, there has been improved control of both 
intracranial and extracranial metastases. In the past decade, sig-
nificant efforts have been made to characterize the genetic drivers 
in brain metastases using modern sequencing techniques. Better 
understanding of the genomic complexity and heterogeneity of 
brain metastases will lead to improved treatment strategies and 
research directions. This review focuses on recent advances in 
genomic profiling of brain metastases and current knowledge of 
targeted therapies in the management of brain metastases from 
cancers of the breast, lung, colorectum, kidneys, and ovaries as 
well as melanoma.

GeNeTiC HeTeROGeNeiTY OF CANCeR

Intratumoral heterogeneity within the primary tumor was shown 
in a multiregion spatial genetic analysis of four metastatic renal 
cell carcinoma (5). Genetic heterogeneity between primary 
and secondary tumors in the same patient was also shown in a 
study comparing the genetic profiling of 15 primary colorectal 
cancer and matched liver metastases (6). Similarly, genetic 
heterogeneity between brain metastases and their corresponding 
primary tumors was shown recently in a genomic analysis of 
matched brain metastases, primary tumors, and normal tissue 
in 86 patients (7). This study demonstrated that brain metastases 
harbor distinctive potentially actionable mutations not detected 

in paired primary tumors in 53% of the cases. This finding sug-
gests that this genomic heterogeneity or divergent evolution of 
brain metastases from primary tumors may also contribute to 
the disparities in intracranial and extracranial disease response 
to systemic therapies, which were previously thought to be 
solely due to the inadequate BBB penetration of systemic drugs. 
In the same study, it was found that alterations associated with 
sensitivity to cyclin-dependent kinase (CDK) inhibitors were 
common in brain metastases (7). These include CDKN2A loss 
and CDK4/6 amplifications. Alterations in the PI3K/AKT/mTOR 
pathway were also common as previously reported by others 
(8–10). Interestingly, brain metastases from different intracra-
nial sites in the same patient shared nearly all of the potentially 
actionable driver mutations, suggesting that brain metastases 
are homogeneous within an individual (7). Prospective clinical 
trials using targeted therapies that cross the BBB are required to 
demonstrate that these potentially actionable mutations found in 
brain metastasis samples are indeed targetable.

GeNOMiC PROFiLiNG OF BRAiN 
MeTASTASeS

In the current era of molecularly targeted therapies and preci-
sion medicine, choice of cancer treatment has been increasingly 
tailored according to the molecular or genomic characterization 
of the cancer the individual has. Identification of genomic altera-
tions specific to brain metastases and targeted therapies against 
these mutations represent an important research area to improve 
survival outcomes for patients who develop brain metastases. 
Given spatial and temporal intratumoral heterogeneity within the 
same patient, repeated biopsies are often necessary to adequately 
characterize the somatic genetic alterations in human cancers. 
Genomic profiling of brain metastases poses a particular chal-
lenge as obtaining tissue samples of brain metastases is invasive 
and often difficult, especially in patients who are poor candidates 
for brain resections or have tumors in inaccessible sites. In addi-
tion, regional lymph node and other distal extracranial metastasis 
samples are not reliable surrogates for detecting these mutations 
present in brain metastases (7).

There has been great interest in developing alternative meth-
ods of genomic profiling of cancer that are clinically practical 
and non-invasive. Information collected by these techniques not 
only help refine systemic treatment decisions but also monitor 
response to treatment and identify emergent drug-resistant 
mutations by tracking the evolution of cancer genome to guide 
further therapy. For example, analysis of circulating tumor 
DNA (ctDNA) in plasma has been shown to be useful not 
only in characterizing cancers but also in monitoring disease 
response to therapy (11–13). However, it was recently shown 
that tumor DNA was either absent or present in a very little 
amount in the plasma of patients with primary brain tumors or 
brain metastases with no or little extracranial disease from solid 
tumors (12). In the same study, mutations that were present only 
in the brain metastases and not in the extracranial tumors were 
more represented in the cell-free ctDNA from the cerebrospinal 
fluid (CSF) compared to plasma. As seen with plasma ctDNA 
in previous studies, CSF ctDNA was also observed to change 
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throughout treatments (12). Mutant allelic frequency of CSF 
ctDNA decreased with tumor response to treatments and 
increased with progression.

Brain metastases can harbor drug-resistant mutations that 
result in restoration of signaling downstream of the target kinase, 
activation of an alternative signaling pathway, or alteration in the 
drug activating site (14). And these mutations may not be present 
in the primary tumor or extracranial metastases (7), therefore, 
genotyping primary tumor or other extracranial disease alone can 
miss actionable oncogenic driver mutations and targeted therapy 
opportunities for brain metastases. Routine brain biopsies are 
invasive with associated risks and may not be feasible in many 
patients with brain metastases. CSF ctDNA analysis may provide 
the ability to identify the drug-resistance mechanisms in patients 
who progressed in the CNS after initial response on targeted 
therapy without invasive procedures like a brain biopsy. In a recent 
study, CSF as a source of ctDNA was evaluated by sequencing 341 
cancer-associated genes in cell-free DNA isolated from the CSF 
of 53 patients with brain metastases of solid tumors or primary 
brain tumors (14). Mutations, which are known to cause drug 
resistance to oncogenic kinases, were identified in 4 of 12 patients 
who progressed in the brain whilst on such therapy. Although this 
needs to be verified in a larger cohort of patients, these findings 
suggest that CSF ctDNA may be a useful biomarker that facilitates 
genome-directed treatments to target brain metastases and for 
monitoring CNS disease on treatment or during surveillance. 
Moving forward, more studies evaluating ctDNA extracted from 
CSF should be carried out using next-generation sequencing 
techniques that are capable of detection all classes of mutations 
including base substitutions/insertions/deletions, gene fusions, 
and gene copy number alterations. The fraction of cell-free 
ctDNA in CSF is higher than in plasma due to the relative absence 
of background normal DNA in CSF. This allows the detection of 
somatic mutations even with modest sequence coverage, whereas 
plasma cell-free ctDNA sequencing requires very deep sequence 
coverage to achieve sufficient sensitivity for detecting mutations 
occurring at low allele frequencies. CSF ctDNA analysis appears 
promising, and there are ongoing studies prospectively evaluating 
CSF ctDNA as a surrogate for brain metastasis biopsy sample. 
Furthermore, the use of additional circulating biomarkers, such 
as exosomes, will need to be prospectively explored.

NON-SMALL CeLL LUNG CANCeR 
(NSCLC)

Non-small cell lung cancer is the most common type of lung 
cancer, accounting for approximately 85% of all lung cancer cases 
(15). NSCLC, adenocarcinoma subtype in particular, is the most 
common cancer to metastasize to the brain (1). The risk of devel-
oping brain metastases during the course of disease in patients 
with treated stage III NSCLC is approximately 30–50% (15). 
Even in patients with surgically treated early stage (stage I–II) 
NSCLC, the 5-year actuarial risk of developing brain metastases 
is reported to be around 10% with the brain being the sole site 
of failure in 43% of these patients (15, 16). A large retrospective 
study of 975 patients with stage I–II NSCLC identified younger 

age, larger tumor size, lymphovascular space invasion, and hilar 
lymph node involvement to be associated with an increase in 
the risk of brain metastases in this population (15). Prognosis 
remains poor even with a multimodality treatment approach of 
brain metastases. Reported 1-year mortality rate after develop-
ing brain metastases ranges from 81 to 90% depending on the 
initial clinical stage of lung cancer (16). Discovery of NSCLC 
oncogenic driver mutations and molecularly targeted therapies 
have significantly improved survivals in the subset of patients 
with metastatic NSCLC harboring these targetable genomic 
aberrations.

epidermal Growth Factor Receptor  
(eGFR) Mutations
An activating EGFR mutation is present in approximately 10–15% 
of Caucasians and 40% of East-Asian NSCLC patients (2). When 
the EGFR status was evaluated in paired brain metastasis and 
corresponding primary lung tumor samples, discordance rates up 
to 33% were observed (2). In a recent retrospective, population-
based study, there was a higher cumulative incidence of brain 
metastases in patients with EGFR-mutant NSCLC compared 
to those with EGFR wild type (39.2 versus 28.2%) (17). EGFR 
mutations render these tumors sensitive to EGFR tyrosine kinase 
inhibitors (TKIs) resulting in significantly improved survival 
outcomes. Several phase III randomized trials compared the effi-
cacy of first-generation EGFR TKIs, gefitinib and erlotinib, and 
an irreversible ErbB family inhibitor, afatinib, to the platinum-
containing combination chemotherapy as first-line treatment in 
EGFR-mutant NSCLC patients. Progression-free survival (PFS) 
was significantly longer in the EGFR TKI group compared to the 
chemotherapy group, with hazard ratios for progression or death 
ranging from 0.38 to 0.58 (18–20).

Prospective data on the efficacy of EGFR TKIs in treating 
brain metastases from NSCLC are limited. However, currently 
available data suggest that these agents have CNS activity. 
Post hoc subgroup analyses of combined data from two phase 
III randomized trials of first-line afatinib in EGFR-mutant 
NSCLC patients, which allowed patients with asymptomatic 
brain metastases to enroll, showed survival benefit from treat-
ment with afatinib compared to chemotherapy (21). PFS (8.2 
versus 5.4 months) and objective response rate (ORR) (70–75 
versus 20–28%) were significantly better with afatinib than 
chemotherapy. Pretreated patients with brain metastases may 
also benefit from afatinib as suggested by a report of 31 patients, 
of whom 35% had an objective response with an overall disease 
control rate of 66% (22). Other retrospective and small phase II 
studies also showed survival benefit from first-generation TKIs 
in patients with EGFR-mutant NSCLC that had metastasized 
to the brain (23–26). In these studies, ORR was 58–83%, and 
median PFS was in the range of 7–15 months.

The majority of patients who had initial response to EGFR 
TKIs had disease progression due to an acquired resistance within 
1–2 years (27). The development of an additional EGFR muta-
tion, EGFR T790M, is responsible for approximately 60% of this 
clinically observed acquired resistance (28). A third-generation 
T790M mutant specific EGFR TKI, osimertinib, has been shown 
to be highly active in patients who have progressed during prior 
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therapy with EGFR TKIs due to T790M mutation (27). Moreover, 
a recent preclinical study in animal models demonstrated superior 
penetration of the BBB with osimertinib than gefitinib or afatinib 
and sustained tumor regression in an EGFR-mutant mouse brain 
metastasis model (29).

Together, positive CNS activity observed with these EGFR 
TKIs suggests that incorporation of EGFR TKIs in the treatment 
of asymptomatic brain metastases from EGFR-mutant NSCLC 
appears reasonable and these agents may be utilized upfront and 
radiation therapy reserved until progression to avoid radiation 
related neurotoxicity. Prospective evaluations of EGFR TKIs in 
active brain metastases and sequential approaches with brain 
radiotherapy are warranted.

Anaplastic Lymphoma Kinase (ALK) 
Rearrangement
A fusion gene comprising portions of echinoderm microtubule 
like protein 4 (EML4) and ALK genes with resultant chimeric 
protein with constitutive kinase activity is found in approxi-
mately 2–7% of NSCLC (30, 31). Since its first discovery in 2007, 
there have been rapid advances in the development of several 
TKIs targeting this genomic aberration. A first-generation 
ALK TKI, crizotinib, was shown to significantly improve PFS 
and ORR in both first- and second-line settings in patients 
with ALK-rearranged NSCLC, compared to chemotherapy (32, 
33). For example, in a phase III randomized trial of first-line 
crizotinib, PFS was 10.9 with crizotinib compared to 7 months 
with chemotherapy and ORR was 74 and 45%, respectively (33). 
Despite initial response, drug resistance invariably develops. 
Next-generation ALK TKIs, including ceritinib and alectinib, 
have been shown to be effective in patients with crizotinib-
resistant disease (34, 35).

Brain metastasis is a relatively common complication of ALK-
rearranged NSCLC, especially at progression. In a retrospective 
study, incidence rates of brain metastases were 23.8% at diagno-
sis, 45.5% at 2 years, and 58.4% at 3 years (36). Crizotinib has 
been shown to be effective in treating brain metastases, at least 
initially, as suggested by a large retrospective pooled analysis 
of patients with asymptomatic brain metastases treated with 
this agent on the PROFILE 1005 and 1007 trials (37). In this 
study, an intracranial disease control rate was 56% at 12 weeks 
in patients with previously untreated brain metastases with a 
median time to CNS progression of 7 months. In a phase III ran-
domized trial of first-line crizotinib versus platinum containing 
chemotherapy, patients with stable treated brain metastases were 
allowed to enroll (38). Intracranial efficacy assessment was part 
of this study. This study showed that among patients with brain 
metastases CNS disease control rate was significantly higher 
with crizotinib at 12 weeks (85 versus 45%), and PFS was also 
significantly longer with crizotinib (9 versus 4 months). Recently 
two phase II trials of alectinib have shown remarkable CNS activ-
ity against brain metastases with CNS response rates up to 75% 
and median CNS disease response durations of 10–11 months 
(39, 40). Interestingly, the cumulative CNS progression rate at 
12 months was lower than the cumulative non-CNS progression 
rate (24.8 versus 33.2%) (40).

immunotherapy
Recently, there has been a significant development in immu-
notherapy to treat various types of cancer including NSCLC. 
Immune checkpoints, which exist to suppress immune response 
to protect against detrimental autoimmunity and inflammation, 
can be co-opted by tumors. Engagement of programmed death 
1 (PD-1) receptor on activated T  cells by programmed death 
ligand 1 (PD-L1) on tumor cells leads to T-cell inactivation, 
which in turn results in immune tolerance and subsequent 
progression of tumor. PD-1 inhibitors, including nivolumab and 
pembrolizumab, have shown to significantly improve ORR and 
survival outcomes in patients with metastatic NSCLC without 
other targetable mutations such as EGFR or ALK mutations. Both 
pembrolizumab and nivolumab were superior to docetaxel in 
previously treated patients (41, 42). Pembrolizumab was shown 
to be superior to platinum-containing doublet chemotherapy 
as first-line therapy in patients with NSCLC with more than 
50% of tumor cells staining positive for PD-L1 (43). In another 
first-line trial, pembrolizumab combined with carboplatin and 
pemetrexed in PD-L1 unselected NSCLC patients was better 
than chemotherapy alone (44). These trials, however, excluded 
patients with active brain metastases. An early analysis of an 
ongoing trial (NCT02085070) investigating the activity and 
safety of pembrolizumab in NSCLC or melanoma patients with 
untreated or progressive brain metastases showed encouraging 
results (45). In this analysis, 6 (33%) of 18 patients with NSCLC 
had brain response that was durable. There were no grade 3 or 4 
neurological toxic effects.

Squamous Cell Carcinoma
Squamous cell carcinoma accounts for approximately 20% of 
all lung cancers. A genomic analysis of primary squamous cell 
lung cancer in 79 patients showed that PI3K aberrant tumors had 
significantly worse overall survival (OS) (8.6 versus 18.8 months) 
and a higher incidence of brain metastases (27 versus 0%) com-
pared to FGFR1 aberrant tumors (9). The authors then analyzed 
six brain metastasis samples by whole-exome sequencing, four of 
these patients had matched samples of their primary lung cancer. 
This analysis showed heterozygous loss of PTEN in all of the brain 
metastasis samples with a pattern of gene expression consistent 
with PTEN loss. A deeper genomic analysis in this study demon-
strated clonal heterogeneity with a low degree of shared events (as 
little as 15%) between the brain metastases and their correspond-
ing primary lung tumor. Further studies examining the exact role 
of aberrant PI3K pathway in the development of brain metastases 
and potential targeted therapy are warranted.

BReAST CANCeR

Breast cancer is the most common cancer in women and second 
most common cancer to metastasize to the brain. The exact 
incidence of brain metastases from breast primary in the cur-
rent era of modern therapies is unknown; however, a 10-year 
cumulative incidence of CNS relapse in patients presenting with 
early stage breast cancer is estimated to be around 4–5% (46, 47). 
Triple receptor negative disease, basal-like subtype, and human 
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epidermal growth factor receptor 2 (HER2) positive breast cancer 
have an increased risk of developing brain metastases (46, 48). 
Early (<2 years after primary diagnosis) occurring brain metas-
tases from breast primary are associated with early onset tumor, 
negative estrogen receptor (ER) status, HER2 overexpression, 
and triple receptor negative tumor (49). In comparison, many 
late occurring brain metastases are from ER positive primary 
tumors (50). Survival outcomes differ between different subtypes 
of breast cancer. The median OS after developing brain metas-
tases was longer in patients with HER2-positive breast cancer 
at 11.5  months compared to luminal HER2 negative breast 
cancer at 9.3 months and triple receptor negative breast cancer 
at 4.9 months in a retrospective study of 1,256 patients (51).

Divergence of brain metastases from primary breast tumor 
has been suggested by several studies, in particular with regards 
to hormone receptor status. For example, retrospective studies 
reported a loss of hormone receptor expression in brain metas-
tases compared to their corresponding breast primaries (52, 53), 
highlighting the importance of multisite tumor characterization, 
if clinically feasible, in the treatment decision making process. 
Molecular profiling of paired brain metastases and correspond-
ing primary breast tumors by whole-exome sequencing revealed 
that brain metastases harbored genomic aberrations in the CDK 
pathway and PI3K/AKT/mTOR pathways, many alterations of 
which were not detected in the corresponding primary tumor (7).

A bioinformatics screen of genome-wide breast tumor 
methylation data available at The Cancer Genome Atlas (TGCA) 
and analysis of 11 pairs of primary breast tumors and their cor-
responding brain metastases identified three genes, GALNT9, 
CCDC8, and BNC1, that were frequently methylated (55, 73, and 
71%, respectively) and silenced in brain metastases (50). Of these, 
GALNT9 and BNC1 were infrequently methylated in primary 
breast tumors, suggesting that they may be metastasis virulence 
genes and dysregulation of these occur as late events involved 
in brain colonization of these cancer cells. GALNT9, which is 
expressed most abundantly in the brain, plays an important role in 
O-glycosylation and, thereby, in cell adhesion and cell–cell com-
munication. Cancer cells with aberrant GALNT9 that reach the 
brain are perhaps favored to proliferate in the new microenviron-
ment through dysregulated cell–cell interaction. BNC1 encodes 
a zinc finger transcription factor that is involved in expression 
of a broad range of genes. Further studies are required to better 
understand the roles these mutations play in the development of 
brain metastases and to determine if they represent therapeutic 
targets.

HeR2 Overexpression
Human epidermal growth factor receptor 2 protein overex-
pression and/or HER2 oncogene amplification is found in 
approximately 20% of all breast cancer patients (54). HER2 
overexpression is associated with an increased risk of recurrence 
and death in the absence of adjuvant HER2-directed therapy, 
and it predicts response to anti-HER2 therapies. HER2-positive 
breast cancer carries an increased risk of brain metastases, and 
approximately 30–50% of patients with HER2-positive breast 
cancer will develop brain metastases during the course of disease 
(55), with a cumulative incidence of around 12% at 10 years and 

14% at 15 years (46, 56). The propensity of HER2-positive breast 
cancer to metastasize to the brain may be related to the improved 
survival of patients with HER2-directed therapy, the limited 
CNS penetration of HER2-directed agents, and the neuro-
tropism of HER2-positive breast cancer (57). HER2-directed 
agents, including trastuzumab, pertuzumab, lapatinib, neratinib 
and T-DM1, significantly improve PFS and OS of patients with 
HER2-positive breast cancer. However, in a retrospective study, 
24% of 182 patients with HER2-positive primary breast cancer 
had HER2 negative metastatic disease, and this discordance was 
associated with decreased survival (58). If feasible, HER2 status 
should be repeated in the metastatic disease, including brain 
metastasis, at relapse.

Trastuzumab, a monoclonal antibody against the HER2 
receptor, has limited CNS activity due to its inability to cross 
the intact BBB. However, there is some evidence of an improved 
CNS penetration of trastuzumab after disruption of the BBB by 
radiation therapy. For example, a pharmacokinetic study showed 
that the ratio of the CSF to plasma levels of trastuzumab in 
patients with brain metastasis improved significantly from 1:420 
before radiotherapy to 1:76 after radiotherapy (59). In patients 
with concomitant leptomeningeal carcinomatosis, the CSF to 
plasma ratio after radiotherapy was 1:49. Pertuzumab, another 
monoclonal antibody against the HER2 receptor, has a significant 
synergistic antitumor activity in combination with trastuzumab 
and docetaxel as shown in a randomized phase III placebo-
controlled trial of pertuzumab, the CLEOPATRA trial (60). In 
exploratory analyses of this trial, the median time to develop-
ment of brain metastases as first site of disease progression was 
significantly longer in the pertuzumab arm compared to the 
placebo arm (15.0 versus 11.9 months), and the median OS was 
34.4 months in the pertuzumab arm, compared to 26.3 month in 
the placebo arm (61). Pertuzumab with high-dose trastuzumab 
in HER2-positive breast cancer patients with brain metastases 
after radiotherapy is currently under clinical evaluation in a 
phase II trial (NCT02536339). There is also an ongoing trial of 
intrathecal pertuzumab and trastuzumab in patients with new 
untreated asymptomatic or low symptomatic brain metastasis 
in HER2-positive breast cancer (NCT02598427). Lapatinib is a 
TKI that acts against both HER2 and EGFR receptors. It has been 
shown that this agent is able to cross the BBB. In the presence of 
brain metastases, the brain to plasma concentration of lapatinib 
was higher at 26% compared to the normal brain parenchyma 
where the concentration was low at 1.3–2.8% (62). However, the 
intracranial response to lapatinib alone has been shown to be low 
at 3–6% (63, 64). In a multicenter phase II study, 45 patients with 
previously untreated brain metastases from HER2-positive breast 
cancer were treated with lapatinib and capecitabine combination 
(55). The addition of capecitabine to lapatinib resulted in an 
encouraging intracranial response rate of 66% with a median 
time to intracranial progression of 5.5 months.

Pi3K/AKT/mTOR Pathway
Actionable mutations in PI3K/AKT/mTOR pathway are frequent 
in breast cancer brain metastases (7). The addition of everolimus, 
an mTOR inhibitor, to an aromatase inhibitor in patients with 
hormone receptor positive metastatic breast cancer and to 
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trastuzumab and vinorelbine in patients with HER2-positive 
breast cancer led to improved survival outcomes in randomized 
placebo-controlled phase III trials (65, 66). Everolimus crosses 
the BBB as shown in patients with primary brain tumors. The role 
of everolimus in the management of patients with breast cancer 
brain metastases is currently being investigated in clinical trials 
(NCT01305941, NCT01783756).

Cyclin D-Cyclin-Dependent Kinase 
4/6-iNK4-Rb Pathway
Activation of cyclin-dependent kinase 4 and 6 (CDK4 and CDK6) 
by cyclin D leads to cell proliferation by initiating transition from 
the G1 phase to the S phase in cell cycle via phosphorylation of 
retinoblastoma protein (Rb). Alterations in this pathway are 
frequent in various cancer types. CDK inhibitors, such as pal-
bociclib, abemaciclib, and ribociclib, have shown high efficacy 
in patients with hormone receptor positive breast cancer (67). 
Good CNS penetration of abemaciclib was recently shown (68). 
There are ongoing trials investigating these agents in patients with 
breast cancer brain metastases (NCT02896335, NCT02774681, 
NCT02308020).

MeLANOMA

Melanoma is the third most common malignancy to metastasize 
to the brain. It is estimated that at least 50% of patients with stage 
IV melanoma will develop brain metastases during the course 
of disease (69). With supportive care alone, the median survival 
from developing brain metastases is only around 2 months (70).

Mitogen Activated Protein Kinase (MAPK) 
Pathway
About half of melanoma patients have an activating mutation in 
BRAF, an oncogene involved in the MAPK pathway that is a key 
regulator of cell growth, division, and differentiation (71). The 
most common BRAF mutation is the substitution of valine for glu-
tamic acid (VAL600Glu or V600E) accounting for approximately 
90% of all BRAF mutations seen in melanoma. BRAF V600E 
mutant melanoma tends to be more aggressive. BRAF inhibitors, 
including dabrafenib and vemurafenib, significantly improve 
survival in patients with metastatic BRAF mutant melanoma 
(72, 73). In a multicenter phase II trial, 172 patients with BRAF 
mutant melanoma with at least one asymptomatic brain metasta-
sis were treated with dabrafenib (74). Patients were divided into 
two cohorts: those with and without previous local treatments for 
brain disease. Dabrafenib was active in both cohorts with ORR 
of 39.2% in patients without previous local therapy and 30.8% in 
those with previously treated brain metastases and median OS of 
33 and 31 weeks, respectively. A retrospective study of 27 patients 
treated with vemurafenib for their BRAF mutant melanoma that 
had metastasized to the brain reported intracranial ORR of 50% 
and extracranial ORR of 71% (75). The median intracranial PFS 
was 4.6 months, and median OS was 7.5 months. Next-generation 
sequencing analysis of poorly responding brain metastases 
revealed co-occurring mutations in genes predicted to activate 
the PI3K/AKT pathway.

MEK kinase, which is downstream of BRAF, is activated by 
CRAF or members of the PI3K pathway as an escape mechanism 
from BRAF inhibition. When BRAF inhibitors were combined 
with MEK inhibitors, the efficacy was further improved in patients 
with extracranial disease, as evidenced by prolonged PFS and OS 
shown in phase III trials (76–78). This approach of dual BRAF 
and MEK inhibition therapy in patients with brain metastases 
is currently being evaluated in clinical trials (NCT02039947, 
NCT02537600).

Pi3K/AKT/mTOR Pathway
A molecular analysis of 16 matched pairs of melanoma brain 
metastases and extracranial metastases showed that activation 
of the PI3K/AKT/mTOR pathway was enriched in the brain 
metastases (8). Preclinical cell culture and animal studies of a 
PI3K inhibitor, BKM120, demonstrated that this agent inhibited 
the growth of cell lines derived from melanoma brain metastases 
with inhibition rates of up to 80% and potently induced apop-
tosis and significantly inhibited the tumor growth of human 
brain metastatic melanoma cells in the brain of nude mice (79). 
These findings suggest the potential of PI3K inhibitors as adjunct 
targeted therapy in the treatment of advanced melanoma that has 
metastasized to the brain.

immunotherapy
There has been dramatic improvement in survival of patients with 
advanced melanoma in recent years with the development of mod-
ern immunotherapy including cytotoxic T lymphocyte antigen-4 
(CTLA-4) inhibitors and programmed death-1 (PD-1) checkpoint 
inhibitors. CTLA-4 plays an important role in the regulation of 
immune activation and tolerance (80). Its signaling inhibits T-cell 
activation. Ipilimumab is an inhibitor of CTLA-4 that was shown 
to improve OS in patients with metastatic melanoma compared 
to a peptide vaccine in a phase III trial (81). A phase II study of 
ipilimumab was conducted in 72 melanoma patients with brain 
metastases (82). The disease control rate was 24% in patients 
who were asymptomatic from their brain disease and were not 
on corticosteroid treatment. One- and two-year survival rates 
were 31 and 26% in this steroid-independent cohort. Interaction 
between PD-1 receptor and PD-ligand 1 (PD-L1) inhibits 
cytotoxic T-cell activity. PD-1 inhibitors, including nivolumab 
and pembrolizumab, have resulted in significantly improved 
survival outcomes in patients with advanced melanoma (83, 84). 
Pembrolizumab is currently under clinical evaluation in patients 
with brain metastases from melanoma (NCT02085070). Interim 
analysis from a phase II trial reported an intracranial ORR of 22% 
(45). In a randomized phase III trial, nivolumab and ipilimumab 
combination was shown to be superior to either drug alone in 
patients with advanced melanoma without brain metastases (85). 
Median PFS was 11.5 months in the combination arm compared 
to 6.9 months in the nivolumab alone arm and 2.9 months in the 
ipilimumab alone arm. There are ongoing trials evaluating the 
dual CTLA-4 and PD-1 inhibition therapy in melanoma patients 
with brain metastases (NCT02320058, NCT02621515).

Table 1 summarizes actionable mutations in brain metastases 
of NSCLC, breast cancer and melanoma, and their targeted 
therapies discussed earlier.

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


TABLe 1 | Overview of actionable mutations in brain metastases of non-small cell lung cancer, breast cancer and melanoma, and potential targeted therapies.

Cancer type Mutation Targeted therapy Objective response 
rate (%)

Progression-free survival 
(months)

Reference or 
clinicaltrials.gov number

Non-small cell 
lung cancer

Activating EGFR 
mutation

First-generation EGFR TKIs: gefitinib, 
erlotinib

58–83 7–15 (23–26)

ErbB family inhibitor: afatinib 70–75 8 (21)
EGFR T790M T790M specific EGFR TKI: osimertinib NA NA (29)

Superior blood–brain barrier 
penetration than gefitinib 

or afatinib demonstrated in 
preclinical study

ALK rearrangement First-generation ALK TKI: crizotinib 56–85 7–9 (37, 38)
Second-generation ALK TKI: alectinib 75 10–11 (39, 40)

(No specific mutation) PD-1 inhibitor: pembrolizumab NA NA NCT02085070 (45)
Early analysis showed 

33% intracranial 
response rate

Breast cancer HER2 
overexpression/HER2 
oncogene amplification

Dual anti-HER2 inhibition: pertuzumab 
plus trastuzumab

NA NA Intravenous: NCT02536339
Intrathecal: NCT02598427

HER2/EGFR TKI: lapatinib (in 
combination with capecitabine)

66 5.5 (55)

Mutation in PI3K/AKT/
mTOR pathway

mTOR inhibitor: everolimus NA NA NCT01305941
NCT01783756

Mutation in CDK4/6 
pathway

CDK inhibitors NA NA NCT02896335
NCT02774681
NCT02308020

Melanoma Activating BRAF 
mutation

BRAF inhibitors: dabrafenib 39 16 (74)
Vemurafenib 50 4.6 (75)
Dual BRAF/MEK inhibition: 
dabrafenib + trametinib

NA NA NCT02039947

Vemurafenib + cobimetinib NA NA NCT02537600
Mutation in PI3K/AKT/
mTOR pathway

PI3K inhibitor: BKM120 NA NA (79)
Efficacy demonstrated in 

preclinical study
(No specific mutation) CTLA-4 inhibitor: ipilimumab 24 2.7 (82)

PD-1 inhibitor: pembrolizumab NA NA NCT02085070
Dual CTLA-4/PD-1 inhibition: 
ipilimumab + nivolumab

NA NA NCT02320058
NCT02621515

EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor; ALK, anaplastic lymphoma kinase; PD-1, programmed death 1; HER2, human epidermal growth factor receptor 2; 
PI3K, phosphoinositide 3-kinase; mTOR, mammalian target of rapamycin; CDK4/6, cyclin-dependent kinase 4 and 6; CTLA-4, cytotoxic T lymphocyte antigen-4; NA, not available.
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COLOReCTAL CANCeR

While colorectal cancer is the third most common cancer in men 
and second in women, brain metastases are relatively rare with an 
incidence rate of 1.55% (86). A systematic review and pooled data 
analysis from 16 relevant studies showed that rectal location was 
associated with an increased risk of brain metastases compared 
to other colon locations. The presence of pulmonary metastases 
was also associated with an increased risk. The incidence of 
brain metastases from colorectal cancer may be increasing as a 
result of improved systemic therapy and survival of patients. The 
prognosis is poor with a reported median OS of 2.6–7.4 months 
after developing brain metastases (86).

RAS Mutation
KRAS and NRAS mutations are the most extensively investi-
gated somatic mutations in metastatic colorectal cancers, and 
they predict tumor resistance to anti-EGFR therapy, such as 
cetuximab and panitumumab. There have been several studies 

examining these mutations in patients with brain metastases 
from colorectal cancer. A retrospective analysis of 918 patients 
with metastatic colorectal cancer who were genotyped for RAS 
mutations showed a significantly higher cumulative incidence of 
brain metastases at 2 years in patients with RAS mutation com-
pared to those without (1.4 versus 0.2%) (87). Nearly two-thirds 
of the brain metastasis cases occurred in patients with RAS 
mutant colorectal cancer. Currently, there are no RAS inhibitors 
available for clinical use.

BRAF Mutation
BRAF activation mutations (most commonly V600E) occur in 
less than 10% of metastatic colorectal cancer and are associated 
with poorer survival. BRAF V600E mutations confer resistance 
to anti-EGFR therapy. To date, no clear association between 
BRAF mutation and development of brain metastases has been 
observed (88, 89). A clinical characterization of 524 metastatic 
colorectal cancer patients with known BRAF mutation status, 
where 57 patients had BRAF mutation, found no difference in 
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the incidence of brain metastases between patients with BRAF 
mutant tumors and those with wild-type tumors (88).

PIK3CA Mutation
PIK3CA mutations are found in approximately 10–15% of 
primary colorectal cancers. In a genomic analysis of colorectal 
metastases from different sites, PIK3CA mutation frequency was 
higher in brain and lung metastases compared with liver metasta-
ses (23.9% in brain, 20% in lung, 7.7% in liver) (89) Another study 
also found an association between PIK3CA mutations and brain 
metastases with a 2-year cumulative incidence of 1.4%, compared 
to 0.8% in patients with no PIK3CA mutation (87). However, this 
observation is difficult to interpret as many of those patients with 
PIK3CA mutation and brain metastases also had RAS mutations.

ReNAL CeLL CARCiNOMA

Approximately 3.5–17% of patients with renal cell carcinoma 
develop brain metastases (69). Reported median OS after 
developing brain metastases ranges from 4.1 to 15 months (69). 
Patients with bone and thoracic metastases were found to have a 
higher rate of brain metastases compared to those with abdominal 
metastases (16 versus 2%) (90). An association between the loss 
of chromosome 9 and brain metastases was also observed (91).  
Registration-directed clinical trials investigating therapies 
for angiogenesis, mTOR signaling, and immunotherapy have 
excluded patients with brain metastases. Patients with brain 
metastases were included in the European Advanced RCC 
Sorafenib expanded-access study in which sorafenib, a VEGF 
TKI, was given to patients with previously treated advanced renal 
cell carcinoma. It was shown that the sorafenib safety profile in 
patients with brain metastases was similar to the overall study 
population (92). In a prospective open-label non-interventional 
study in a broad population of patients with advanced renal cell 
carcinoma treated with sorafenib in routine clinical practice, 115 
patients (5% of total study population) had brain metastases (93). 
The median duration of therapy for this subgroup was similar to 
that of the total study population (7.0 versus 7.3 months), suggest-
ing that sorafenib has activity in the CNS. In a retrospective study, 
treatment with TKI was associated with an improved median OS 
from developing brain metastases (94). However, in prospective 
studies, the response to these drugs has been more modest. A 
reported median PFS and OS were only 5.3 and 8.2  months, 
respectively, in patients with brain metastases treated with suni-
tinib as part of the global expanded-access protocol (95).

Genetic divergence of brain metastases from primary renal 
cell carcinoma has been shown recently in a genomic study of 
paired brain and primary tumors (7). In this study, some brain 
metastases from renal cell carcinoma had PTEN, PIK3CA, and 
CDKN2A mutations that were not detected in the corresponding 
primary tumors. Mutations in PI3K/ATK/mTOR pathway may be 
potential drivers in brain metastases development and therefore 
warrant further investigations.

In a randomized phase III trial, the treatment with nivolumab 
improved survival outcomes compared with everolimus in 
patients with previously treated advanced renal cell carcinoma 
(96). Unfortunately, patients with brain metastases were excluded. 

Clinical trials investigating the role of nivolumab or pembroli-
zumab in patients with brain metastases is currently underway 
(NCT02978404, NCT02596035, NCT02886585).

OvARiAN CANCeR

Brain metastases from ovarian cancer are very rare with reported 
incidence rates ranging from 0.29 to 5%; however, the incidence has 
been rising since the introduction of platinum-based chemother-
apy (97). In a recent next-generation sequencing-based genomic 
analysis of eight brain metastases of primary ovarian cancer, all 
eight brain metastasis samples harbored mutations in at least one 
DNA repair gene with seven of eight samples revealing either a 
BRCA1 or BRCA2 mutation (98). Other commonly observed 
mutations include TP53, ATM, and CHEK2 mutations. These find-
ings suggest that BRCA and DNA repair malfunction may possibly 
play a role in ovarian cancer metastasizing to the brain. A mutation 
in ATM, a regulator of DNA damage detection and repair via phos-
phorylation of a wide variety of downstream proteins including 
TP53 and BRCA1, may also play a role in the development of brain 
metastases (98). In cancers that lack homologous repair capacity 
due to BRCA1/2 or ATM dysfunction or loss, PARP inhibitors can 
lead to cancer cell death via mechanisms of synthetic lethality (99). 
PARP inhibitors, olaparib and veliparib, have been shown to have 
activity in the CNS (100, 101), therefore they represent a potential 
targeted therapy in these cancers with genetic alterations in genes 
involved in DNA damage response and repair.

CONCLUSiON

The incidence of brain metastases is rising as modern cancer therapy 
is improving the survival of patients with advanced cancer. There 
is mounting evidence of genomic heterogeneity intratumorally as 
well as across different metastatic sites. Recently, genomic analyses 
of brain metastases and matching primary tumors have revealed 
that brain metastases can harbor actionable driver mutations that 
are not present in the primary tumors or other extracranial metas-
tases. This genomic divergence of brain metastases from their pri-
mary tumors may contribute to the clinically observed treatment 
response disparities. Cancer genomic analysis using novel and 
far less invasive approaches, such as cell-free ctDNA in the CSF 
obtained via a lumbar puncture in the outpatient clinics, is very 
promising in providing critical information required for personal-
ized genomic-directed therapy in patients with brain metastases. 
Moreover, these new less invasive genomic analysis techniques 
are more feasible even in patients who are not surgical candidates 
and can be repeated to determine tumor response to treatment 
or detect early progression during surveillance. Compared to the 
traditional chemotherapeutics, next-generation targeted agents 
appear to be more effective in controlling the CNS disease with 
better safety profiles. Several brain metastases-dedicated trials of 
various targeted therapies are currently underway to address the 
role of these agents in the treatment of CNS disease.
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