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Previous results link the mitochondrial potassium channel Kv1.3 (mitoKv1.3) to the reg-
ulation of apoptosis. By synthesizing new, mitochondria-targeted derivatives (PAPTP 
and PCARBTP) of PAP-1, a specific membrane-permeant Kv1.3 inhibitor, we have 
recently provided evidence that both drugs acting on mitoKv1.3 are able to induce 
apoptosis and reduce tumor growth in vivo without affecting healthy tissues and cells. In 
the present article, by exploiting these new drugs, we addressed the question whether 
mitoKv1.3 contributes to the regulation of cell proliferation as well. When used at low 
concentrations, which do not compromise cell survival, both drugs slightly increased 
the percentage of cells in S phase while decreased the population at G0/G1 stage of 
cells from two different pancreatic ductal adenocarcinoma lines. Our data suggest that 
the observed modulation is related to ROS levels within the cells, opening the way to 
link mitochondrial ion channel function to downstream, ROS-related signaling events 
that might be important for cell cycle progression.
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inTrODUcTiOn

Pancreatic ductal adenocarcinoma (PDAC) is considered a silent killer. A large number of new 
cases arise every year, but the lifespan of the patients is always very short, with a survival percent-
age around 25% 5 years after diagnosis (1). PDAC treatment is limited prevalently to the use of 
fluorouracil or gemcitabine either alone or in combination and to surgery following diagnosis 
(2). Nowadays, novel strategies, supported by experimental observations, are emerging as possible 
therapeutical options. Among possible new targets, an important role has been assigned to ion 
channels: these proteins have been related to several hallmarks of cancer, ranging from resistance to 
cell death, to modifying and controlling cell cycle progression, as well as to favor tumor progression 
and metastasis formation (3–5). A particular role has been proposed for potassium-selective ion 
channels. Potassium (K+) channels are present in basically every organism, ranging from virus to 
mammals and permit K+ transport across biological membranes. They are formed by tetramers of 
four α subunits and by regulatory β and γ subunits. The selectivity filter is almost universal and is 
formed by a five residue-long signature sequence (TVGYG) within the pore loop of each subunit, 
as it has been demonstrated both by site-directed mutagenesis combined with electrophysiology 
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and by the resolution of the crystal structure of several potas-
sium channels (6–9). The specificity for cations and in particular  
K+ ions is due both to the presence of a set of negatively charged 
amino acids in the vestibule region and of carbonyl oxygen 
atoms in the filter region, which precisely mimic the configura-
tion of oxygen atoms around a solvated K+ ion (10). The negative 
residues are evolutionary conserved and can interact with a 
preserved positively charged amino acid present in the peptide 
toxins of some venoms, which can block the channel (11).

Plasma membrane (PM) K+ channels are involved in the 
regulation of several fundamental cellular functions, including 
apoptosis and cell cycle progression. By regulating K+ perme-
ability across the PM, K+ channels are able to change membrane 
potential. During G1 to S phase progression, opening of these 
channels leads to an increased K+ permeability and hyperpo-
larized PM, while their closure partially depolarizes the PM 
favoring thus M phase transition (12). The regulation of the 
proliferation is mediated also by control of the PM Ca2+ perme-
ability via calcium channels through the membrane potential, 
that can be modulated via K+ channels. The role of PM K+ 
channels in proliferation and regulation of calcium influx has 
been extensively studied thanks to several impermeant specific 
K+ channels inhibitors, such as Margatoxin, Stichodactyla toxin 
(ShK), Charybdotoxin, etc. Block of PM K+ channels by these 
small peptide inhibitors generally results in reduced Ca2+ influx 
and block of the cell cycle and cellular proliferation [e.g., Ref. 
(13, 14)].

Robust experimental evidence indicates that intracellular 
counterparts of the PM-located K+ channels exist in different 
membranes such as Golgi, endoplasmic reticulum, nucleus, 
lysosomes, and mitochondria (15, 16). In some cases, especially 
in that of mitochondrial channels, an important role for cancer 
cell development and progression is emerging (17). In col-
laboration with the groups of Professors Gulbins and Kalthoff, 
we have recently demonstrated that pharmacological targeting 
of a mitochondrial K+ channel, namely of Kv1.3 of the shaker 
family (mitoKv1.3), efficiently triggers programmed cell death 
(18) and provides a new tool to selectively eliminate cancer 
cells even in vivo (19, 20). In an orthotopic mouse PDAC model 
using Colo357 cells, three membrane permeant Kv1.3 inhibitors, 
namely Psora-4, PAP-1, and clofazimine, led to cancer cell death 
in  vitro. In vivo, a reduction of the tumor weight by approxi-
mately 50% occurred when using clofazimine, without inducing 
side effects on healthy cells and organs (20). Very recently, we 
have developed a new class of mitochondria-targeted Kv1.3 
inhibitors starting from the PAP-1 molecule (19). A positively 
charged triphenylphosphonium moiety was added to PAP-1 
either directly (PAPTP) or via a carbamoyl linker (PCARBTP) 
to allow a preferential targeting of the molecule to mitochondria 
(characterized by approximately −180 mV membrane potential 
that drives accumulation of the positively charged PAP deriva-
tives) and thus, a direct effect of these new Kv1.3 inhibitors on 
the mitochondrial channels. These results demonstrated that 
the PAP-1 derivatives are more efficient than their precursors 
in killing various types of cancer cells in in vitro, ex vivo, and 
in vivo experiments. Although apoptotic cells were observed in 
the tumor tissue, the question remained open whether alteration 

of the function of the mitoKv1.3 might impact tumor volume, 
not only by inducing apoptosis at high concentrations, but also 
by altering cell proliferation at sublethal concentrations.

In the present article, we investigated the possibility that these 
new compounds, used at low concentrations, alter cell cycle 
either by acting on the PM Kv1.3 channel or by acting on the 
mitoKv1.3 in a highly metastatic PDAC cell line.

MaTerials anD MeThODs

cell culture
PANC-1 cell line was routinely grown in Dulbecco’s modified 
Eagle’s medium (DMEM) supplemented with 10% fetal bovine 
serum, 10  mM HEPES (pH 7.4), 100  µM non-essential amino 
acids, 100  U/ml penicillin, 100  µg/ml streptomycin (all Life 
Technologies) in a humidified atmosphere with 5% CO2 at 37°C. 
Colo357 cells were maintained in RPMI medium supplemented 
as stated before for DMEM.

reagents
All membrane-permeant substances were protected from 
UV sources to prevent their photo-oxidation. Psoralen, 
5-(4-Phenoxybutoxy) psoralen (PAP-1; Merck-Sigma-Aldrich, 
Germany), PAPTP, PCARBTP, clofazimine (Merck-Sigma-
Aldrich, Germany) were dissolved in dimethyl sulfoxide (DMSO). 
Staurosporine (Merck-Sigma-Aldrich, Germany) was dissolved 
in absolute ethanol (EtOH), and diluted in DMEM. The final 
concentration of DMSO was ≤0.5% in all assays.

MTs assay
To measure viability of the cells, we used the tetrazolium reduc-
tion (MTS) assay. Cells were seeded into 96-well plates at a 
density of 5 × 103 cells/well and allowed to grow in DMEM (sup-
plemented as described before) for 24 h. The growth medium 
was then replaced with phenol red and FBS-free medium and 
treated with the drugs at increasing concentrations: four wells 
were used for each condition. After 24  h 10% CellTiter 96® 
AQUEOUS One solution (Promega, Italy) was added to each 
well as indicated by the supplier. 4 h after incubation at 37°C, 
absorbance at 490 nm was measured using an Infinite® 200 PRO 
96-well plate reader.

Western Blotting
Cells (1  ×  106) were trypsinized and centrifuged at 500  g for 
10 min. The pellet was then resuspended in 300 µl of lysis buffer 
(25 mM TRIS pH 7.8, 2.5 mM EDTA, 10% glycerol, 1% NP40, 
2  mM DTT), frozen at −80°C, thawed and then vortexed for 
10 sec. Samples were centrifuged at 20,000 g for 10 min at 4°C. 
To enhance protein separation, supernatant samples were solubi-
lized for 1 h at RT in Sample Buffer (SB: 30% glycerol + 125 mM 
Tris pH 6.8 + 9% SDS + 0.1 M DTT + 0.3% bromophenol blue), 
loaded on SDS-PAGE (10% polyacrylamide gel, 15–25 mV). After 
separation by electrophoresis, gels were blotted overnight at 4°C 
onto PVDF membranes. After blocking with a 10% solution of 
defatted milk, the membranes were incubated overnight at 4°C 
with the following primary antibodies: anti-Kv1.3 (1:200, rabbit 
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FigUre 1 | Potassium channel Kv1.3 is expressed in PANC-1 cells. (a) Kv1.3 expression was determined by Western Blot in PANC-1 cells. 60 µg of total protein 
extract were loaded into a SDS gel and blotted onto a polyvinylidene fluoride (PVDF) membrane. Kv1.3 band was evaluated by immunoblotting with a specific 
antibody. GAPDH was used as loading control. The blot is a representative image of three different observations. (B) Inhibition of mitochondrial Kv1.3 by different 
concentration of membrane permeant blockers resulted in a reduction of the MTS signal from PANC-1 cells. Values are reported as percentage respect to untreated 
sample ± SEM. All compounds were added for 24 h. Staurosporine was used as positive control (n = 3; ***p < 0.001). (c) Determination of the EC50 of the indicated 
compounds in PANC-1 cells treated as in (B). EC50 was determined by using Origin60 software. First, a logarithmic dose response curve was generated using MTS 
data and then the EC50 values were calculated using the Origin Software.
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polyclonal; Alomone Labs APC-101); anti-GAPDH (1:1,000, 
mouse monoclonal; Millipore MAB374). After washing, the 
membranes were developed using corresponding antimouse 
or antirabbit secondary antibodies (Calbiochem). Antibody 
signal was detected with enhanced chemiluminescent substrate 
(SuperSignal West Pico Chemiluminescent Substrate; Thermo 
Scientific).

rOs Production
PANC-1 cells (1 × 106 cells for each condition) were incubated 
for 20  min at 37°C in the dark in DMEM medium without 
serum and phenol red with 1 µM Mitosox (Thermo Scientific) 
or 2 µM dihydroethidium (DHE). In some conditions, cells were 
preincubated for 1  h with ROS scavengers, Mitotempo, and 
N-acetylcysteine (NAC). Cells were treated with the compounds 
for 2 h and the fluorescence of the probes was normalized with 
the basal fluorescence measure before drugs addition by FACS 
(FACSantoII, BD Bioscience).

cell cycle analyses by Flow cytometry
PANC-1 and Colo357 cells were plated in 6-well plates at a 
density of 1 × 105 and 5 × 105 cells/well plates, respectively. The 
following day, cells were treated with different Kv1.3 inhibitors at 
sublethal concentrations. After 24 h, cells were collected, washed 

in cold PBS, permeabilized in 70% EtOH, and then stored at 
4°C. After 48  h, cells were centrifuged, washed in cold PBS, 
centrifuged again, resuspended in the staining mix (constituted 
by PBS, propidium iodide PI; 50 µg/ml; Merck-Sigma-Aldrich) 
and RNaseA (10 µg/ml; Qiagen), and incubated for 1 h at 37°C. 
Data were acquired using FACSanto II (BD Biosciences) and 
analyzed through ModFit LT software.

apoptosis analyses Using Fluorescence 
Microscopy
PANC-1 cells were seeded at a density of 4 ×  104  cells/well in 
24-well plate. The following day, the medium of each well was 
replaced with phenol red and FBS-free DMEM and treated 
with different Kv1.3 inhibitors. After 24 h, Annexin V-Alexa568 
(Roche) was added to each well and cells were incubated for 
45  min at 37°C. Images were acquired using the fluorescence 
microscope Leica DMI 4000.

statistical analyses
Experiments were repeated at least three times with consist-
ent results. Unless otherwise stated, data are expressed as the 
mean  ±  SEM. The results were analyzed using Student’s t-test 
(for MTS and Apoptosis analysis) and Two-way ANOVA with 
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FigUre 2 | Inhibition of mitochondrial Kv1.3 kills PANC-1 cells. (a) PANC-1 
cells were treated or left untreated with different membrane permeant Kv1.3 
inhibitors (PAPTP 10 µM, PCARBTP 10 µM, and clofazimine 20 µM) for 24 h. 
Cell death was determined by staining with an Alexa568 coupled Annexin V 
by fluorescent microscopy. The images are representative of three different 
replicates. (B) Quantification of Annexin V-positive cells from the experiments 
shown in (a): represented is the percentage of Annexin V-positive 
cells ± SEM (n = 3; **p < 0.01; ***p < 0.001).
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Bonferroni’s posttest correction (for ROS and cell cycle analysis). 
In all cases, p  ≤  0.05 was considered as statistically significant 
difference.

resUlTs

Panc-1 cells are sensitive to Treatment 
with Kv1.3 inhibitors
The highly metastatic PDAC cell line PANC-1 was used since it 
expresses a high level of the antiapoptotic Bcl-xL (21) and the 
action of mitoKv1.3 inhibitors is expected to be independent 
of Bax/Bcl-xL/Bcl-2 ratios. We have previously demonstrated 
that Kv1.3 is highly expressed in several PDAC cell lines both 
at transcript and protein level (20). Figure 1A shows that Kv1.3 
protein is expressed in PANC-1 cells. The predominant band 
observed for anti-Kv1.3 antibody corresponded to the protein 
with an apparent molecular size of 67 kDa, which is similar to 
the predicted size of Kv1.3 subunits deposited in the database 
(Kv1.3 P15384). Next, we tested sensitivity of PANC-1 cells 
to treatment with membrane permeant Kv1.3 inhibitors. In 
particular, we incubated these cells for 24 h with clofazimine 
or with the newly synthetized PAP-1 derivatives, PAPTP and 
PCARBTP (Figures  1B,C). Clofazimine, a drug already used 
in clinical practice to treat leprosy and some autoimmune 
diseases, was able to reduce cell survival with an EC50 of 25 µM. 
These cells were even more resistant to one of the most specific 
small molecule psoralen Kv1.3 inhibitor, PAP-1, even when 
applied together with CSH in order to avoid export of PAP-1 
from the cells (19). Contrarily, its recently synthetized deriva-
tives, PAPTP and PCARBTP, were more powerful and could 
decrease the MTS signal that is related to cell survival with an 
EC50 of approximately 3 and 6 µM, respectively (Figures 1B,C). 
The decrease of MTS values was due to apoptosis, as 10  µM 
PAPTP or PCARBTP caused a drastic increase in programmed 
cell death as assessed using Annexin V staining (Figure  2), 
while clofazimine even at 20 µM concentration induced only 
less than 30% cell death.

Both Membrane impermeant and 
Membrane Permeant Kv1.3 inhibitors 
affect cell cycle
In order to understand whether the above Kv1.3 inhibitors 
affect proliferation rate and cell cycle, we used a very low, 
l00 nM concentration of PAPTP and PCARBTP and 1 µM clo-
fazimine, which left all cells alive (see Figure 1B). In addition, 
a membrane-impermeant, highly specific Kv1.3 inhibitor, Shk 
(100 nM) was used in order to compare the effects of PM Kv1.3 
with those of the mitochondrial counterpart. Clofazimine acts 
on both PM and mitoKv1.3, while the mitochondriotropic 
drugs act prevalently on mitoKv1.3 and Shk acts only on PM 
Kv1.3. After incubation, cells were rapidly fixed and their DNA 
was stained by propidium iodide in the presence of RNAase. 
Cellular DNA content was used to determine cell cycle phase 
of each cell by FACS analysis. Cell cycle distribution was ana-
lyzed with the ModFit software (Figures 3A,B). Representative 

histograms are shown in Figure  3 while Figure  4 reports 
statistical analysis from 4 independent replicates. While Shk 
diminished the percentage of cells in S phase and at the same 
time it increased the population in G1 phase (Figures  3A  
and 4A) supporting the notion that Shk reduces proliferation, 
a slight, proliferation-supporting effect has been observed 
for both PAPTP and PCARBTP. With these latter substances 
a slight but statistically significant decrease in G1 phase was 
found after treatment with the low (100  nM) doses of the 
mitochondriotropic compounds only, with an increase in the 
fraction of cells in S-phase, which is a parameter widely used to 
describe the proliferative capacity of the cells (Figures 3B and 
4A). Interestingly, clofazimine slightly decreased the percent-
age of cells in G1 phase while increased the portion of cells in 
G2/M phase (Figures 3A and 4A).
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FigUre 3 | Sublethal inhibition of mitochondrial Kv1.3 leads to cell cycle alterations. (a) FACS analysis of cell cycle of PANC-1 cells untreated or treated with 
clofazimine 1 µM and ShK 100 nM for 24 h. The distribution was determined by staining cells with 50 µg/mL Propidium Iodide and the acquisition was performed by 
a FACSantoII (Beckton Dickson). The plots are representative of three separated determinations. Light blue peaks represent apoptotic cells, while red peaks 
represent cells in G1 and G2/M phases. S phase is represented by the area with blue straight lines. A sub-G1 peak is due to dead cells. In the graph of untreated 
cells the labels and the arrows identify the different populations that are reported. (B) Cell cycle distribution in PANC-1 cells pretreated (lower panels) or not (upper 
panels) with 50 µM Mitotempo or 20 mM N-acetylcysteine (NAC) for 1 h, before the addition of mitochondrial Kv1.3 inhibitors PAPTP and PCARBTP (both at 
100 nM) for 24 h. The experiment and the analysis have been performed as in (a). The plots are representative of three separate measurements.
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FigUre 4 | ROS favor cell cycle progression in PANC-1 cells. (a) Quantification of percentage of PANC-1 cells in the different phases of the cell cycle (G1, S, G2/M) 
in the experiments shown in Figures 3a,B. The analysis was performed by the ModFIT software. Values are reported as percentage of cells in the different 
phases ± SEM (n = 3; *p < 0.05; ***p < 0.001). (B–e) Quantification of the cell cycle distribution as in (a) of PANC-1 cells treated as in Figure 3B with PAPTP  
(B,D) or PCARBTP (c,e). Values are reported as percentage of cells in the different phases ± SEM (n = 3; *p < 0.05; **p > 0.01; ***p < 0.001).
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Membrane Permeant Mitochondriotropic 
Kv1.3 inhibitors affect cell Proliferation 
via rOs Production
Mild oxidative stress has been linked to increased proliferation 
(22, 23) and we have previously shown that both mitochondrio-
tropic drugs, PAPTP and PCARBTP, when used at concentra-
tions that kill the cells, are able to substantially increase ROS 
release at the level of mitochondria (19). ROS production occurs 
because inhibition of mitoKv1.3 results in hyperpolarization 

and changes in the mitochondrial membrane potential increase 
the likelihood of electron transfer to molecular oxygen mainly 
at the level of respiratory chain complexes I and III, e.g., Ref. 
(24, 25). We hypothesized that sublethal, low concentrations 
of these drugs may induce only a mild oxidative stress to the 
cells, thereby promoting proliferation. To prove this hypoth-
esis, we measured both mitochondrial and intracellular ROS 
production in PANC-1 cells after 2  h of incubation with our 
compounds (Figures 5A,B). Statistically significant increase of 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FigUre 5 | Low concentrations of PAP-1 derivatives induces ROS 
production. (a) Quantification of mitochondrial ROS production in PANC-1 
cells after 2 h of incubation with PAPTP, PCARBTP, and ShK (all 100 nM), 
Antimycin A (2 µM) or clofazimine (1 µM) by Mitosox (1 µM). Where indicated 
cells were pre-treated with ROS scavengers Mitotempo (50 µM) or 
N-acetylcysteine (NAC) (20 mM) for 1 h. Values are reported as percentage of 
Mitosox fluorescence compare to 0 h ± SEM (n = 3; **p > 0.01; ***p < 0.001). 
(B) Quantification of intracellular ROS production in PANC-1 cells treated as 
in (a) after 2 h by DHE (1 µM). Values are reported as percentage of DHE 
fluorescence compare to 0 h ± SEM (n = 3; **p > 0.01; ***p < 0.001).
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ROS release in the mitochondria as well as of ROS level in the 
cytosol was observed. This increase was completely prevented 
by pre-incubating PANC-1 cells with ROS scavengers, either 
the mitochondriotropic Mitotempo or the antioxidant NAC. 
Both Mitotempo and NAC were used at a concentration that 
had previously been shown to be effective in different cell lines 
to scavenge mitochondrial ROS (19, 26). To further prove the 
contribution of ROS to cell cycle progression, we measured 
the cell cycle parameters both in untreated and in treated 
cells, as well as in those preincubated with ROS scavengers 
(Figures  4B–E). Figure  3B shows representative histograms, 
while Figures 4B–E demonstrates that in the case of both Kv1.3-
affecting drugs, both Mitotempo and NAC reverted the effects 
of the mitochondriotropic drugs on cell cycle in a statistically 
significant way. Interestingly, the mitoKv1.3 inhibitors induced 
a decrease of the cell population in G2/M phase when applied 
following NAC preincubation, possibly due to some additional 
effects of NAC with respect to Mitotempo.

To consolidate these observations, we repeated these 
experiments using another metastatic PDAC cell line, namely 
Colo357. These cells underwent cell death after treatment with 
high concentrations of these compounds, but a different EC50 
compared to PANC-1 has been obtained [3.7, 2, and 1.5  µM 
for PAPTP, PCARBTP, and clofazimine, respectively (19, 20)]. 

We incubated Colo357 cells with sub-lethal doses of these 
drugs. The concentrations to be used were calculated keeping 
the same proportion of the drug concentration with respect 
to the EC50 that we used for PANC-1 (i.e., 30–60 times lower 
concentration than the respective EC50 values; PAPTP 100 nM; 
PCARBTP 35  nM; clofazimine 40  nM) (Figures  6A–E). As 
shown in Figure 6, Colo357 cells behaved similar to PANC-1 
in the regulation of their cell cycle. Interestingly, in this cell line 
both PAPTP and PCARBTP caused not only an increase of the 
cell population in the S phase, but also a drastic decrease in the 
G2/M phase.

DiscUssiOn

In this work, we assessed the effect of the recently described 
mitochondria-targeted Kv1.3 inhibitors on cell cycle in two dif-
ferent PDAC cell lines, when used at very low concentrations 
that did not affect cell death. Kv1.3 is highly expressed in the 
PM of various cells (3, 5). Elevated Kv1.3 expression is detected 
in a number of human malignancies (27) including breast, 
colon, and prostate cancer, leukemia (28), melanoma (18), and 
PDAC (20) Robust evidence demonstrates that Kv1.3 regulates 
proliferation and cell cycle progression (13), via modulation of 
the PM potential, a key regulator of proliferation in a number of 
cell types. Modulation of the membrane potential is required for 
both G1/S phase and G2/M phase transitions: during G1/S the 
cell membrane becomes hyperpolarized relative to the resting 
potential as voltage-gated Kv potassium channels mediate the 
efflux of positively charged K+ ions from the cells to the extra-
cellular milieu, e.g., Ref. (29, 30); conversely, depolarization of 
the PM seems to be essential for the G2/M transition. In B cell 
lymphocytes, inhibition of K+ channels induced a reversible 
cycle arrest (31). Knockdown or inhibition of Kv1.3 and Kv1.5 
in rat oligodendrocytes resulted in cell cycle arrest at G1/S (32, 
33). Specific Kv1.3 blockers that act exclusively on PM Kv1.3, 
such as Margatoxin or Shk and its analogues have also been 
reported to block proliferation of T  lymphocytes (34), of rat 
prostate cancer cells (35), of human endothelial cells (36) and 
of oligodendrocyte progenitor cells (32). Our results obtained 
using Shk are compatible with those observed for Margatoxin 
on the cell cycle, as reported for A549 human lung cancer cells 
(37): both molecules slightly decrease the percentage of cells in 
the S phase, while increasing the population in G0/G1 phase, 
indicating a block at the G1/S transition. K+ channel activities 
regulate G1 progression in the cell cycle also by modulating 
the activity of some of the crucial proteins involved in G1–S 
phase progression, including cyclin or cyclin-dependent kinase 
inhibitors (cdki) (33) like members of two distinct cdki families, 
INK4 and Kip/CIP. It has been demonstrated for example in 
lung cancer A549-cultured cells that the antiproliferative effect 
of Margatoxin or of silencing of Kv1.3 expression is mediated via 
G1-S transition block via a mechanism that involves p21Waf1/
Cip1 accumulation and decrease of Cdk4 and cyclin D3 (37). 
Cyclin D3, Cdk4, and p21Waf1/Cip1 are important factors 
that determine the regulation of the G1 phase progression of 
the cell cycle (38): Cyclin D binds to Cdk4 and p21Waf1/Cip1 
inhibits the cyclin D/Cdk complexes. Similarly, p21 and p27 
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FigUre 6 | ROS favor cell cycle progression in Colo357 cells. (a) Quantification of percentage of Colo357 cells in the different phases of the cell cycle (G1, S, 
G2/M) in the experiments shown in Figures 3a,B. The analysis was performed by the ModFIT software. Values are reported as percentage of cells in the different 
phases ± SEM (n = 3; *p < 0.05; **p > 0.01; ***p < 0.001). (B–e) Quantification of the cell cycle distribution as in (a) of Colo357 cells treated as in Figure 3B with 
PAPTP (B,D) or PCARBTP (c,e). Values are reported as percentage of cells in the different phases ± SEM (n = 3; *p < 0.05; **p > 0.01; ***p < 0.001).

accumulation has been reported to account for cell cycle arrest 
at G1 in rat oligodendrocyte precursors (32). As to clofazimine, 
it has been proposed to block proliferation by phospholipase 
A2-mediated mechanisms (39) and its application was shown 
to slightly reduce proliferation of Colo357 cells in a PDAC 
in  vivo model, as evaluated by using anti-Ki67 antibodies on 
tumor tissues (20). Ki67 is a nuclear protein which is highly 
expressed in particular during late G1-S-M and G2 phases of 
the cell cycle. However, clofazimine may exert its action at 
various levels (40). Interestingly, the effect of clofazimine, i.e., 
and increase of the cell population in G2/M phase is similar 

to that obtained using a lentiviral-dominant negative approach 
to obtain loss of function of Kv1.3: this latter approach was 
shown to mediate reversion of effector memory T  cells into 
central memory T cells via a delay in cell cycle progression at 
the G2/M stage. The inhibition of Kv1.3 signaling caused an 
increase of SMAD3 phosphorylation and induction of nuclear 
p21cip1 with consequent suppression of cyclin-dependent 
kinase 1 (Cdk1) and cyclin B1 (41). PM Kv1.3 was also shown 
to play an important role in cell cycle activation by controlling 
Akt phosphorylation (42). Interestingly, Kv1.3 seems to harbor 
also some functional roles independently of its ability to form 
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