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The prediction of induction chemotherapy response at the time of diagnosis may improve 
outcomes in osteosarcoma by allowing for personalized tailoring of therapy. The aim 
of this study was thus to investigate the predictive potential of the so far unexploited 
computational analysis of osteosarcoma magnetic resonance (MR) images. Fractal 
and gray level cooccurrence matrix (GLCM) algorithms were employed in retrospective 
analysis of MR images of primary osteosarcoma localized in distal femur prior to the 
OsteoSa induction chemotherapy. The predicted and actual chemotherapy response 
outcomes were then compared by means of receiver operating characteristic (ROC) 
analysis and accuracy calculation. Dbin, Λ, and SCN were the standard fractal and 
GLCM features which significantly associated with the chemotherapy outcome, but 
only in one of the analyzed planes. Our newly developed normalized fractal dimension, 
called the space-filling ratio (SFR) exerted an independent and much better predictive 
value with the prediction significance accomplished in two of the three imaging planes, 
with accuracy of 82% and area under the ROC curve of 0.20 (95% confidence interval 
0–0.41). In conclusion, SFR as the newly designed fractal coefficient provided superior 
predictive performance in comparison to standard image analysis features, presumably 
by compensating for the tumor size variation in MR images.

Keywords: chemotherapy, fractals, gray level cooccurrence matrix, image analysis, magnetic resonance imaging, 
osteosarcoma, space-filling ratio

inTrODUcTiOn

Primary osteosarcoma occurs most commonly in the second decade of life (1). In the prechemo-
therapy era, osteosarcoma was characterized by very poor survival rates of less than 20% over a 
5-year period. An improvement of this rate to over 80% was observed in the 1970s and early 1980s 
upon emergence of the chemotherapy regimens.

Osteosarcoma is treated by a multimodal therapy, comprising a preoperative chemotherapy,  
surgical treatment, and postoperative chemotherapy. The problem with the current clinical treat-
ment of osteosarcoma is that the patient survival rate attained in the 1980s remains unchanged (2). 
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Djuričić et al. Chemotherapy Response Prediction

Frontiers in Oncology | www.frontiersin.org October 2017 | Volume 7 | Article 246

The major conceivable strategy for the improvement in outcomes 
is based on the introduction of personalized treatment tailor-
ing. This is currently not possible because reliable predictors of 
induction chemotherapy response are not available, although 
there are several therapeutic options for osteosarcoma (2). 
The degree of tumor necrosis in response to chemotherapy by 
pathohistological analysis is the most reliable assessment of the 
chemotherapy response and prognosticator of disease outcome, 
but it is only available after chemotherapy completion (3).  
A less reliable but earlier chemotherapy response evaluation, 
after at least one cycle of chemotherapy, has become possible 
more recently by magnetic resonance imaging (MRI) and func-
tional imaging methods (4). Yet, a prediction of chemotherapy 
response prior to chemotherapy start is the optimal goal for the 
treatment tailoring that could avoid metastasis development 
during long ineffective treatments.

The absence of chemotherapy predictors has been stimulating 
the predictive marker discovery research. The main emphasis 
has been on molecular biomarkers, including proteins (5) and 
mRNA (6) which remain in early experimental phases with 
uncertain prospects of their implementation.

The computational structural analysis of the tumor morphol-
ogy thus evolves as a strategy complementary to the main stream 
molecular analysis in search for the improved pre diction of 
chemotherapy response. This approach mostly uses the fractal 
geometry which has been developed with an intent to resolve the 
shortcomings of traditional geometry in structural analysis of 
irregular natural objects (7). Although fractal analysis has been 
widely used in analysis of magnetic resonance (MR) images and 
considered as the next generation quantitative analysis tool (8), it 
has never been applied to a predictive purpose in osteosarcoma.

The aim of this study was to test whether the gray level 
cooccurrence matrix (GLCM) and monofractal computational 
analyses of routinely collected osteosarcoma MR images prior 
to chemotherapy might have any capability to predict the chem-
otherapy response.

MaTerials anD MeThODs

The study was approved by the Institutional Review Board 
(Belgrade University, School of Medicine, approval #29/VI-4) 
and conforms with The Code of Ethics of the World Medical 
Association (Declaration of Helsinki), printed in the British 
Medical Journal (18 July 1964) and its 7th revision in 2013. 
Patient data were received by the pathology unit in a deidenti-
fied and recoded form without direct or indirect identifiers 
that could enable reidentification. This retrospective study was 
performed on archived and unidentifiable images acquired as 
part of a routine care and not for research purpose and for these 
reasons it was granted a waiver of patient consent by the IRB 
in adherence with the 2012 Health Insurance Portability and 
Accountability Act.

Patient group
Cross-sectional study encompassed a group of patients suffer-
ing from primary sarcoma in distal femur, all diagnosed and 
treated by the National Sarcoma Consilium during the 5-year 

period (2010–2014) at the Institute for Oncology and Radiology. 
The inclusion criteria aimed to homogenize the tumor loca-
tion, presence of metastasis and pathological fracture. Of the 
60 patients, 32 had tumors in distant femur. Ten of these 32 
were excluded based on pathological fractures or metastasis to 
obtain a final patient group of 22. Homogenization was needed 
in this initial study as osteosarcoma is a highly heterogene-
ous disease. The sample size calculation required 20 patients  
(9 poor responders and 11 good responders) for the area under 
the receiver operating characteristic (ROC) curve (AUC) effect 
size of 0.80 (MedCalc Software, Ostend, Belgium). Patients were 
subjected to OsteoSa MAP neoadjuvant therapeutic protocol 
(doxorubicin, cisplatin, methotrexate). MRI was performed for 
all patients, confirming the presence and extent of the tumor 
formation.

chemotherapy response evaluation
As the study was retrospective, the patient stratification into 
good and poor chemotherapy responder groups was done 
according to their actual response. Pathohistological evaluation 
of the achieved chemotherapeutical effect was performed on 
the tumor tissue obtained by the tumor-removal surgery and 
not by biopsy. This evaluation was based on pathohistological 
Huvos grading system which is still the most widely used and 
most reliable method for the assessment of response to therapy 
(4). Grading was performed by the expert pathologist (Jelena 
P. Sopta) with 21  years of experience. Patients with the level 
of tumor necrosis exceeding 90% were considered as “good 
responders,” while those with less than 90% of necrosis were 
considered as “poor responders.”

image acquisition
Images were obtained by the diagnostic workstation (Siemens 
Magnetom Avanto Syngo MR B15, Siemens Healthcare, Erlan-
gen, Germany) and exported in 1,920 × 1,080 pixel size by use 
of the Kodak Carestream PACS Client Suite version 10.2 soft-
ware (Kodak, Rochester, NY, USA). Tumor tissue was imaged 
in the coronary, sagittal, and transversal planes. Six images 
were analyzed per patient, with two characteristic images for 
each of the three spatial planes, selected by the expert radiolo-
gist (Goran J. Djuričić). The final number of images was thus  
6 × 22 = 132.

Fractal analysis
Box-counting measures fractal dimension of real objects by 
covering the object with rectangular coordinate grid of cell size r 
and counts the number of boxes where the cell size is expressed 
as the number of foreground pixels. The number of squares  
N(r) needed to cover the image is given by a power law:

 N r r D( ) = ⋅ ,−const  (1)

where D is the box dimension, calculated as an absolute value 
of the slope of the log–log relationship between N(r) and r as 
previously described in detail (9).

Four morphometric parameters were obtained by the box-
counting method. Fractal dimension (Dbin) and outline fractal 
dimension (Dout) were calculated by respective use of binary 
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and outline images produced by ImageJ. Dbin estimates the 
distribution of black pixels in a binary image of a tumor, while 
Dout estimates the shape of a tumor.

The space-filling ratio (SFR) was calculated as the ratio 
of two binary box dimensions for each image. The first Dbin 
derived from image with the whole tumor area flood-filled with 
foreground pixels (Figure  2C), while the second was derived 
from the inverted version of the same image in which the whole 
tumor area was filled, this time with background pixels. Fractal 
dimension and lacunarity (Λ) were calculated by the FracLac 
plugin for Image J (7). Lacunarity estimates gaps in binary 
images as irregularity in pixel distribution (Figure 2B) and the 
translational and rotational invariance of an image.

glcM analysis
Generally, texture features contain information about the 
spatial distribution of tonal variations within a group of 
pixels: homogeneity, gray-tone linear dependencies, contrast, 
boundaries, and the complexity of the image. GLCM is the 
most commonly used type of texture analysis. It is defined as 
a two-dimensional histogram of gray levels for pairs of pixels, 
which are separated by a fixed spatial relationship (10). The 
number of rows and columns in the matrix is equal to the 
number of gray levels (G) in the image. The matrix element P(i, 
j | Δx, Δy) is the relative frequency of occurrence of two pixels 
with intensities i, j, separated by a pixel distance (Δx, Δy).

Five GLCM features were calculated: angular second 
moment (SASM), inverse difference moment (SIDM), contrast 
(SCN), correlation (SCR), and entropy (SE) by the following  
equations:

 
S P i, j

j

G

i

G

ASM
2

1

0

1

= ( )
=

−

=

−

( )∑∑
0

,
 

(2)

 
S

i j
P i

j

G

i

G

IDM
0

1

0

1 1
1+

, ,=
( − )

⋅ ( )
=

−

=

−

2
j∑∑

 
(3)

 
S n P i j n i j

j

G

i

G

n

G

CN
2

10

1

, , ,= ( ) = −
===

−

1
∑∑∑











 
(4)

 
S i x

G

CR
, ,=

( ⋅ ) ⋅ ( ) − (µ ⋅ )
(σ )

− i j P j y

x yj

G

i

µ
σ⋅=

−

=
∑∑

0

1

0

1

 
(5)

 
S i j i jE

j

G

i

G

= − ( ) ⋅ ( )P P, ,log ,( )
=

−

=

−

∑∑
0

1

0

1

 
(6)

where μ and σ are the mean and SDs of probabilities Px and Py.
While SASM (homogeneity) measures textural uniformity 

of the image, SIDM measures local image homogeneity as it 
assumes larger values for smaller gray tone differences in pair 
elements. Furthermore, SCN measures the spatial tonal fre-
quency of an image as the difference between the highest and 
the lowest values of a contiguous set of pixels, while SCR is a 
measure of gray tone linear dependencies in the image. Finally, 
the SE estimates the amount of information that is needed for 
image compression, in other words, it measures disorder and 
complexity.

Data categorization and statistical 
analyses
The measured continuous values were categorized in order to 
enable allocation of patients into the good- and poor-responder 
groups. The best threshold values for each parameter in uni-
variable analysis were calculated by X-tile 3.6.1 software, Yale 
University, New Haven, CT, USA (11), followed by a stepwise 
multivariable logistic regression analysis. Variables categorized 
by outcome were added to a full model using forward selection 
entry criterion of P < 0.10 in univariate analysis and removed 
using backward elimination according to a selection stay crite-
rion of P < 0.05.

Areas under the receiver operating characteristic (ROC) 
curves were calculated as a quantitative measure of discrimi-
nation efficiency. AUCs were computed based on continuous 
feature values. Classification accuracy was used as the additional 
prognostic measure, indicating the percentage of times that the 
predicted and actual outcomes match (12). Accuracies were 
calculated by use of categorized values. The bootstrap random 
resampling technique was applied for bias correction. This 
procedure tests model stability and reliability by estimating the 
bias and then corrects bias by modification of the original AUC 
confidence intervals (95% CIs) as previously explained in detail 
(13). The bias is the difference between the calculated uncor-
rected 95% CI for AUC and their true values. The advantage 
of bootstrap over the split-sample cross-validation as another 
major internal validation method is that the entire dataset is 
used for model development. The SPSS software package v23 
(IBM SPSS Statistics, Chicago, IL, USA) was employed for these 
statistical analyses.

resUlTs

The predictive value of monofractal and GLCM analyses for the 
primary osteosarcoma tumors was retrospectively evaluated 
in the patient group which was preoperatively treated with the 
OsteoSa MAP therapeutic protocol. MR images were obtained 
before the chemotherapy application. The actual response of each 
patient to chemotherapy was determined by the pathohistological 
examination at the time of surgery. It was found that chemo-
therapy response predicted by SFR provided the best association 
with the actual chemotherapy response.

Several clinicopathological and demographic parameters 
were available, including gender, age, tumor resection margins, 
metastasis, pathological fracture, tumor surface area, and 
tumor volume (Table 1). ROC analysis based on the continuous 
numerical values did not indicate a significant predictive power 
for any of the clinicopathological parameters (not shown). 
However, the binary logistic regression based on the values 
categorized by the best threshold did indicate several significant 
clinicopathological predictors (Table 1).

Images (Figure 1A left) were cropped by Image J software to 
isolate regions of interest (ROIs) according to borders of each 
individual tumor (Figure 1A right). The sizes of ROIs reflected 
the actual variation of tumor dimensions. Such type of image 
processing is commonly used to obtain the optimally comparable 
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TaBle 1 | Patient characteristics.

characteristics n P-valuea,b hazard ratioa,b 95% cia,b

age
< 20 18 (82%)
> 20 4 (18%) 0.06 0.16 2.3 × 10−10–1.3
Median 13

gender
Male 15 (68%) 0.05 0.20 1.9 × 10−10–1.2
Female 7 (32%)

Tumor volume (cm3)
Median 1,476 0.40 0.48 0.04–3.0
Range 85–10,590

Tumor surface (cm2)
Median 19.2 0.43 0.50 0.02–3.3
Range 3.2–57.7

Pattern on Mri
Concentric 19 (86%) 0.72 0.47 0.10–2.1
Longitudinal 3 (14%)

histologic response
Good 12 (54%) – – –
Poor 10 (46%) – – –

Pathologic subtype
Osteoblastic 10 (46%) – – –
Chondroblastic 6 (27%) – – –
Fibroblastic 4 (18%) – – –
Other 2 (9%) – – –

location
Distal femur 22 (100%) – – –

Metastatic disease
No 22 (100%) – – –

Major demographic, clinicopathological, and MRI characteristics of the patient group 
and their predictive evaluation by the binary logistic regression test.
aBinary logistic regression test, bootstrap corrected.
bObtained with data categorized by an optimal threshold.
 CI, confidence interval; n, number of patients.
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and relevant image details for both fractal and texture analyses. 
Examples of images in coronal, sagittal, and transversal planes 
are shown in Figures 1B–D, respectively. Each image was saved 
in grayscale (Figure  2A), converted from grayscale to binary 
(Figure 2B) with ROI flood-fill (Figure 2C) and outline versions 
(Figure 2D).

MR image analysis results are shown in Tables 2 and 3. SFR 
significantly associated with the chemotherapy outcome in the 
coronal and sagittal, but not in transversal plane (Table 2). Λ 
and SCN were significant predictors in the coronal plane and 
Dbin in the sagittal section (Tables 2 and 3). When data from 
all three planes were averaged for each feature, only SFR was 
significant (Tables 2 and 3).

The calculated accuracies for the significant chemotherapy 
predictors in Tables 2 and 3 were: SFR COR 68%, Λ COR 77%, 
Dbin SAG 77%, SFR SAG 70%, SCN CORO 77%, and SFR 
AVER 82%.

Correlation cross-analysis of the clinicopathological para-
meters and texture features has revealed the significant cor-
relation between SFR TRANSV with the tumor area (Spearman 
coefficient  =  0.64) and SFR TRANSV with the tumor volume 
(Spearman coefficient = 0.57).

The multivariate analysis was performed to capture the 
redundancy between features averaged across the three sections 

(Table 4). SFR AVER was thereby indicated as an independent 
feature able to predict chemotherapy response after adjustment 
with all significant clinicopathological and texture chemotherapy 
predictors (Table 4). A detailed analysis of the SFr discrimination 
efficiency is presented in Figure 3.

DiscUssiOn

A prediction of chemotherapy response at the time of diagnosis 
may prove beneficial for osteosarcoma patients. Their initial 
treatment consists of either induction chemotherapy or amputa-
tion, mainly depending on the estimated size of surgical margins. 
Due to a lack of reliable chemotherapy outcome predictors at 
the time of diagnosis, chemoresistance remains the main limit  
of the clinical effectiveness in osteosarcoma (2). Primary tumors are 
the obvious source of predictive clues for chemotherapy response 
(9). The present study therefore investigated the chemotherapy  
response prediction of the computational morphologic evalua-
tion in primary tumors. The neoadjuvant chemotherapy model 
used in this study is currently accepted as an optimal approach 
for assessment of the in vivo neoadjuvant chemotherapy response 
because a tumor remains in situ all until surgery (14).

Interestingly, the performance of image analysis was not 
symmetrical among the imaging planes. More specifically, three 
features exerted predictive significance in the coronal section, 
two in the sagittal section and none in the transversal section. 
Although several standard GLCM and fractal features, Dbin, Λ, 
and SCN, significantly associated with chemotherapy outcome, 
this was evident in only one of the three examined planes.

In an attempt to accomplish an improvement in prognostic 
value, we designed SFR as a normalized version of Dbin. This SFR 
compensated for the tumor size variability relative to background 
within MR images. Such effort has indeed resulted in a much 
more consistent predictive performance as SFR significantly 
associated with the chemotherapy response in two planes while 
it also trended toward significance in the remaining third plane 
(P = 0.20). SFR averaged among the three planes has achieved an 
AUC of 0.20, generally regarded as an excellent discrimination 
performance.

Fractal and GLCM image analyses have been widely used 
(15), but generally underexploited in MRI and never applied to 
osteosarcoma MRI. We believe that this has been mainly due 
to a problematic difference in tumor sizes relative to the whole 
image which needs to be compensated in order to obtain mean-
ingful results. The novel SFR parameter thus presents a genuine 
innovation in fractal analysis and a potential breakthrough in 
computational MR image analysis, because tumor size variation 
is a general occurrence in MR images.

The inherent limitation of the present study is in the relatively 
small number of 22 patients. Therefore, additional studies in an 
extended patient group and in external groups would be needed 
to further characterize the predictive clinical validity of SFR. 
But even in this study the number of examined tumors derived 
from a larger group of 60 patients. This group was condensed 
by selection of highly homogeneous 22 patients in order to most 
reliably evaluate the predictive potential of fractal and GLCM 
analysis without influences from heterogeneities associated with 
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FigUre 1 | (a) An exemplary distal femur magnetic resonance (MR) image (left) and a region of interest showing the tumor (right). Examples of tumor images 
recorded in coronal (B), sagittal (c), and transversal (D) planes. For each patient two characteristic images in each plane [(B–D) left and right] were analyzed.

FigUre 2 | An example of image processing for computational image analysis: grayscale (a), binarized (B), binarized with filled region of interest (ROI)  
(c) and (D) binarized outline of the whole tumor area.
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FigUre 3 | Prognostic performance of space-filling ratio (SFR) by receiver operating characteristic (ROC) analysis. (a) SFR in the coronal section, (B) SFR in the 
sagittal section, (c) SFR in the transversal section, and (D) SFR averaged among all three sections. Plots reveal discrimination efficiencies of SFR continuous values, 
prior to their categorization.
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TaBle 2 | The prognostic significance of the examined box-count features.a,b

Dbin Dout sFr Λ

coronal section
0.51 0.74 0.04 0.02
0.42; 0.16–0.68 0.54; 0.29–0.79 0.30; 0.08–0.53 0.21; 0.01–0.40

sagittal section
0.05 0.92 0.03 0.67
0.30; 0.07–0.49 0.49; 0.24–0.74 0.31; 0.08–0.47 0.45; 0.19–0.71

Transversal section
0.43 1.0 0.20 0.51
0.40; 0.15–0.65 0.50; 0.24–0.76 0.34; 0.11–0.57 0.58; 0.34–0.83

average
0.08 0.95 0.02 0.32
0.30; 0.06–0.51 0.49; 0.23–0.75 0.20; 0–0.41 0.38; 0.14–0.62

ROC analysis was used for evaluation of predictive significance. Each result indicates a 
P-value followed by AUC and its 95% confidence interval.
aAUC values and 95% CI are bootstrap corrected.
bObtained with continuous data.
Dbin, fractal dimension obtained on binarized images; Dout, fractal dimension obtained 
on binarized and outlined images; SFR, ratio of the Dbins obtained on images in which 
tumor ROI was filled with foreground and background pixels; Λ, lacunarity.
Boldface values indicate significance with p < 0.05.

resampling for internal validation of data which corrects the 
optimistic bias when the sample size is small (13). Furthermore, 
the used predictive evaluation was very stringent because AUC 
calculation was based on continuous values, thus avoiding the 
introduction of optimistic bias by the common categorization 
based on optimal threshold.

There have been no prior comparable studies specifically 
implemented to achieve a prediction of osteosarcoma chemo-
therapy response by fractal or GLCM MR image analysis.  
A single predictive study employing fractal MR image analysis 
was performed on breast tumors (16). A significant prognostic 
value was thereby achieved, but the quantitative association 
measures such as accuracy and AUC have not been calculated, 
thus limiting any direct comparison with our current results. 
Another study was focused on osteosarcoma chemotherapy 
response prediction but was restricted to molecular markers (6) 
and also did not provide either the predictive accuracy or AUC. 
Previous efforts in prediction of chemotherapy response that 
are comparable to our study (with predictions obtained before 
the chemotherapy onset) could achieve an accuracy of 78% by 
the average tumor area (17). This evaluation was performed on 
data categorized by the optimal threshold, a method known 
to introduce an optimistic bias. In our current study, tumor 
surface area did not deliver prognostic significance but the 

the type of bone, presence of pathological fracture or metas-
tasis. Besides the high homogeneity of the analyzed tumors, 
reliability of the obtained results is also based on the bootstrap 
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TaBle 3 | The prognostic significance of the examined GLCM features.a,b

SasM SiDM Scn Scr Se

coronal section
0.79 0.69 0.04 0.32 0.90
0.53; 0.28–0.79 0.45; 0.20–0.70 0.73; 0.52–0.95 0.38; 0.13–0.62 0.52; 0.27–0.77

sagittal section
0.39 1.0 0.29 0.58 0.69
0.61; 0.37–0.85 0.50; 0.25–0.75 0.63; 0.39–0.87 0.43; 0.17–0.69 0.45; 0.20–0.70

Transversal section
0.25 0.74 0.95 0.19 0.64
0.65; 0.40–0.89 0.46; 0.21–0.71 0.49; 0.23–0.75 0.67; 0.43–0.90 0.44; 0.19–0.69

average
0.24 0.69 0.24 0.84 0.64
0.65; 0.41–89 0.45; 0.20–0.70 0.65; 0.42–0.88 0.53; 0.27–0.78 0.44; 0.19–0.69

ROC analysis was used for evaluation of predictive significance. Each result indicates a P-value followed by AUC and its 95% confidence interval.
aAUC values and 95% CI are bootstrap corrected.
bObtained with continuous data.
SASM, angular second moment; SIDM, inverse difference moment; SCN, contrast; SCR, correlation; SE, entropy.
Boldface values indicate significance with p < 0.05.

TaBle 4 | Multivariate binary logistic regression analysis of the chemotherapy 
response.a

coefficient P-valueb

Age 17.864 0.028
SFr −38.292 0.001
Λ −55.947 0.004
SASM 57.072 0.001
SIDM −37.338 0.001

Multivariate analysis was performed by inclusion of all significant predictors to capture 
their predictive redundancy.
aAverage values of the three planes.
bBinary logistic regression, bootstrap corrected.
Λ, lacunarity; SASM, angular second moment; SIDM, inverse difference moment;  
SFr, space-filling ratio.

fractal SFr parameter achieved 82% accuracy by its continuous 
values. Others report the maximal accuracy of 59% (18) and 
AUC of 0.57 (4) by functional imaging prior to chemotherapy 
administration. Metabolic changes calculated by subtraction 
of values before and after chemotherapy treatment in the same 
study, included the postchemotherapy information and thus 
associated with an osteosarcoma chemotherapy response by a 
much improved AUC of 0.89 (4). Evidently, this parameter was 
not predictive as it made use of tumor measurements after the 
chemotherapy treatment. Our study implemented a fully pre-
dictive model since we only used MRI images before the start of 
chemotherapy to predict the future response to chemotherapy 
by the AUC of 0.80 and accuracy of 82%, achieved by SFr.

The clinical significance of chemotherapy response prediction 
at the time of diagnosis is based on the fact that tumor response 
to induction chemotherapy exerts a major influence on the 
disease outcome. Such chemotherapy is prescribed instead of an 
amputation in cases when wide surgical margins are achievable. 
The described method for prediction of chemotherapy resistance 
may thus be most applicable to patients with borderline surgical 
margins. An early identification of poor responders could thus 
prolong survival by directing to alternative treatments such as 
experimental protocols (clinical trials), an amputation or surgery.

The observed predictive power of MR image analysis could 
be explained by the unidentified tumor morphological quali-
ties that are characteristic for either chemotherapy sensitivity 
or resistance. SFr is a derivative of fractal dimension based on 
pixel-level statistics and thus rather abstract. It was higher in 
poor responders (0.94 ± 0.01) in comparison to good responders 
(0.91 ± 0.02). With fractal dimension interpreted as a measure of 
complexity, it follows that increased complexity of a tumor was 
an indication of its chemotherapy-resistance.

In conclusion, the major novelty aspect of this study is the 
SFR fractal parameter designed to compensate for the variability 
in tumor sizes. The theoretical advantage of this parameter was 
here supported experimentally by its superior and independent 
predictive performance in comparison to standard fractal and 
GLCM features in analysis of MR images. Furthermore, SFR 
outperformed the previously reported volumetric and functional 
imaging parameters acquired before the onset of chemotherapy. 
An early prediction of the chemotherapy response long before 
surgery might benefit the patients by enabling the personalized 
tailoring of treatments.
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