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Prostate cancer (PCa) is one of the most frequently diagnosed cancer among men in 
the western societies. Many PCa patients bear tumors that will not threat their lives 
if left untreated or if treatment is delayed. Our inability for early identification of these 
patients has resulted in massive overtreatment. Therefore, there is a great need of finding 
biomarkers for patient stratification according to prognostic risk; as well as there is a 
need for novel targets that can allow the development of effective treatments for patients 
that progress to castration-resistant PCa. Most biomarkers in cancer are proteins, 
including the widely-used prostate-specific antigen (PSA). Recent developments in 
mass spectrometry allow the identification and quantification of thousands of proteins 
and posttranslational modifications from small amounts of biological material, including 
formalin-fixed paraffin-embedded tissues, and biological fluids. Novel diagnostic and 
prognostic biomarkers have been identified in tissue, blood, urine, and seminal plasma 
of PCa patients, and new insights in the ethology and progression of this disease have 
been achieved using this technology. In this review, we summarize these findings and 
discuss the potential of this technology to pave the way toward the clinical implementa-
tion of precision medicine in PCa.

Keywords: mass spectrometry, prostate cancer proteomics, proteome, FFPe, biofluid proteomics, prognostic 
biomarker, diagnostic biomarker

inTRODUCTiOn

Prostate cancer (PCa) leads the statistics in cancer diagnosis and cancer-related death among 
men in the western societies (1). Current therapies, which are based on radiation or surgery for 
prostate-confined tumors and on androgen-deprivation therapy (ADT) for locally advanced or 
metastatic presentations have demonstrated to be very effective in the management of the disease. 
Unfortunately, the positive effects of these therapies are only temporary and most patients relapse 
after ADT into the so-called castration-resistant prostate cancer (CRPC), against which no cura-
tive therapy exists (2).

Overtreatment is a major concern in the management of PCa. Due to the slow progressing nature 
of PCa and the advanced age of the patient population, it is estimated that many of the surgically 
treated patients would not die of the disease or experience major morbidities if therapeutic action 
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TaBle 1 | Open questions in PCa research susceptible to be addressed by applying mass spectrometry-based proteomics to a range of biological samples.

Source PCa clinical application PCa biology

Biopsies Diagnostic
Active surveillance

•	Prognostic markers •	Multifocality

Radical prostatectomies Non-malignant tissue
Tumor
Reactive stroma

•	Prognostic markers (4–6)
•	 Therapeutic options (5, 7)
•	Marker of therapeutic response  

(ADT; Chemotherapy, etc.)

•	Multifocality
•	 Transition normal to tumor (6, 8, 9)
•	Histological subtypes (GS, Adeno.; NE) (6, 10)
•	Molecular subtypes (T:E, SPOP, etc.) (11)
•	Reactive stroma (12)

Metastasis Proximal metastasis (lymph node)
Distant metastasis (bone, soft 

tissue)

•	Prognostic markers
•	 Therapeutic options
•	Marker of therapeutic response  

(ADT; chemotherapy, etc.)

•	Metastatic niche (13)
•	 Transition localized to metastasis (13)
•	NE CRPC
•	Molecular subtypes (T:E, SPOP, etc.)
•	Disease relapse

Body fluids Blood and blood fractions  
(CTCs, exosomes, etc.)
Urine and urine fractions 
(exosomes, etc.)
Seminal plasma and seminal 
plasma fractions (exosomes, etc.)

•	Diagnosis markers (14–19)
•	Prognostic markers (15, 20–24)
•	Marker of therapeutic response  

(ADT; chemotherapy, etc.)

•	PCa stage secretome (14, 16–18, 20, 21, 25, 26).
•	Histological subtypes (15) secretome (GS, Adeno.; NE).
•	Molecular subtypes secretome (T:E, SPOP, etc.) (27)
•	 Treatment influenced secretome (ADT; Chemotherapy, etc.)

Biomarkers description recently reviewed by Pin et al. (28), Di Meo et al. (29), and Tanase et al. (30).
PCa, prostate cancer; ADT, androgen-deprivation therapy; CRPC, castration-resistant prostate cancer; NE, neuroendocrine; GS, Gleason Score; CTC, circulating tumor cell;  
T:E, TMPRSS2:ERG; Adeno, adenocarcinoma. 
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was not taken (3). However, our inability to distinguish between 
indolent PCa tumors and those which are life threatening has led 
to the problem of overtreatment (3). Thus, two current major 
areas of research in the PCa field are (i) the identification of 
biomarkers that can accurately predict the virulence of a prostate 
localized tumors and (ii) the development of effective treatments 
against lethal CRPC. It has now become clear that the application 
of state-of-the-art mass spectrometry-based proteomics to PCa 
research can contribute to address these and other questions 
related the clinical management of PCa (Table 1).

Proteins are the effectors of most cellular reactions and 
constitute the cellular targets for a majority of therapeutic drugs. 
Over the years, many protein biomarkers and potential drug 
targets have been identified using mass spectrometry techniques 
[recently reviewed in Ref (28–30).]. This pioneer studies used 
proteomic methodologies with limited capacity to achieve 
great depth and unfortunately most of these markers have not 
been further validated or implemented in the clinical setting. 
In-depth quantitative proteomic profiling, long-time hampered 
by the complexity of the proteome and the lack of appropriate 
technology, is now possible from both frozen and formalin-
fixed-paraffin-embedded (FFPE) tissues as well as from body 
fluids (Figure 1) (6, 31–36). The use of mass spectrometry-based 
proteomic profiling to well-characterized cohorts of PCa patients 
with detailed clinical information have the potential to provide 
effective stratification of PCa patients as well as targets for novel 
treatments (37). In this review, we aim to summarize the achieve-
ments regarding the use of mass spectrometry-based proteomics 
for large-scale profiling of PCa and discuss the potential use of 
this technology for the identification of diagnostic and prognostic 
biomarkers, as well as therapeutic targets.

GenOMiC CHaRaCTeRiZaTiOn 
RevealeD nOvel MOleCUlaR 
SUBTYPeS in PCa

In recent years, several large-scale genomic studies have been 
performed with the aim of defining molecular subtypes in PCa 
that could possibly improve or complement the histopatho-
logical classification currently used in medical practice (38–45). 
The major genomic alterations occurring in PCa, including 
TMPRSS2:ERG translocations and mutations in PTEN, P53, 
CHD1, and SPOP, have been defined (42, 43, 46). Moreover, gene 
expression profiles associated to these genomic subtypes have 
advanced our knowledge of the molecular mechanisms driving 
these tumors, but our understanding of PCa progression remains 
limited. Although both microarray and RNA-sequencing tech-
niques provide high degree of information with broad coverage, 
the correlation between mRNA and protein expression is only 
partial (47–49), therefore our understanding of PCa proteome 
remains incomplete.

PROTeOMiC PROFilinG OF PCa TiSSUeS

The utilization of several proteomic techniques in PCa profiling 
has been recently reviewed (29, 30). Bottom-up approaches, 
that is, protein identification from the analysis of their peptide 
components, has so far resulted in better proteome coverage. 
Tryptic digestion followed by peptide fractionation, peptide 
separation through liquid chromatography, and on-line elec-
trospray ionization (50) coupled to a MS/MS orbitrap-based 
analyzers (51) is the most extended choice for in-depth proteomic  
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FiGURe 1 | Schematic representation of the commonly used approaches for mass spectrometry-based proteomic profiling in clinical cancer research.
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analysis1 (52) (Figure 1). Improvements in sample preparation, 
the sensitivity of mass analyzers and computational develop-
ments now allows to quantify what is considered to be close to 
a full proteome (over 10,000 proteins expressed per cell) (48, 
53, 54). This depth of coverage is state-of-the-art today but will 
become standard in the near future. Alternative approaches such 
as the SWATH-MS methodology developed by Aebersold’s labo-
ratory, based on data-independent acquisition, can provide large 
coverage with high degree of reproducibility (55). However, this 
methodology has rarely been applied to PCa research so far (4).

Of all the proteomic profiles performed on PCa tumors, two 
studies stand out for the extensive coverage achieved (6, 13). Drake 
et  al. reported the phosphoproteomic profile of 16 metastatic 
castration-resistant samples obtained from 13 patients, together 
with 6 prostate localized tumors and 5 benign prostate tissue 
obtained from autopsy programs (13). They identify and quantify 

1 http://www.proteomexchange.org.

over 8,000 phospho-peptides using label-free mass spectrometry. 
Integration of these data with other genome-wide approaches 
allowed them to identify kinase-regulated signaling pathways 
activated in castration-resistant PCa compared to untreated 
tumors including DNA repair, PI3K–AKT–MTOR, and cell cycle 
progression related processes. The use of drugs targeting some of 
the kinases involved in the pathways that are active in metastatic 
PCa are currently being tested in clinical trials2 (clinical trial IDs: 
NCT02407054 and NCT02091531).

While Drake and coworkers used frozen sample for their 
studies, mass spectrometry quality protein extracts can also be 
obtained from formalin-fixed paraffin-embedded (FFPE) tissues 
(6, 31–33). Due to the reduce maintenance cost and long-lasting 
preservation, FFPE tissue archives are the preferred option for 
long-term tumor storage. The use of FFPE samples opens the 
possibility of retrospective proteomic analysis of samples from 

2 https://clinicaltrials.gov.
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clinical trials where long-term clinical follow-up of patients is 
available. This is especially important when investigating diseases 
such as PCa, with a disease course that sometimes expands over 
25 years.

Recently, we analyzed the proteome of 36 samples obtained 
from FFPE preserved radical prostatectomy specimens. Twenty-
eight corresponded to tumors with different histological patterns 
(Gleason score) and eight to neighboring non-malignant tissue 
(6). An average of 5,580 (±515) proteins were identified for a total 
sum of over 9,000. Accurate relative quantification was achieved 
by the use of extracts from SILAC (Stable-Isotope Labeling by 
Amino acids in Cell culture)-labeled prostate cell lines as spike-in 
standard for each sample (56). In addition to earlier described 
changes in the early progression of prostate tumors (increased 
expression of androgen receptor regulated proteins, reduced 
levels of proteins involved in cell adhesion, etc.), we showed 
that prostate localized tumors exhibit increased expression of 
mitochondrial proteins, which come accompanied by increased 
mitochondrial activity. This seems to be a particularity of pros-
tate tumors compared to other types of cancer that commonly 
depend on glycolytic pathways for energy production. The 
targeting of mitochondrial function with agents like Metformin 
or Phenformin in combined regimens with Enzalutamide (AR 
inhibitor) is currently being tested in clinical trials for the treatment 
of metastatic PCa [(57), see text footnote 2 for clinical trial IDs: 
NCT01620593; NCT02339168; NCT02176161; NCT02640534; 
NCT00881725; NCT01864096, among others]. As part of this 
study, by comparing PCa tumors of different Gleason grades, we 
identified pro-NPY as a novel prognostic biomarker in early PCa 
and verify its performance in two independent large cohorts of 
minimally treated PCa patients. The potential role of pro-NPY 
as an early prognostic biomarker must now be further validated 
using a modern cohort of PCa patients, preferable those enrolled 
in active surveillance programs.

These studies constitute a great leap forward toward the 
complete characterization of PCa proteome and have unraveled 
the most general proteomic features that characterize PCa 
progression. However, they all show a similar limitation, which 
concerns to the relatively small number of samples analyzed in 
each study. In order to validate the utility of proteomic profil-
ing toward personalized treatment of PCa, more tissue samples 
need to be analyzed, including different genetic and histological 
subtypes, tumors subjected to different treatment options, and 
tumors growing in different metastatic niches (Table 1). These 
questions are only starting to be investigated. For instance, 
proteome differences between tumors bearing or not the 
TMPRSS2:ERG translocation have been studied (11). Despite 
the small number of clinical samples analyzed and limited 
proteome coverage, some proteins like MYO6 were found as 
differentially regulated between ERG+ and ERG− tumors (11). 
Another example of initial proteomic study tackling a relevant 
PCa question is the analysis of epithelial and microenvironment 
tissue that were micro-dissected from tumors graded with dif-
ferent Gleason scores (12). Despite similar limitations as the 
previously described study, this investigation served as a proof of 
principle for the existence of major differences in tumor micro-
environment. The composition of the tumor microenvironment 

is critical in the development of PCa (58–60). Therefore, deep 
proteomic characterization of this compartment is warranted 
in order to understand its influence in PCa progression. Many 
aspects of PCa tissue proteome dynamics remain to be explored. 
The analysis of the proteome changes occurring during meta-
static dissemination of PCa (primarily to bone), in combination 
with the effects of androgen deprivation and chemo-therapies, 
including neuroendocrine differentiation, will potentially 
contribute to identify targets for novel therapeutic approaches 
and contribute to patient stratification toward personalized 
treatments (Table 1).

QUanTiTaTive PROTeOMiC PROFile  
OF BiOFlUiDS FROM PCa PaTienTS

Blood and urine are ideal sources for biomarker identification 
due to the minimally invasive procedures of acquisition and 
the plentiful availability. In prostatic diseases, direct evidence 
of prostatic alteration can be obtained from the analysis of the 
seminal plasma. All these fluids are composed by less complex 
mix of proteins compared to tissues (61–63) but present other 
challenges, primarily: the dynamic range of the proteome; the 
variation in composition related to storage time; the intra- and 
inter patient variability and the relationship between the fluid 
components and the tumor.

In blood, the dynamic range, that is, the difference in concen-
tration among the different proteins, spans for over 10 orders of 
magnitude (64). Highly abundant proteins such as albumins and 
globulins account from most of the serum protein content (64). 
Depletion of these proteins to enrich for low abundant ones is a 
common pre-requisite during sample preparation (35) although 
novel methodologies have been recently proposed to identify and 
quantify hundreds of plasma proteins using direct measurements 
(34).

Measurement of Prostate-Specific Antigen (PSA) blood levels 
is a routine tool for PCa diagnosis and screening (65). However, 
PSA levels are not informative of cancer aggressiveness, leading 
to overdiagnose of PCa patients with asymptomatic disease 
(66) and cannot discriminate between PCa and other prostate 
pathologies (67). Finding serum biomarkers that precisely iden-
tify PCa and show correlation with tumor aggressiveness have 
been investigated using mass-spectrometry-based approaches 
(30). Additionally, identification of prognostic biomarkers or 
indicators of treatment response has also been tested proteomic 
profiling of PCa patients’ blood (29, 30). From those studies, the 
identification of the pigment epithelium-derived factor (PEDF) 
stands out as common serum marker with altered expression 
during PCa progression (19–21). PEDF seems to promote 
macrophage recruitment to the tumors and to inhibit the expres-
sion of metalloproteases involved in PCa cells invasion (68–70), 
supporting a role as tumors suppressor in PCa. Therefore, the 
potential of PEDF as diagnostic and prognostic biomarker for 
PCa should be validated in larger cohorts.

Other approaches aiming at evaluating tumor characteristics 
through non-invasive protocols is to purify tumor-derived com-
ponents from blood. This is the case of exosomes and circulating 
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tumor cells (CTCs). Exosomes are small vesicles of 50–100 nm 
in diameter secreted from most tissues including the prostate 
(71–73). Proteomic characterization of these microvesicles has 
the advantage of being directly produced from the prostatic tissue 
both normal and cancerous, and being composed by a relatively 
low complex proteome, which make them potentially interesting 
as a source of blood biomarkers. However, isolation and enrich-
ment of exosomes is a time-consuming process that requires 
larger amounts of initial material due to the relative low number 
of these vesicles presents in the blood (27, 74). Moreover, most 
methods applied today for exosome isolation from blood are based 
on centrifugation protocols with limited specificity for PCa cell 
derived vesicles (27). This limited specificity can be ignored when 
analyzing genetic changes specifics to PCa such as the presence 
of AR receptor variants, whose detection on exosomes from PCa 
patient’s blood can predict resistance to hormonal therapy (27). 
However, for proteomic profiling more specific methodologies of 
PCa cells derived exosome isolation would be required.

Circulating tumor cells analysis constitutes a direct source 
of information regarding tumor genetics. Proteomic charac-
terization of CTCs could additionally reveal signaling pathways 
activated in the tumors and be used to direct personalized treat-
ments. This is particularly relevant during the metastatic onset 
of the disease due to the difficulties and ethical concerns related 
to the collection of metastatic biopsies. However, proteomic 
profiling of CTCs remains extraordinarily challenging due to the 
limited amount available per sample. Development of single-cell 
mass spectrometry protocols (75) would be critical for the future 
proteome profile of this type of clinical material.

Urine is a plentiful source of biomarkers. In prostatic diseases, 
direct evidence of the prostate secretome can be obtained from 
urine samples, especially when prostatic massage is performed 
before the sample collection. Thus, clinical tests based on the 
measurement of the non-coding RNA PCA3 levels in urine, have 
been approved by the FDA to evaluate the necessity of prostate re-
biopsy in men with previously negative biopsy (76–78). Similar 
to the analysis of blood proteome, challenges regarding wide 
dynamic range, and inter- and intra- individual heterogeneity 
apply to proteomic studies performed on urinary samples (36). In 
an attempt to identify novel diagnostic and prognostic biomarker 
for PCa, several mass spectrometry-based proteomic profiles have 
been performed either by direct measurements or after exosomes 
isolation [reviewed in Ref (79).]. Especially relevant is the identi-
fication of CD14 as urine marker to discriminate between benign 
prostatic hyperplasia (BPH) and PCa with high sensitivity and 
specificity (16). A similar attempt to discriminate between BPH 
and PCa using urine proteins found β2M, PGA3, and MUC3, 
whose levels, in combination with PSA concentration in blood, 
achieved a better predictive accuracy that PSA alone with a 
receiving operating characteristic (ROC), area under the curve 
(AUC) of 0.812 (17). Additionally, altered expression in urine of 
the proteins serotransferrin (TF), haptoglobin (HP), and AMBP 
was retrospectively found in men diagnosed or not with PCa (18), 
with an ROC AUC of 0.848. Finally, Li and coworkers described 
that lower concentration of peptides from osteopontin (SPP1) 
and prothrombin (F2) in PCa that in BPH (14). Unfortunately, 
despite being similar approaches, the results of the different 

studies do not overlap and, therefore, the clinical utility of any of 
these biomarkers would require independent replication in larger 
cohorts of PCa patients.

Non-invasive biomarkers of disease progression would help 
to monitor patients managed with active surveillance programs. 
These patients are periodically monitored for changes in blood 
PSA concentration and other signs of disease progression (80, 
81). After proteomic profiling of urinary extracellular vesicles 
using mass spectrometry, Fujita et al. identified FABP5 protein 
differentially expressed among tumors with different histological 
features (25). All these findings require further validation but 
serve as a proof of principle that despite the common sample 
size limitation, deep proteomic profile of urinary samples has 
the potential to identify novel PCa diagnostic and prognostic 
biomarkers.

In addition to blood and urine, analysis of seminal fluid is 
particularly interesting to prostate diseases as it may provide 
direct evidence of alterations in the prostate gland, including 
the development of PCa. Early studies by Drake and cowork-
ers identified 916 proteins from prostatic fluids obtained from 
PCa patients after prostatic massage. Identified proteins were 
enriched for those of prostatic origin, therefore, validating their 
approach (26). Then, they applied this methodology to discrimi-
nate between patients bearing organ-confined or extracapsular 
prostate tumors and identified a series of proteins and validated 
3 proteins (MME, PARK7, and TIMP1) as differentially expressed 
between both conditions using a selective reaction monitoring 
(SRM)-MS targeted approach (23). Proteomics on seminal fluid 
has also been used to try to discriminate between indolent and 
advance PCa. Thus, Neuhaus et al. proposed a signature of pep-
tides isolated from seminal fluid able to retrospectively identify 
patients with advance and localize prostate tumors histologically 
scored with similar Gleason grade (24). As for most of these stud-
ies, replication of the results in larger cohorts of patients is needed 
in order to conclude about the utility of the individual markers.

FUTURe PeRSPeCTiveS

Clinical management of PCa can benefit from the fast-paced 
development within the mass spectrometry field (Table  1). 
Understanding PCa natural progression and identifying signaling 
pathways that turn deregulated during this evolution is critical to 
find novel and more personalized treatments. Proteomic char-
acterization of metastatic PCa has the potential to increase our 
understanding of the lethal stage of the disease. The identification 
of prognostic biomarkers that can predict tumor aggressiveness 
or response to therapies at early stages are needed to limit the 
unnecessary treatment of patients bearing low-risk tumors, while 
offering the most adequate treatment to each patient at the earli-
est possible time during disease progression.

Current mass spectrometry-based proteomic techniques 
allow determination of numerous posttranslational modifica-
tions, including phosphorylation, glycosylation, and ubiquitina-
tion (82–84). However, application of these methodologies to 
clinical PCa samples is scarce. Deep profiling of these protein 
modifications will provide new insights regarding the cellular 
pathways activated during disease progression and would help to 
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develop novel therapeutic approaches and identification of novel 
diagnostic and prognostic biomarker in PCa. Moreover, the use 
of targeted proteomic technologies, such as SRM and MRM, 
which can provide accurate and reproducible measurement of 
biomarkers of interest (85–89), may be critical for the clinical use 
of the identified biomarkers. An example is the development of 
such targeted approach to identify different isoforms of SPOP, 
a commonly mutated gene in PCa (90). In addition, improved 
protocols and technical developments are still necessary to allow 
for the proteomic characterization of, for instance, CTCs.

Finally, integration of mass spectrometry-based proteomic 
profiling with other state-of-the-art technologies, especially with 
next-generation sequencing, will provide specific information of 
the signaling pathways and processes activated in a given patient 
with its unique tumor genetic background, helping to elucidate 

the functional consequences of somatic mutations, define driver 
proteins, and identify therapeutic targets. Integration of these 
preoteogenomic approaches (91) has already been applied to 
other cancer types (49, 92) and will be critical to achieve full 
personalized management in PCa.
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