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Cellular senescence describes an irreversible growth arrest characterized by distinct 
morphology, gene expression pattern, and secretory phenotype. The final or interme-
diate stages of senescence can be reached by different genetic mechanisms and in 
answer to different external and internal stresses. It has been maintained in the literature 
but never proven by clearcut experiments that the induction of senescence serves 
the evolutionary purpose of protecting the individual from development and growth of 
cancers. This hypothesis was recently scrutinized by new experiments and found to be 
partly true, but part of the gene activities now known to happen in senescence are also 
needed for cancer growth, leading to the view that senescence is a double-edged sword 
in cancer development. In current cancer therapy, cellular senescence is, on the one 
hand, intended to occur in tumor cells, as thereby the therapeutic outcome is improved, 
but might, on the other hand, also be induced unintentionally in non-tumor cells, causing 
inflammation, secondary tumors, and cancer relapse. Importantly, organismic aging leads 
to accumulation of senescent cells in tissues and organs of aged individuals. Senescent 
cells can occur transiently, e.g., during embryogenesis or during wound healing, with 
beneficial effects on tissue homeostasis and regeneration or accumulate chronically in 
tissues, which detrimentally affects the microenvironment by de- or transdifferentiation 
of senescent cells and their neighboring stromal cells, loss of tissue specific functionality, 
and induction of the senescence-associated secretory phenotype, an increased secre-
tory profile consisting of pro-inflammatory and tissue remodeling factors. These factors 
shape their surroundings toward a pro-carcinogenic microenvironment, which fuels the 
development of aging-associated cancers together with the accumulation of mutations 
over time. We are presenting an overview of well-documented stress situations and 
signals, which induce senescence. Among them, oncogene-induced senescence and 
stress-induced premature senescence are prominent. New findings about the role of 
senescence in tumor biology are critically reviewed with respect to new suggestions for 
cancer therapy leveraging genetic and pharmacological methods to prevent senescence 
or to selectively kill senescent cells in tumors.
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http://www.frontiersin.org/Oncology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2017.00278&domain=pdf&date_stamp=2017-11-23
http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
https://doi.org/10.3389/fonc.2017.00278
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:markus.schosserer@boku.ac.at
https://doi.org/10.3389/fonc.2017.00278
http://www.frontiersin.org/Journal/10.3389/fonc.2017.00278/full
http://www.frontiersin.org/Journal/10.3389/fonc.2017.00278/full
http://www.frontiersin.org/Journal/10.3389/fonc.2017.00278/full
http://www.frontiersin.org/Journal/10.3389/fonc.2017.00278/full
http://loop.frontiersin.org/people/354354
http://loop.frontiersin.org/people/41480
http://loop.frontiersin.org/people/51417


2

Schosserer et al. Cellular Senescence As a Cancer Target

Frontiers in Oncology | www.frontiersin.org November 2017 | Volume 7 | Article 278

iNTRODUCTiON

In current cancer research, the tumor microenvironment is  
coming more and more into the focus as it is able to either pro-
mote or inhibit carcinogenesis and metastasis by providing can-
cer cells with growth factors and supply of oxygen and nutrients. 
The stroma of tumors is enriched for chemokines, which attract 
and activate various other cell types, including cancer-associated 
fibroblasts (CAF). These cells closely interact with cancer cells, 
secrete cytokines, remodel the extracellular matrix and thereby 
promote malignancy (1). Importantly, age is one of the main 
risk factors for many types of cancer and is accompanied by an 
accumulation of senescent cells in various tissues of the body. 
As senescent cells actively shape their tissue microenvironment 
in a similar fashion as CAF toward a pro-tumorigenic state (2), 
cellular senescence (together with the well-known mutation 
accumulation over a lifetime) is probably one of the main con-
tributors to age-associated cancer development.

Cellular senescence, a state of irreversible growth arrest, was 
discovered by Leonard Hayflick more than 50  years ago (3).  
A whole new field of investigation was opened up by this seminal 
discovery that was over the last 50 years closely intertwined with 
research in organismic aging, which was of obvious primary 
interest, but also with several other closely related fields, like 
oxidative stress research, origin of reactive oxygen species (ROS), 
role of mitochondria in aging, role of telomeres and telomerase 
in aging, and the genetics of stress response and stress defense. 
From early on in this field, the hypothesis was entertained 
that (i) the phenomenon observed in mammalian cell culture 
indeed occurs in vivo and drives normal organismic aging and  
(ii) induction of senescence was positively selected for in evolu-
tion for several reasons, among them to protect cells and organ-
isms from cancer. Both of these ideas were highly speculative, but 
over the last 20 years were shown to be correct in part (2, 4–8). On 
the other hand, reports that establish a beneficial and important 
role of cellular senescence in embryogenesis (9, 10) and wound 
healing (11) imply that senescence might have evolved for other 
reasons as well.

The basic arguments about the role of senescence in cancer 
protection are as follows: senescent cells have lost the ability to 
undergo cell division permanently, although they may be meta-
bolically fully active. This would certainly protect individuals car-
rying a primary cancer from further cancerous growth. However, 
this has to be seen in a different way nowadays as compared to 
the time when this “anticancer hypothesis” was first published 
(8), as knowledge of the genetics of cancer and senescence 
increased rapidly over the last few years. By this, we mean on the 
one hand the sequence of mutational events that takes place in 
growing tumors (12, 13), and on the other hand the knowledge 
of biochemical senescence markers in senescent cells in  vivo  
(6, 14–17). Most importantly, senescent cells may be prone to 
genetic and epigenetic instability (18, 19), which is also a hall-
mark of cancer cells (12). In addition, the senescence-associated 
secretory phenotype (SASP) directly causes transformation of 
neighboring cells and destruction of the extracellular matrix, 
other hallmarks of cancer growth, which help to spread malig-
nant cells in the body (2, 20, 21). Thus, cellular senescence can 

be viewed as a typical example for antagonistic pleiotropy: at 
young age, senescence might protect cells from transformation 
into primary tumors; however, at old age senescent cells generate 
a pro-tumorigenic microenvironment.

In this review, we will summarize mechanisms of senescence 
induction, especially in the context of aging-associated cancers 
and tumor therapy. While cellular senescence was originally 
believed to be caused by telomere shortening alone, increasing 
evidence suggested additional inducers of senescence. These 
inducers of senescence include the activation of DNA damage 
response pathways by cytotoxic compounds or ROS as well as 
activation of oncogenes. The contribution of senescent cells 
to a pro-oncogenic microenvironment will be discussed and 
compared to other cancer-associated cells, such as CAF. Finally, 
we will introduce current and future therapy options targeting 
cancer-, non-senescent-, and senescent cells and discuss their 
potential influence on cell fate decisions within the tumor stroma.

MeCHANiSMS OF CeLLULAR 
SeNeSCeNCe iNDUCTiON AND THeiR 
CONNeCTiON wiTH CANCeR BiOLOGY

Biomarkers of Cellular Senescence
For a long time, since the discovery of replicative senescence 
in cell culture (3) until relatively recently [summarized in Ref. 
(22)], it was not clear if replicative senescence is (i) an artifact 
of cell culture, caused perhaps by unphysiological oxygen partial 
pressure; or (ii) if replicative senescence does occur in vivo, and, 
if yes, if it is causative for organismic aging (as opposed to cellular 
aging), and (iii) if it is related to the development of human (or 
mouse) cancers.

To clarify these questions, it was necessary to identify reli-
able and sufficiently specific biochemical markers of cellular 
senescence in order to find a tool for monitoring and influenc-
ing senescence. One of the earliest markers found that was also 
believed to be the major cause for aging is telomere shortening 
(23). Other useful biochemical markers were identified in 
the form of loss of lamin B1, which is implicated in structural 
changes of the nucleus with senescence (24), as well as senescence-
associated beta-galactosidase (SA β-GAL) (6). The present view is 
that the increase in SA-β-GAL is an indication of the proliferation 
of the lytic compartment in senescent cells due to increase of 
GLB1 (25). Therefore, this marker is not entirely specific for the 
process. Recently, staining of cells and tissues by Sudan Black B 
was introduced as novel marker for cellular senescence that is also 
applicable to paraffin sections. Sudan Black B stains lipofuscin, 
which are aggregates of oxidized proteins, lipids, and metals  
(15, 17). Interestingly, this staining method appears to be specific 
for cellular senescence, although lipofuscin would also be expected 
to accumulate in non-senescent cells during chronological aging.

An upcoming, highly promising method for the label-free 
detection of senescent cells in  vitro and in  situ is vibrational 
(micro)spectroscopy. Indeed, first proof of principle for Raman- 
and near-infrared spectroscopy, followed by multivariate statis-
tics has been achieved as it was able to distinguish different cell 
types and cellular states in a non-invasive manner. First results 
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on different human fibroblast strains, which were cultivated in 
2D and 3D and subjected to serial passaging to induce replicative 
senescence, are very promising and allowed classification of cells 
at high confidence (26, 27). However, it needs to be determined 
if these methods are also applicable to other cell types, as well as 
to other inducers of cellular senescence. In the future, vibrational 
spectroscopy might allow to distinguish in vivo and in real time 
different cell types within the tumor stroma (28, 29), such as can-
cer cells, normal epithelial cells, and different subtypes of CAF, as 
well as determine how these cells respond to therapy by induction 
of either senescence or apoptosis (30).

Presently, expression of p16INK4A, one of the protein inhibi-
tors of the cell cycle regulator cyclin dependent kinase (CDK), 
is the most reliable senescence marker known (14). While the 
senescence response also requires the main tumor suppressor 
proteins p53 and retinoblastoma protein (Rb), p16INK4A seems to 
be expressed exclusively in senescent cells. Reporter constructs 
based on the promoter of p16INK4A have successfully been used to 
detect senescent cells in vivo, but more importantly, also to test 
the physiological relevance of senescent cells in organismic aging 
(31, 32). Interestingly, p16INK4A shares the same gene locus with 
two other important proteins involved in senescence and cancer.

The iNK/ARF Locus—At the Crossroads 
between Cancer and Senescence
The potent tumor suppressor proteins p16INK4A, p15INK4B, and 
p14ARF are all transcribed from the same gene locus and are fre-
quently targeted for deletion or epigenetic inhibition in numer-
ous cancers. Although p16INK4A and p14ARF are both able to arrest 
the cell cycle and share exons 2 and 3, they comprise different 
amino acids and thus exert different biological functions due to 
alternative reading frames. Mouse models lacking either p16INK4A, 
p19ARF, which is the mouse homolog of human p14ARF, or both, 
always show increased incidence of various tumors, while human 
cancers frequently display either deletion of the whole gene locus, 
affecting both alternative reading frames, or specific silencing of 
either the p16INK4A or p14ARF promoter by methylation (33).

p16INK4A and p15INK4B bind to CDK4 and CDK6 and thereby 
promote allosteric changes, which inhibit CDK4/6-mediated 
phosphorylation of Rb. Thus, expression of p16INK4A and p15INK4B 
maintains Rb in a hypophosporylated state, which induces G1 
cell cycle arrest (34). p14ARF on the other hand stabilizes p53, the 
other main cellular tumor suppressor besides Rb, by trapping 
MDM2 in the nucleolus. This leads to increased p21 transcription 
and consequently to cell cycle arrest. However, p14ARF can also 
act in a p53-independent manner by interaction with numerous 
other target proteins (33, 34).

Although different inducers of cellular senescence seem to 
converge on p16INK4A in most cell types, and p14ARF might or might 
not be co-regulated depending on the tissue context, the precise 
individual contributions of these pathways to the senescent state 
are not resolved yet.

Replicative Senescence
The induction of cellular senescence was for a long time attrib-
uted to telomere shortening alone, for instance by serial passaging 
of cell cultures (23). Multiple cell divisions cause the telomeres 

to shorten to a critical length, which activates a persistent DNA 
damage response, leading to an upregulation of growth-inhibitory  
genes, such as p16INK4A and p53, and repression of genes pro-
moting the progression of the cell cycle (35). Before also other 
inducers of cellular senescence were discovered, the contribution 
of replicative senescence to aging in vivo was heavily debated.

One of the main reasons for this was the lack of suitable model 
systems, as 2D cell cultures alone hardly reflect the physiological 
state of an organism and mice have exceptionally long telomeres 
that complicate the interpretation of replicative senescence con-
tribution. For instance, mice lacking TERC, the RNA component 
of telomerase, show progressive telomere shortening with age, 
although this does not manifest in any phenotype in the F1 and F2 
generation. Clearly, this suggests that in wild-type mice (with long 
telomers) telomere shortening does not contribute to organismic 
aging. Only in the F3 generation, when the telomeres shortened 
to a critical length, a partial progeroid phenotype appears, which 
encompasses increased incidence of neoplasia. This phenotype 
is further pronounced in the F6 generation, when mice are in 
addition already short lived and sterile (36). Although these 
mouse studies indicate a contribution of telomere shortening to 
organismal aging and appearance of aging-associated neoplasia, 
in humans only few studies could correlate telomere length with 
longevity and improved health at old age (37–39). In numerous 
other studies, telomere length of various cell types including 
blood leukocytes was not found to be a reliable predictor of 
biological age and mortality (38).

Similarly, although the accumulation of short telomeres with 
age is expected to be associated with genomic instability and thus 
also with increased cancer incidence (39), this is not always the 
case in humans. On the contrary, some individuals with constitu-
tively long telomeres in somatic cells show an increased propensity 
of major cancers at increasing age, while many cancer cells have 
short telomeres. Aviv and coauthors recently proposed a Two-
Hit-Hypothesis that resolves this “Telomere Length Paradox” 
as follows: the first hit of mutations leading to cancer happens 
at stem cell level is, therefore, telomere length independent and 
leads to the expansion of fast-growing clones. Then, additional 
hits that are telomere length dependent and might occur much 
later in life induce the transformation of these expanding, but 
still benign clones into cancer. Thus, cells from individuals with 
constitutively long telomeres have a much longer expansion phase 
before entering cellular senescence and thereby suffer from an 
increased hazard of acquiring a second hit required for malignant 
transformation (40). Although this model is indeed able to explain 
many aspects of the correlation of telomere length with cancer 
incidence, experimental evidence is still lacking and probably hard 
to obtain due to difficulties with standardized absolute measure-
ments of telomere length across different labs.

Stress-induced Premature  
Senescence (SiPS) and  
Therapy-induced Senescence (TiS)
Besides the shortening of telomeres, senescence can also be 
induced by exposure of cells to acute or chronic sublethal doses 
of exogenous or endogenous stressors (Figure  1), causing a 
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state of “stress-induced premature senescence” (41), “stress or 
aberrant signaling-induced senescence,” (35) or “accelerated 
cellular senescence” (42). Irrespective of the inducer, SIPS-cells 
are irreversibly growth arrested and express typical senescence 
markers, including SA β-GAL, p16INK4A, and telomere-associated 
persistent DNA damage foci (43). SIPS is likely the most impor-
tant inducer of cellular senescence in vivo, since many cell types 
never exhaust their maximum replicative potential during organ-
ismal life span and thus do not enter replicative senescence, but 
are nevertheless exposed to various exogenous and endogenous 
stressors throughout life, which include ROS produced by the 
cell itself, cytotoxic compounds from the environment, radia-
tion, or others.

Of high importance in the context of this review is the fact 
that many cytotoxic compounds as well as high dose radiation, 
which are currently used in cancer therapy to induce cell death, 
are also able to initiate senescence. Induction of senescence 
in cancer cells is often intended, as lower doses than for the 
induction of cell death are required and immediate severe side 
effects of therapy are minimized (44). These side effects include 
immunosuppression, fatigue, anemia, nausea, diarrhea, and alo-
pecia (45). Furthermore, even cancer cells deficient in apoptosis 

pathways or lacking p53 and Rb retain their ability to undergo 
cellular senescence, rendering them sensitive to chemotherapy 
(46). This specific and important form of SIPS is referred to as 
“therapy-induced senescence.” Typical cytotoxic drugs in clinical 
use that induce DNA damage and thereby cellular senescence 
encompass Bleomycin, Camptothecin, Cisplatin, Doxorubicin, 
and Etoposide among others, with Doxorubicin and Cisplatin 
being most effective in initiating the senescence response. 
Biopsies from breast and lung tumors confirm that senescent 
cancer cells are indeed present in  vivo in response to chemo-
therapy (42, 44, 47).

While induction of cellular senescence in tumor cells is ben-
eficial for the therapeutic outcome, treatment-induced bystander 
senescence in other cells of the tumor stroma or even in distant 
tissues is not intended, as senescent cells might promote tumor 
relapse, secondary tumors, and tissue degeneration (35, 45). 
Demaria and coworkers could clearly establish that Doxorubicin 
and Paclitaxel induce senescence in normal mouse and human 
fibroblasts in  vitro. Furthermore, systemic administration of 
either doxorubicin, paclitaxel, cisplatin, or temozolomide in mice 
induced cellular senescence in vivo in different cell types of skin, 
lung, and liver (45).
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Oncogene-induced Senescence (OiS)
Oncogene activation and chemotherapy also induce premature 
senescence that is similar to replicative senescence regarding cell 
morphology and the expression profile of molecular markers 
(Figure 1). OIS was discovered by Serrano and coworkers more 
than 20  years ago (48, 49). It came as a surprise, because the 
paper essentially showed that the same dominant point mutation, 
which was found in many human tumors (H-rasV12) and was 
shown to be causative for cancer growth in combination with 
other mutations (for instance in the gene myc), was in isolation 
causing cell cycle arrest and cellular senescence, a nearly oppo-
site phenotype compared to cancer growth. 20  years after this 
seminal discovery, we today see a bit more clearly the biological 
role of senescence in cancer biology. The above-mentioned point 
mutation in H-rasV12 or the corresponding mutation in yeast 
(RAS2-ala18, val19) cause a massive increase in ROS, which are 
inferred to transmit a signal causing senescence in the human 
case, and loss of growth regulation and subsequently apoptotic 
cell death in yeast (50, 51).

Oncogene-induced senescence does occur not only in cell 
culture, but also in tumors in vivo (52). Senescent cells in tumors 
are detected mostly in early pre-invasive stages of the tumor, but 
in later invasive stages are no longer detectable (53). OIS leads 
to SIPS in vivo and can induce tumorous growth in surrounding 
stroma cells. However, the molecular markers of OIS and the 
composition of the SASP depend on the experimental conditions 
and in  vivo on the exact type of cancer. In one example (54), 
this included expression of the stem cell marker CD34+ in skin 
cancers derived from keratinocytes in the mouse model.

Taken together, the results available to date indicate that senes-
cent cells produced by OIS in tumors can be both growth inhibiting 
and, in the long term, cancer causing. Many open questions remain, 
for instance: is the senescent state in tumor cells reversible in vivo? 
What are the phenotypic differences between OIS in tumors 
and senescence in development and regeneration? What is the 
mechanistic cause leading cells to choose senescence rather than 
apoptosis in OIS? What are the reasons and consequences of the 
strong pro-inflammatory phenotype of senescent cells in tumors?

SeNeSCeNT CeLLS GeNeRATe A PRO-
TUMORiGeNiC MiCROeNviRONMeNT

The Composition of the SASP
We have to acknowledge the fact that cellular senescence in 
certain cancers in vivo and in cancer-derived cell cultures in vitro 
can on the one hand exert an anticancer activity, because senes-
cence is a permanent cell cycle arrest, and on the other hand, 
the secretion of various cytokines and chemokines by senescent 
cells induces de-differentiation and consequently increased cell 
division and even metastasis in neighboring cells (21, 22, 55, 56).  
This phenomenon is dubbed SASP and is studied in a large 
number of experimental systems, including not only senescent 
cells in old individuals and in tumors but also in wound heal-
ing and in embryogenesis (9–11). In the large majority of cases 
studied, the SASP does occur and the secreted soluble factors 
comprise interleukins, inflammatory cytokines, and growth factors. 

Interleukin-1 (IL-1) and interleukin-6 (IL-6) are expressed by 
senescent epithelial cells, fibroblasts, and other cell types and can 
induce either cellular senescence or tumor formation in neigh-
boring cells. Chemokines secreted by senescent cells encompass 
interleukin-8 (IL-8), MCP-1, -2, -3, and -4, HCC-4, eotaxin-3, 
and MIP-1α and -3α (21). Interestingly, OIS cells secrete a range 
of CXCR-2-binding chemokines, which reinforce the senescent 
arrest in an autocrine manner (57). The SASP is also enriched 
for almost all IGF-binding proteins and their regulatory factors, 
which can induce senescence and apoptosis in neighboring cells 
(21, 58), as well as platelet-derived growth factors (PDGF) and 
vascular endothelial growth factors promoting wound healing. 
PDGF-A was shown to be enriched in the secretome of senescent 
mouse embryonic fibroblasts and to promote myofibroblast dif-
ferentiation. As a consequence, clearance of senescent cells in the 
p16-3MR mouse model retarded the closure of wounds (11). In 
this mouse model, the p16INK4A promoter, which is specific for 
senescent cells, drives both expression of Renilla luciferase and 
herpes simplex thymidine kinase (TK). By addition of gancyclo-
vir, a suicide substrate of TK, only those cells are killed which 
activate the p16INK4A promoter (11, 32).

In addition to soluble signaling factors, the SASP comprises 
proteases of the matrix metalloproteinase and serine protease 
family, which facilitate tissue repair by degradation of collagen and 
regulate the activity of other SASP factors (21, 59). Furthermore, 
the large insoluble glycoprotein fibronectin is preferentially 
transcribed and secreted by senescent cells. Fibronectin interacts 
with various other macromolecules, such as components of the 
cytoskeleton, cell surface receptors, and extracellular matrix com-
ponents and thereby modulates processes such as cell adhesion 
and proliferation (60, 61).

Although not as well characterized as soluble proteins, also 
other macromolecules such as lipids and carbohydrates, as well  
as nucleic acids and proteins enclosed in extracellular vesicles 
(EVs), are SASP members. Senescent cells secrete increased 
amounts of small extracellular vesicles (sEVs) that promote 
proliferation of cancer cells and exert other effects on bystander 
cells (62, 63). The mode of action is partially attributed to EphA2, 
which is phosphorylated upon cellular senescence and specifically 
packaged into sEVs. Together with Ephrin-1, which is expressed by 
cancer cells, reverse signaling via Erk is initiated and proliferation 
of cancer cells is stimulated (62). EVs also contain miRNAs that 
are able to exert paracrine effects on gene expression of other cells. 
Since miRNA expression patterns differ significantly between 
senescent and non-senescent cells (64), miRNAs will probably 
soon be recognized as novel and important SASP members.

Importantly, the composition of the SASP significantly varies 
from cell type to cell type and thereby might differently influence 
bystander cells (44, 59).

Actions of the SASP on Surrounding  
Cells and the extracellular Matrix
Effects of the SASP on surrounding cells strictly depend on the 
tissue context. In most cases the SASP was reported to stimulate 
tumor growth (Figure 1), but on the other hand immune cells are 
attracted which participate in the clearance of cancer cells (65). 
Another example for context specific roles of senescent cells is 
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liver cancer: oncogene-induced senescent hepatocytes secrete 
CCL2, which attracts CCR2+ myeloid cells that further differenti-
ate into macrophages and clear pre-malignant cells. If, however, 
hepatocellular carcinoma is already established, cancer cells 
block the maturation of the attracted CCR2+ myeloid cells into 
macrophages and thereby also inhibit NK cells. In this scenario, 
the presence of senescent cells promotes tumor outgrowth and 
thus worsens the prognosis for patients (66).

Despite its role in inducing bystander senescence, the SASP 
has also an important function in tissue plasticity and stemness. 
Ritschka and coworkers demonstrated that the SASP promotes the 
expression of stem cell markers in vitro and in vivo and transient 
exposure to the SASP induces stem cell functions. Chronic expo-
sure, however, had an opposite effect, probably due to paracrine 
senescence induction in stem- and progenitor cells (54). The 
close relationship between senescence and tissue regeneration is 
further emphasized by a mouse model of ectopic expression of the 
transcription factors OCT4, SOX2, KLF4, and cMYC (OSKM), 
which are required for the induction of pluripotency. In these 
mice, tissues harboring a high proportion of senescent cells also 
displayed a high in vivo reprogramming efficiency and vice versa. 
Mosteiro and coworkers identified IL-6 as critical SASP factor for 
reprogramming, as well as tissue damage as a possible inducer (67).

The importance of typical SASP factors for tissue regen-
eration and wound healing might explain their evolutionary 
conservation and, in addition, SASP factors promote epithelial 
to mesenchymal transition, a hallmark during the development 
of carcinomas and angiogenesis (21). Therefore, we propose that 
not only senescence itself is antagonistically pleiotropic but also 
the corresponding SASP, as it might be beneficial in young indi-
viduals for wound healing and tissue regeneration, while tumor 
promoting in the elderly.

The extracellular Matrix is an important 
Contributor to a Pro-Carcinogenic 
Microenvironment
Remodeling of the extracellular matrix by metalloproteinases 
of the SASP might create a beneficial microenvironment for 
tumor growth, as migration is facilitated and contact inhibition 
is blunted (Figure 1).

An interesting model organism to study the development of 
pro- and antitumorigenic microenvironments by modulation of 
the extracellular matrix is the naked mole rat. These animals are 
exceptionally long lived and suppress the development of cancer 
by expression of high molecular mass hyaluronic acid that renders 
the extracellular matrix highly viscous and thereby cells become 
extremely sensitive to contact inhibition (68). Interestingly, this 
phenomenon is associated with elevated expression of p16INK4A 
(69), and naked mole rat fibroblasts are more tolerant to cellular 
stress than mouse fibroblasts, because they halt cell proliferation 
at much lower doses of stressors (70). Thus, a denser extracel-
lular matrix might promote increased expression of p16INK4A, 
which allows cells to sense lower doses of toxic compounds and 
consequently enter a state of cell cycle arrest.

In order to further interrogate the complex relationship between 
cellular senescence, cancer formation, and the extracellular matrix, 

it would be very interesting to determine if this cell cycle arrest is 
irreversible and thereby resembles cellular senescence, as well as 
to test for presence of senescent cells in naked mole rats in vivo.

Senescent Cells and CAF: United by a 
Similar Secretory Phenotype?
Cancer-associated fibroblasts are a heterogeneous population  
of fibroblasts within the tumor stroma that is only poorly chara-
cterized so far. Most of these cells originate from normal local 
fibroblasts, which are stimulated by members of the PDGF or 
TGF-β family, but also normal endothelial or epithelial cells 
that underwent epidermal to mesenchymal transition, as well as 
bone-marrow derived mesenchymal stem cells contribute to the 
CAF population. Tumor cells release paracrine factors that attract 
CAF, support their survival within the tumor microenvironment, 
and stimulate their secretory phenotype. In contrast to normal 
fibroblasts, CAF express more factors associated with degrada-
tion of the ECM and increased angiogenesis, but also chemokines 
promoting tumor cell proliferation, migration, and invasion (1).

Two prominent sub-populations within CAF, namely senes-
cent fibroblasts and myofibroblasts, both express α-smooth 
muscle actin and promote tumor cell mobility and thereby malig-
nancy by secretion of soluble factors. Gene expression profiles 
between the two CAF subtypes differ, with myofibroblasts and 
non-senescent cells stimulating collagenous ECM deposition and 
thereby causing poor prognosis (71).

The tumor-promoting effects of CAF are mainly attributed 
to CXCL12, which is expressed and secreted by CAF (72), but 
is also an important SASP component (73). CXCL12 induces 
tumor proliferation, angiogenesis at the tumor site, and invasion, 
leading in vivo to increased tumor development and metastasis 
(1). Other tumor-promoting chemokines, which are secreted by 
CAF as well as by senescent cells, are SDF-1, GROα, GROβ, IL-8, 
MCP-1, and MCP-8 (1, 21, 74). miR-335 is upregulated in both 
CAF and normal senescent fibroblasts and is able to modulate 
secretion patterns of both cell types (75).

Taken together, these data clearly indicate similar secretory 
phenotypes and underlying regulatory networks of CAF and 
senescent cells, which generate a pro-tumorigenic microenviron-
ment. Thus, senescent cells can serve as an important in vitro model 
for microenvironments favoring tumor growth. This is especially 
relevant for the evaluation of current cancer therapies, which 
mostly rely on cytotoxic compounds and/or radiation that drive 
cancer cells into either apoptosis or TIS. However, senescence 
is also induced in non-cancer cells, which further promotes the 
SASP and thereby exacerbates deleterious side effects (Figure 2).

UPCOMiNG iNNOvATive THeRAPeUTiC 
APPROACHeS

Targeting Cancer and Senescence 
Simultaneously by Modulation of Protein 
Synthesis
Protein synthesis is highly upregulated in cancer in order to 
support fast tumor growth (12) and is conducted by ribosomes, 
which are complex nanomachines assembled in the nucleolus. 
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FiGURe 2 | The influence of current and hypothetical therapy options on the tumor stroma. The tumor stroma is comprised of tumor cells (brown), normal 
non-senescent cells (orange), and senescent cells (blue), as well as other cell types (not depicted here). The senescence-associated secretory phenotype (SASP) 
generates a pro-tumorigenic microenvironment (red). Chemotherapy eliminates cancer cells by inducing DNA damage, but also induces cellular senescence and 
thereby promotes secondary tumor formation and relapse via SASP upregulation. Block of protein synthesis also eliminates cancer cells, but might additionally 
mitigate the SASP. The effect on the number of senescent cells is not known. Telomerase (re-)introduction in normal cells might delay the onset of cellular 
senescence and promote tissue regeneration, but also facilitate cancer development. Activation of DNA repair pathways in non-senescent cells might prevent 
senescence and cancer formation, but also render cancer cells more resistant to chemo- and radiation therapy. Thus, a combinatorial approach of eliminating 
cancer cells by chemotherapy and senescent cells by senolytics might be most promising. However, increased tissue damage combined with decreased 
regenerative ability by SASP factors needs to be considered.
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Ribosome biogenesis and consequently nucleolar size are 
directly correlated with cell cycle and protein synthesis. Thus, 
the morphology of nucleoli serves as an important surrogate 
marker for tumor pathologists to predict the clinical outcome 
of cancer (76). In contrast to cancer, bulk protein synthesis 
slows down during organismal aging (77). Although it is 
already established that senescent cells display decreased levels 
of protein degradation (78), the capacity of senescent cells to 
newly synthesize proteins was not studied so far. Surprisingly, 
primary fibroblasts from Hutchinson–Gilford Progeria patients 
and from old donors display elevated protein translation and 
nucleolar expansion compared to fibroblasts from healthy young 
donors (79), while long-lived Caenorhabditis elegans mutants 
have smaller nucleoli and less ribosomal RNA expression than 
their wild-type counterparts (80). Replicative senescent fibro-
blasts are characterized by a single enlarged nucleolus, while 
proliferating cells have an increased number of small nucleoli 

(81–83). However, although senescent cells undergo vast 
nuclear remodeling (18, 19), the relative positions of nucleolus-
associated chromosomal domains only change marginally 
during senescence (84). Interestingly, the nuclear proteome is 
drastically remodeled in SIPS compared to untreated prolif-
erating cells with an accumulation of ribosomal proteins and 
depletion of ribosome biogenesis factors. Taken together, these 
findings indicate a kinetic shift of ribosome assembly in senes-
cent cells (85) and firmly establish that increased ribosome and 
protein syntheses, as well as nucleolar expansion, are hallmarks 
of both cancer and accelerated aging.

Thus, therapies targeting protein synthesis instead of inducing 
generalized DNA damage are supposed to be more selective for 
cancer cells, avoid the induction of senescence in non-cancer 
cells, and slow down organismal aging and aging-associated 
pathologies (Figure 2). Indeed, inhibition of ribosome biogen-
esis, for instance by RNA polymerase I inhibitors, selectively kills 
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cancer cells and is thereby considered to be a promising novel 
therapeutic option (86).

Another approach, which could simultaneously target tumor 
progression and organismal aging, is the inhibition of mTOR 
by Rapamycin or Rapamycin-analogs as inhibitors of protein 
synthesis. Rapamycin, even if administered late in life, extends 
organismal life span in mice (87) and blocks secretion of pro-
tumorigenic components of the SASP, such as IL-6. This effect is 
achieved by specific translational repression of IL-6, as well as on 
transcription level via a feedback loop involving IL1A and NF-κB 
signaling. Importantly, Rapamycin also reduced tumor formation 
in a xenograft model in vivo (88). Thus, it would be very interest-
ing to evaluate if other drugs that inhibit protein synthesis are 
also able to limit cancer progression while mitigating negative 
paracrine effects of senescent cells. Potential drug targets include 
several nucleolar proteins required for ribosome biogenesis.

One of these factors is Nucleophosmin 1 (B23), which is upregu-
lated in adenomas and cancers of the colon (89) and translocates 
from the nucleolus to the nucleoplasm upon SIPS. B23 gene 
silencing by RNAi induces reductions in cell viability as well 
as increased abundance of senescent cells. Knockdown of p53 
rescues this phenotype, indicating that p53 is required for B23-
knockdown-mediated senescence (85).

Another remarkable nucleolar factor orchestrating the nucleo-
lar stress response and linking cellular senescence and cancer 
initiation is nucleomethylin (NML). NML introduces specific m1A 
28S ribosomal RNA methylation in human and mouse cells and 
contributes to 60S subunit formation. Depletion of NML activates 
the p53 pathway and thereby regulates cellular proliferation (90). 
Interestingly, NML is important for the induction of drug-induced 
senescence in tumor cells. Upon depletion of NML, the probability 
of cells to escape senescence increases, which might cause relapse 
after chemotherapy. Indeed, downregulation of NML correlates 
with poor survival of breast cancer cell patients (91).

A very recent report describes NOLC1, which is a nucleolar 
protein with increased expression in cellular senescence and 
decreased expression in liver cancer. Strikingly, NOLC1 overex-
pression promotes the onset of senescence and represses hepato-
cellular carcinoma proliferation, both in vitro and in xenograft 
models. NOLC1 overexpression decreases rRNA synthesis and 
alters the morphology of nucleoli toward ring-like structures (92).

Taken together, these studies demonstrate that more and 
more genes are emerging, which establish a clear link between 
nucleolar stress, cellular senescence, and cancer, although most 
mechanistic details of these pathways remain elusive. Still, ribo-
some biogenesis and protein synthesis are important novel drug 
targets allowing decoupling of cancer therapy and bystander 
senescence induction.

Strategies to Decrease Cellular 
Senescence and Thereby Cancer
Telomerase—A Two-Edged Sword that Delays 
Senescence but Promotes Cancer
Telomerase is a reverse transcriptase that is mainly expressed in 
germ-, stem-, and cancer cells and counteracts telomere shorten-
ing induced by multiple cell divisions. Ectopic overexpression of 

telomerase is able to immortalize a wide range of different cell 
types (93–95). Although re-activation of telomerase is in many 
cases one of the critical steps in carcinogenesis, activation of tel-
omerase by pharmacological compounds or gene therapy is still 
considered a promising strategy to promote tissue regeneration 
and delay various senescence-associated pathologies.

Several studies have already firmly established the dual role 
of telomerase in cancer and aging. Ectopic overexpression of 
TERT, the catalytic subunit of telomerase, promotes both tumor 
formation (96) and longevity in the mouse (97, 98). The increase 
in longevity is only observed in a tumor-resistant genetic back-
ground (97) or if telomerase expression is initiated late in life by 
gene therapy. In this scenario, TERT extends life span in 1- and 
2-year-old mice, blunts the age-dependent loss of adipose tissue 
mass, bone density and coordination, but does not increase cancer 
incidence (98). The authors argue that the tumorigenic activity of 
telomerase is strongly repressed in aged organisms.

Nonetheless, pharmacological or gene therapy-mediated 
activation of telomerase to ameliorate aging-associated patholo-
gies, including several forms of cancer, is heavily debated in the 
field. One side argues that re-expression of telomerase in old 
organisms, in synergy with caloric restriction (99) or in non-
proliferative tissues, such as the heart, is not only safe, but also 
promotes tissue regeneration, such as after myocardial infarction 
(100). Others believe that expression of telomerase still poses the 
risk of increased cancer incidence by loss of a main tumor sup-
pressor checkpoint (Figure 2). The role of telomerase in cancer 
and senescence was already extensively reviewed elsewhere (101).

Promotion of DNA Damage Repair to Reduce 
Senescence and Cancer Incidence
Apart from the activation of telomerase, a few other interventions 
were described in literature that are able to postpone the onset of 
cellular senescence and increase stress resistance in experimental 
models (Figure 2).

Our group could demonstrate that ectopic overexpression of 
SNEVPrp19/Pso4 extends the replicative life span of human endothe-
lial cells (102, 103), as well as the organismal life span of fruit 
flies (104). Although SNEVPrp19/Pso4 participates also in pre-mRNA 
splicing (105) and in the ubiquitin/proteasome-pathway (106), we 
believe that its involvement in DNA damage repair is responsible 
for the increased stress resistance and fitness. Indeed, SNEVPrp19/Pso4  
and other DNA repair factors are also partially required for 
adipogenic differentiation of human adipose stromal cells and 
fat accumulation in Caenorhabditis elegans (107). Thus, enhance-
ment of DNA damage repair, for instance by (not yet existing) 
small molecules activating SNEVPrp19/Pso4, could potentially 
mitigate the accumulation of senescent cells upon aging or cancer 
therapy with cytotoxic compounds. Interestingly, SNEVPrp19/Pso4  
expression is elevated in breast cancer cells, but tumors with 
high SNEVPrp19/Pso4 levels display reduced metastatic potential 
(102). Thus, animal experiments are required in order to evaluate 
benefits and detrimental effects of SNEVPrp19/Pso4 overexpression 
regarding cancer incidence, metastasis, life span, and fitness at 
old age. In addition, it should be considered that improved DNA 
repair capacity in tumor cells is expected to reduce the efficacy of 
chemo- and radiation therapy.
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Another promising approach that is already in clinical trials 
for the treatment of lung cancer is introduction of p53 by gene 
therapy (108). Thereby, cancer cells are sensitized for chemo- and 
radiation therapy. Since mouse experiments suggest that p53 
overexpression (Super-p53 mouse) protects from cancer but does 
not shorten life span (109), it would be very interesting to evaluate 
if p53 gene therapy increases numbers of senescent cancer and 
non-cancer cells in human biopsies.

The problem with these hypothetical therapeutic interven-
tions is the fact that activation of certain pathways or genes 
is usually more difficult to achieve by pharmaceuticals than 
their inactivation. Furthermore, it is very hard to predict how 
compounds targeting cancer affect senescence and vice  versa, 
as pathways are tightly intertwined. Thus, selective clearance 
of senescent cells is in our view currently the most promising 
strategy to counteract aging- and therapy-associated senescence.

elimination of Senescent Cells Mitigates 
Side effects of Cancer Therapy
Genetic Clearance of Senescent Cells
The idea is to selectively kill senescent cells and to analyze if this 
can lead to rejuvenation of the organism, recovery from typical 
diseases of old age, which are believed to be caused by an accumu-
lation of senescent cells, or recovery from the aging phenotypes 
which are caused by chemotherapy in cancer patients (44, 110). 
Basically, two approaches, namely, genetic clearance of senescent 
cells and senolytic compounds have been developed over the last 
years and both have proved to be highly successful in the mouse 
model (7, 11, 31, 32), but have not yet reached clinical application.

Genetic clearance of senescent cells relies on the genomic 
integration of either the INC-ATTAC (7, 31) or p16-3MR (11, 32) 
reporter construct, which were developed independently by two 
different labs, and enable recognition of p16INK4A -expressing cells 
in senescence accelerated mice, but also in naturally aged mice, 
both at cellular and organismic level. In addition, both constructs 
allow conditional induction of apoptosis specifically in p16INK4A 
positive cells upon systemic administration of either AP20187 
(for INC-ATTAC) or ganciclovir (for p16-3MR). Importantly, 
clearance of senescent cells by INC-ATTAC increased life span, 
but did not decrease tumor incidence. However, mice having a 
tumor at the time of death showed increased survival (7). Genetic 
clearance of senescent cells in p16-3MR mice that were systemi-
cally treated with Doxorubicin was able to mitigate side effects 
of that drug, such as cardiac dysfunction, generalized increase 
of inflammation, and loss of hematopoetic stem cell function. 
In addition, genetic clearance of senescent cells reduced the 
incidence of cancer relapse and metastasis, as well as fatigue after 
Doxorubicin treatment (45). Thus, clearance of senescent cells 
might have clinical potential to reduce short-term and long-term 
side effects of current cancer therapy.

The downside of this approach is the fact that genetic clear-
ance of senescent cells is not equally efficient in all organs (7, 31) 
and senescent cells lacking p16INK4A cannot be targeted. Thus, it 
would be very interesting to compare the current mouse models 
to other in vivo models that rely on different senescence markers. 
However, these models do not yet exist.

Senolytics—Translation of Genetic Mouse Models 
into Clinical Application
With the knowledge that specific elimination of senescent cells 
is able to slow organismal aging, several groups underwent the 
endeavor to screen for substances that specifically kill cells that 
are senescent, but not proliferating or reversibly growth arrested. 
Dasatinib and quercetin were identified as one of the first 
“senolytic” compounds and evaluated in the INC-ATTAC system 
in  vivo (111). The results show that senescent cells are indeed 
eliminated, but the senolytic drugs which are presently known 
are not sufficiently specific, they also attack non-senescent cells 
(111, 112).

Therefore, an interesting strategy to specifically target senes-
cent cells was introduced by Doerr and coworkers. The authors 
found that TIS-induced lymphoma cells have a much higher 
glucose- and energy demand, as well as elevated proteotoxic 
stress than non-senescent cells or TIS-cells that do not produce 
SASP (113). Mitochondria are required to fulfill the high energy 
demands of senescent cells and, indeed, depletion of mitochon-
dria was able to reduce senescence phenotypes including the 
SASP in vitro and even prevent the onset of senescence in mouse 
livers in  vivo (114). Thus, this specific metabolic condition of 
senescent cells, which is maintained by mitochondria, could be 
exploited to design a novel class of senolytics.

Another new approach was recently presented based on a 
cell penetrating peptide, FOXO4-DRI. FOXO4 is a member of 
the FOXO (FOX other) family of transcription factors which is 
expressed exclusively in senescent cells and prevents cell death 
by binding to p53 thereby retaining p53 in the nucleus. The 
peptide, FOXO4-DRI (FOXO4 d-amino acids retro inverso) 
is modeled after a unique sequence in the interaction surface 
of FOXO4 with p53. It contains only d-amino acids and is, 
therefore, not degradable in the cell. Penetration into cells is 
afforded by fusion with a hydrophilic and basic short sequence 
of the HIV-TAT protein. The interaction surface of FOXO4 is 
exactly mimicked by the side chains of the d-amino acids and 
the peptide with high affinity prevents binding between FOXO4 
and p53, which in a “natural” way leads to efficient apoptotic 
death of the cells after nuclear export and transfer to mitochon-
dria of p53. The mouse experiments show that (i) in normally 
aged mice, kidney function is restored to near youthful levels 
(tested by plasma urea and creatinine), and the same is true 
for skin and fur phenotypes; (ii) in mice that were treated with 
doxorubicin and developed senescence phenotypes, especially 
liver damage, this disease phenotype was also repaired by the 
FOXO4-DRI peptide. The side effects monitored in the mice 
and in cultured cells were negligible when compared to other 
senolytic drugs (32).

In our view, these experimental results combined show now 
for the first time in senescence research that the accumulation 
of senescent cells is indeed causally contributing to at least some 
aging diseases and probably to aging in general. More impor-
tantly, in the context of the present review article, senescent 
cells in tumors and in tumor patients after chemotherapy can be 
treated by eliminating senescent cells, which is a very promising 
suggestion for the future of cancer therapy (Figure 2). However, 
it should be considered that elimination of senescent cells might 
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impair tissue regeneration and, therefore, limit the repair of 
damage that was inflicted by chemotherapy. The correct tim-
ing, dosing, and patient selection by, e.g., specific companion 
diagnostics of senescent cell elimination and chemotherapy will 
be crucial in order to maximize therapy success and minimize 
side effects.

CONCLUSiON AND OUTLOOK

For a long time, cellular senescence was purely seen as in vitro 
phenomenon and its influence on human aging was very con-
troversial in the field, until quite recently several groups could 
clearly establish that senescent cells indeed contribute to aging-
associated diseases and ultimately to organismal life- and health 
span. In the last few years, senescence has come also more and 
more into focus in cancer research, as senescence is frequently 
induced by current tumor therapies, being beneficial for arresting 
apoptosis-resistant cancer cells, but on the other hand inducing 
senescence in other cells and thereby promoting cancer relapse 
and secondary tumors. In addition, the accumulation of senescent 
cells with age might at least partially explain increasing cancer 
incidence with age.

Since the secretory phenotypes of senescent cells and CAF 
are similar, cellular senescence serves as an interesting model 
system for a pro-tumorogenic microenvironment that could 
be utilized for drug screenings. Furthermore, pharmaceutically 
targeting senescent cells might not only be a novel tool in battling 

aging-associated pathologies, but also a complementation to 
cancer therapy to eliminate senescent cancer and non-cancer 
cells and mitigate side effects. The coming years will show if a 
better understanding of the complex interplay between cellular 
senescence and cancer will indeed revolutionize therapy options.
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