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Hypoxia-inducible factor 1 alpha (HIF-1α) orchestrates cellular adaptation to low oxygen 
and nutrient-deprived environment and drives progression to malignancy in human solid 
cancers. Its canonical regulation involves prolyl hydroxylases (PHDs), which in normoxia 
induce degradation, whereas in hypoxia allow stabilization of HIF-1α. However, in certain 
circumstances, HIF-1α regulation goes beyond the actual external oxygen levels and 
involves PHD-independent mechanisms. Here, we gather and discuss the evidence 
on the non-canonical HIF-1α regulation, focusing in particular on the consequences of 
mitochondrial respiratory complexes damage on stabilization of this pleiotropic tran-
scription factor.

Keywords: hypoxia-inducible factor 1 alpha, cancer, mitochondria, oxidative phosphorylation, electron transport 
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Hypoxia-inducible factor 1 (HIF-1) is the major orchestrator of cellular adaptation to low oxygen 
environment (1). In normoxia, prolyl hydroxylases (PHDs) hydroxylate HIF-1α on two proline 
residues within the oxygen-dependent degradation domain, triggering von Hippel–Lindau 
(pVHL)-mediated ubiquitination and proteasomal degradation (Figure  1) (2). In parallel, the 
Factor Inhibiting HIF (FIH), an asparaginyl hydroxylase regulated similarly to PHDs, in an 
oxygen-dependent manner, suppresses HIF-1 transcriptional activity in normoxia by preventing 
co-activator recruitment (3, 4). Conversely, hypoxia inhibits PHDs and stabilizes HIF-1α, which 
then translocates into the nucleus and dimerizes with constitutively expressed HIF-1β, creating 
active HIF-1 complex and triggering the transcription of genes promoting glycolytic metabolism, 
angiogenesis, and survival (Figure 1) (5). Activation of HIF-1α is physiological during embryo-
genesis and in wound-healing processes, whereas in cancer, HIF-1α is associated with malignancy 
and poor prognosis (6, 7). Abnormal stabilization of HIF-1α and upregulation of its downstream 
targets have been described in a broad spectrum of solid tumors as they progress to malignancy (8).

Since the discovery of HIF-1α and the ingenious oxygen-dependent PHD-mediated regulation, 
a great number of additional modalities of HIF-1α control has been identified, independently from 
external oxygen concentrations and acting at the level of its transcription, translation, oxygen-
independent stabilization/degradation, translocation from cytoplasm to the nucleus, and even 
affecting HIF-1 transcriptional activity. Here, we review and discuss the non-canonical regulation of 
HIF-1α expression and stabilization in cancer cells, focusing on factors which cause pseudohypoxia 
(HIF-1α stabilization in normoxic conditions) or fail to stabilize HIF-1α in low oxygen atmosphere 
(pseudonormoxia). Particular attention is given to the discussion of data showing that oxidative 
phosphorylation (OXPHOS) damage may block HIF-1α stabilization, since this controversial issue 
has seldom been reviewed elsewhere.
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FiGURe 1 | Canonical regulation of HIF-1α stability. In normoxia, prolyl hydroxylases (PHDs) hydroxylate hypoxia-inducible factor 1 alpha (HIF-1α) on two proline 
residues, triggering pVHL-mediated ubiquitination and proteasomal degradation of hydroxylated HIF-1α. The hydroxylation reaction is coupled to conversion of αKG 
to succinate and requires co-factors ascorbate and ferrous iron. In hypoxia, hydroxylation is inhibited and HIF-1α dimerizes with constitutively expressed HIF-1β, 
creating an active HIF-1 complex, which transcribes genes promoting angiogenesis, glycolytic metabolism, mitophagy, and survival.
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OXYGen-inDePenDenT HiF-1α 
STABiLiZATiOn BY OnCOMeTABOLiTe-
MeDiATeD ReGULATiOn OF PHDs 
ACTiviTY

The first evidence of an oxygen-independent regulation of HIF-1α 
stability in vivo was found in tumors harboring succinate dehy-
drogenase (SDH) and fumarate hydratase mutations (9). Soon 
after, it was demonstrated that SDH inhibition stabilizes HIF-1α 
in normoxia due to increased concentrations of succinate, a by-
product and allosteric inhibitor of the PHD reaction (10). This 
finding gave birth to the concept of “oncometabolites,” which 
initially regarded the accumulation of certain Krebs cycle inter-
mediates, such as succinate and fumarate (11, 12), but may now 
be extended to any metabolite capable of triggering oncogenic or 
tumor suppressor signals. In the context of HIF-1α regulation, 
pyruvate and lactate were suggested to promote pseudohypoxia 
(13–15), whereas the PHD substrate alpha-ketoglutarate (αKG), 
as well as PHD co-factors ascorbate and Fe2+, were all shown to 
confer a dose-dependent HIF-1α destabilization in hypoxia (16) 
(Figure 2A). For example, αKG increases the PHD affinity for 
oxygen and thus promotes HIF-1α hydroxylation and degrada-
tion even at low oxygen concentrations (17, 18). Accordingly, 
pseudonormoxia is observed in cells suffering nicotinamide 
nucleotide transhydrogenase deficiency or severe complex I 
damage, both conditions leading to NADH accumulation and 
consequent increase in αKG, due to the slowdown of the Krebs 
cycle rate (19–22). Conversely, the mitochondrial isocitrate 
dehydrogenase 3 alpha overexpression decreases αKG concentra-
tions and promotes HIF-1α stability (23). Although mechanisms 
balancing oncometabolite concentrations represent intriguing 
therapeutic targets, their successful manipulation to fight cancer 

is still to be optimized, most likely due to the complexity of 
oncometabolite-mediated HIF-1α regulation. For instance, 
hypoxia-induced miR-210 expression was shown to contribute 
to the succinate accumulation by causing respiratory complex 
II defects (24, 25). Moreover, whereas (L)-2 hydroxyglutarate 
promotes HIF-1α stabilization (26), genetic lesions leading to the 
accumulation of the (R)-2 hydroxyglutarate enantiomer instead 
activate PHDs (27).

nOn-CAnOniCAL OXYGen-DePenDenT 
ReGULATiOn OF PHDs BY 
ReDiSTRiBUTiOn OF inTRACeLLULAR 
OXYGen FOLLOwinG OXPHOS DAMAGe

As a solid cancer progresses, transformed cells usually activate 
HIF-1-mediated adaptations to hypoxic stress, which include 
downregulation of mitochondrial respiration to decrease the cells’ 
requirement for oxygen (24, 28, 29). However, several xenograft 
studies, and a few examples from human tumors, demonstrate 
that severe OXPHOS damage induces a series of metabolic and 
molecular anti-tumorigenic events which, among other, include 
destabilization of HIF-1α (20, 21, 30–34). The anti-tumorigenic 
consequences of OXPHOS damage leading to HIF-1α destabiliza-
tion come as a paradox to the known role of HIF-1 in promoting 
mitophagy and downregulation of OXPHOS genes (24, 28, 29) 
and are, therefore, discussed here in more detail. Hagen and 
colleagues pioneered in demonstrating that decreased oxygen 
consumption, due to OXPHOS inhibition in cancer cell lines, 
may result in redistribution of intracellular oxygen from respira-
tory enzymes to the PHDs, so that the latter become unable to 
sense external hypoxia (35, 36). As a result, HIF-1α is destabilized 
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FiGURe 2 | Non-canonical regulation of HIF-1α stability. Factors promoting pseudonormoxia and pseudohypoxia are indicated in red and green, respectively. (A) 
Prolyl hydroxylase (PHD) activity may be blocked by accumulation of Krebs cycle metabolites succinate and fumarate, whereas αKG, and co-factors ascorbate and 
iron, boost PHDs activity regardless of oxygen levels. Activation of any factor promoting pVHL downregulation in normoxia will also lead to pseudohypoxic 
stabilization of HIF-1α. Finally, posttranslational modifications, such as methylation by SET7/9, or interactions with proteins, such as receptor of activated protein C 
kinase (RACK1) and HSP90, may regulate PHD accessibility to HIF-1α and promote or block hydroxylation regardless of oxygen concentrations. (B) Severe damage  
or inhibition of oxidative phosphorylation (OXPHOS) complexes I, III, IV, or V, reduces oxygen consumption, which in turn may increase intracellular oxygen 
concentrations and cause pseudonormoxia. (C) MDM2 is an ubiquitine ligase, which promotes HIF-1α degradation in hypoxic environment when associated with 
tumor suppressor proteins. (D) Proteasome-independent HIF-1α degradation via chaperone-mediated autophagy is mediated by HSC70. (e) PI3K/Akt/mTOR axis 
is the major pathway involved in promoting HIF1A transcription and translation, regardless of oxygen concentrations and upon numerous protumorigenic stimuli. For 
example, elevated reactive oxygen species concentrations were shown to promote HIF1A transcription and translation via Akt signaling. On the other hand, 
conditions counteracting mTOR pathway, such as nutrient starvation, and possibly adenosine monophosphate kinase (AMPK) activation, may lead to HIF-1α 
downregulation.
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in cells with severe mitochondrial respiration damage, despite the 
outer hypoxic environment (Figure 2B). The association between 
mitochondrial respiration damage and HIF-1α inactivation 
despite hypoxia has also been observed in Rho zero cells and 
diverse cancer cell types, in which OXPHOS complexes I, III, IV, 
or V were pharmacologically inhibited (37–39). In accordance, 
by using a phosphorescent probe quenched by oxygen, a recent 
study showed that increasing concentrations of complex I inhibi-
tor rotenone decrease intracellular hypoxia in a dose-dependent 
manner in a prostate cancer cell line (40). The conditions applied 

in these studies usually consisted of 3–6 h culture in the presence 
of 1–3% oxygen. On the other hand, studies applying 0.1–1% 
oxygen concentrations, reported that HIF-1α stabilizes in Rho 
zero cancer cells or upon rotenone treatment (41, 42), and Gong 
and Agani demonstrated that, in near-anoxic conditions, HIF-1α 
is stabilized despite OXPHOS damage (43). Therefore, OXPHOS 
damage does not seem to irreversibly prevent, but may rather 
attenuate HIF-1α stabilization, suggesting that the increased 
intracellular oxygen concentrations, caused by the lower oxygen 
consumption, may rapidly equilibrate with the extracellular 
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tensions. Such equilibration probably depends on the cellular 
membrane permeability to molecular oxygen, which among 
other is influenced by cholesterol levels and, therefore, lipid 
metabolism, which is conditioned by the OXPHOS status (44).

Notably, because of the short HIF-1α half-life (<5  min) 
in well oxygenated atmosphere, changes in ambient oxygen 
concentrations and variations of oxygen diffusion in the culture 
medium have a strong impact on HIF-1α stabilization when 
working in vitro. Therefore, precautions must be applied during 
cellular extraction and during cell washing, to avoid making 
biased conclusions regarding HIF-1α regulation. Moreover, for 
the time being, experimental limits prevent precise dissection 
of oxygen distribution in a growing tumor. Indeed, it must be 
noted that, to the best of our knowledge, the formal demon-
stration of the mechanism linking OXPHOS deficiency and 
HIF-1α destabilization in  vivo, where selective pressures and 
microenvironment are radically different from in vitro condi-
tions, has yet to be reported. Based on our data from complex 
I-deficient models, we hypothesize that more than one factor 
is involved in HIF-1α destabilization in OXPHOS-deficient 
tumors, since, if compared to counterpart controls, they dis-
play not only increased intracellular oxygen concentrations 
(unpublished data) but also higher αKG levels (20–22) and iron 
accumulation (unpublished data), all factors known to promote 
PHD-mediated HIF-1α hydroxylation.

To add complexity, OXPHOS damage is a known source of 
reactive oxygen species (ROS), which were suggested to pro-
mote HIF-1α stability in hypoxia and normoxia, although their 
role in HIF-1α regulation is still controversial (45, 46). Brunell 
and colleagues suggested that oxygen sensing in OXPHOS does 
not depend on oxygen consumption in human fibroblasts, but 
rather on ROS production deriving from decreased activity of 
complexes III and IV (47). On the other hand, by working on 
cancer cells, Chua and colleagues report that HIF-1α stabiliza-
tion in hypoxia is not dependent on ROS and that re-establishing 
oxygen consumption in complex III-repressed cells is sufficient 
to induce HIF-1α stabilization, most likely due to a decrease of 
intracellular oxygen (48). The role of ROS in oxygen sensing has 
extensively been reviewed elsewhere (46, 49–51), and we discuss 
the role of ROS in promoting HIF1A transcription in the next 
paragraph. Still, it is interesting to note that OXPHOS damage 
leading to elevated ROS was suggested to promote HIF-1α stabi-
lization (45), whereas severe respiratory deficiency associated to 
a decreased consumption of NADH results in pseudonormoxia. 
These apparently opposite effects may be explained by the fact 
that particularly severe damage, at least in the context of certain 
complex I mutations (20, 21), could destroy ROS-generating 
sites of respiratory multi-enzymes, resulting in unchanged or 
even decreased ROS concentrations. In this context, it is not 
surprising that mitochondrial DNA (mtDNA) mutations, not 
infrequent modifiers of tumorigenesis, may have opposing 
consequences on cancer progression, depending on the type 
of damage they induce (20). For example, mtDNA mutations 
increasing ROS production have been suggested to promote 
tumorigenesis and metastases, whereas those causing severe 
damage, such as complex I disassembly, compromise tumor 
progression (20, 21).

Taken together, the effects of OXPHOS deficiency on 
HIF-1α will depend on the type of damage inflicted, probably 
through different mechanisms depending on the mitochondrial 
respiratory complex involved. Nevertheless, while the down-
regulation of mitochondrial respiration by HIF-1 is certainly 
a valid mechanism for adaptation of cancer cells to low oxygen 
tension, the block of OXPHOS may not be severe, since this 
would lead to HIF-1α destabilization. The latter is supported 
by studies such as the recent Hamanaka’s work in epidermal 
keratinocytes, where the knock-out of mtDNA replication and 
transcription factor TFAM caused reduction of HIF-1α protein 
levels (52), indicating that HIF-1α destabilization in cells suf-
fering mitochondrial respiratory damage seems to be a rather 
general phenomenon.

Interestingly, since severe OXPHOS damage seems to 
prevent cancer cells from experiencing hypoxia, they should 
be exempted from the need to adapt to low oxygen environ-
ment. Nevertheless, the growth of OXPHOS-deficient tumors 
is still challenged, as seen in complex I-deficient xenograft 
models (20, 21, 30, 31, 34) and in oncocytoma patients, who 
develop slowly proliferating masses, which rarely progress to 
malignancy (33). On one hand, this may be explained by the 
metabolic insufficiency, such as the recently described deficit 
in nucleotide biosynthesis, caused by aspartate shortage upon 
complex I inhibition (53). However, the consequences of the 
lack of HIF-1α in such tumors is not to be neglected, especially 
in the light of studies demonstrating that inhibition of HIF-1α 
is sufficient to block tumor growth (54, 55). In this context, it is 
intriguing to hypothesize that, in certain cancers, hypoxia may 
be advantageous, rather than a drawback for growing tumors, 
since the survival signals promoted by HIF-1 may actually be a 
requirement for malignant progression.

PHD-inDePenDenT PATHwAYS 
ReGULATinG HiF-1α STABiLiZATiOn

While PHDs control the oxygen-dependent HIF-1α stability, 
many other proteins are emerging as additional mediators 
of HIF-1α regulation, which act in an oxygen-independent 
manner and, therefore, regardless of the HIF-1α hydroxylation 
status. For example, several factors modulate pVHL activity 
(Figure  2A), such as WD repeat and SOCS box-containing 
protein 1 (WSB1), which was found to promote HIF-1α sta-
bilization and metastases via ubiquitination and degradation 
of pVHL in renal carcinoma, breast cancer, and melanoma 
models (56). Similarly, ubiquitin C-terminal hydrolase-L1 was 
described to abrogate the pVHL-mediated ubiquitination of 
HIF-1α in mouse models of pulmonary metastasis (57), and 
c-Myc has been shown to weaken HIF-1α binding to pVHL 
complex, eventually leading to normoxic HIF-1α stabilization 
in breast cancer cells (58). Besides pVHL, E3 ubiquitin-protein 
ligase MDM2 was also found to ubiquitinate HIF-1α, but in a 
hydroxylation-independent manner, promoting its destabiliza-
tion despite hypoxic atmosphere (Figure 2C). MDM2-mediated 
oxygen-independent HIF-1α degradation seems to occur upon 
binding with tumor suppressor proteins, such as TAp73 (59) 
or p53 (60). On a similar note, it has recently been shown that 
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PTEN and PI3K inhibitors promote HIF-1α destabilization by 
preventing MDM2 phosphorylation and subsequent transloca-
tion in the nucleus, suggesting that cytoplasmic MDM2 is then 
able to ubiquitinate HIF-1α and promote its degradation in 
hypoxia (61). Therefore, in cancers carrying mutations in tumor 
suppressor proteins such as TP53, MDM2-mediated HIF-1α 
degradation would be suspended, leading to synergic promotion 
of cancer progression, through blockage of the p53 pro-apoptotic 
stimuli and activation of the survival pathways upregulated by 
HIF-1α. Conversely, p53-independent binding of MDM2 to 
HIF-1α was associated with the increase in HIF-1α protein 
content (62), warning that the role of MDM2 in HIF-1α regula-
tion might be more ambiguous than initially described. Further 
examples of oxygen-independent HIF-1α regulation involve 
factors, which may act either as promoters of HIF-1α degrada-
tion (Figure 2A), such as receptor of activated protein C kinase 
(RACK1), or as protectors from pVHL-mediated ubiquitination, 
such as heat shock protein (Hsp90) or Sentrin/SUMO-specific 
protease 1 (SENP1) (63–65). Inhibition of Hsp90 promotes the 
proteasome-mediated degradation of HIF-1α even in hypoxia 
or when functional pVHL is lacking (66). Moreover, it has been 
reported that gamma rays stimulate the mTOR-dependent syn-
thesis of Hsp90 leading to HIF-1α stabilization and radiotherapy 
resistance of lung cancer cells (64). The mechanism of RACK1/
Hsp90 competition in enhancing/decreasing HIF-1α-pVHL 
binding has already been reviewed (67), but it is interesting to 
note that, among other, calcium may influence RACK1 activ-
ity. For instance, calcium-activated phosphatase calcineurin 
prevented RACK1 dimerization and subsequent HIF-1α degra-
dation in Hek293 and renal carcinoma RCC4 cells (68). Other 
studies also report a role for calcium in HIF-1α regulation (69, 
70), suggesting that HIF-1α is not only an oxygen and nutrient 
sensor but may also promote adaptive responses to changes in 
cellular calcium homeostasis. It is probably due to its pleiotropic 
function that we find such intricate and multilayered control of 
HIF-1α, as testified by its numerous posttranslational modifica-
tions (1, 71, 72). Recently, SET7/9-mediated methylation of the 
HIF-1α lysine 32 residue was identified to destabilize HIF-1α, 
and promote its proteasomal degradation even in hypoxia (73). 
This reaction is contrasted by LSD1-mediated demethylation, 
which stabilizes HIF-1α, protecting it from ubiquitination (73). 
Furthermore, deacetylation of HIF-1α at lysine residue 709 by 
SIRT2 enhances PHD recognition of hydroxylating residues, 
promoting pseudonormoxia (74). It is interesting that, apart 
from proteasomal degradation, the mechanism of lysosomal 
digestion of HIF-1α has been described (Figure  2D). In par-
ticular, HIF-1α was first found to interact and co-localize with 
lysosome-associated membrane protein type 2A in HK2 human 
kidney and RCC4 renal cancer cells (75). The authors showed that 
the lysosomal digestion of HIF-1α is slower and less pronounced 
than its proteasomal degradation, but suggested it may become 
more important in circumstances where pVHL pathway is not 
working. Later, it was demonstrated that lysosomal degradation 
of HIF-1α is mediated by heat shock cognate 70-kDa protein 
(HSC70) via chaperone-mediated autophagy, which specifically 
targets individual proteins (76).

ReGULATiOn OF HiF-1α On 
TRAnSCRiPTiOnAL AnD 
TRAnSLATiOnAL LeveL

Besides the regulation of its protein stability and half-life, HIF-
1α may also be regulated in a more conventional manner, via 
mRNA transcription and protein synthesis, in response not only 
to hypoxia itself but also to the stimulation by growth factors, 
cytokines and hormones, heat shock, irradiation, and nutrient 
availability. In this context, three major pro-survival pathways, 
namely ERK/MAPK, JAK/STAT, and PI3K/Akt/mTOR, concur 
to increase transcription and translation of HIF1A, especially 
in cancer (77). MAPK signaling via ERK1/2 was mainly 
associated with regulation of HIF-1 transactivation through 
phosphorylation of p300/CPB cofactors. On the other hand, 
JAK/STAT pathway triggers Akt-mediated HIF1A transcription 
via STAT3 (78, 79). The PI3K/Akt/mTOR signaling cascade 
directly increases HIF1A transcription and translation (80–82). 
Therefore, any aberrant stimulation of this pathway, which 
in cancer often occurs through growth factors, hormones, or 
oncogenes/tumor suppressor mutations, leads to the activation 
of HIF-1α, even in normoxic conditions (83–85). Concordantly, 
elevated ROS production caused by OXPHOS deficiency (86), 
and several other conditions leading to elevated ROS and 
reactive nitrogen species, including mtDNA mutations (87), 
chemical toxicants (88), intermittent hypoxia (89), and treat-
ment with pro-inflammatory factors (90), have been associated 
with PI3K/Akt/mTOR-mediated increase of HIF1A transcrip-
tion and translation (Figure 2E). Moreover, Akt pathway boosts 
HIF-1α-mediated response by stabilization and transactivation 
regardless of oxygen levels (91). For example, the ERK-PI3K/
Akt mediate HIF-1α levels by stimulating protein synthesis of 
the molecular chaperone Hsp90, which in turn is able to stabilize 
HIF-1α in an oxygen-independent fashion (66, 92).

The PI3K/Akt-mediated activation of mTOR is antagonized 
by the 5′-adenosine monophosphate kinase (AMPK), the major 
sensor of cellular energy charge (93). In the context of a pro-
gressing cancer cell, PI3K/Akt/mTOR promotes survival and 
proliferation when conditions are fertile for cell proliferation, 
whereas AMPK serves as a sensor of nutrient starvation and 
ensures optimization of energetic sources when a cancer cell 
requires saving energy. Thus, it is intuitive to hypothesize that 
AMPK would counteract the effects of Akt-mediated increase 
of HIF-1α signaling. Indeed, an anticorrelation between active 
AMPK and HIF-1α has been confirmed by a recent system biol-
ogy analysis (94) and, concordantly, by in vitro studies showing 
HIF-1α destabilization in hypoxia under glucose deprivation, 
suggesting that starvation dampens HIF-1α translation (95–97). 
However, the relationship between AMPK and HIF-1α is still 
unclear. On one hand, the lack of AMPK in MEFs stimulates 
HIF-1α expression in normoxia (98, 99), and mTORC1 activa-
tion and increased ROS production have been appointed for 
the normoxic stabilization of HIF-1α in AMPK-defective MEFs 
(99, 100). On the other hand, it has been reported that oxida-
tive stress may induce AMPK activation leading to a reduction 
in HIF-1α degradation (101) and active AMPK was shown to 
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stimulate ROS-mediated increase of HIF-1α (102). It seems that 
the AMPK control of HIF-1α may be dependent on the contexts 
and phases of tumor progression, concordantly to the recently 
reviewed double-edged role of this energy sensor (103).

COnCLUDinG ReMARKS

Taken together, studies we discuss here show that, even though 
PHD-mediated hydroxylation of HIF-1α seems an impeccable 
mechanism to control its stability, many novel regulators of 
HIF-1α are emerging, especially in the context of cancer, where 
the selective pressures to activate this protumorigenic protein 
are particularly strong. Unraveling the complexity of HIF-1α 
regulation might lead to development of more precise antican-
cer treatments. In particular, considering the heterogeneous 
OXPHOS activity in different cancers, a better understanding of 
the mechanisms by which HIF-1α and mitochondrial respiratory 
chain complexes control oxygen sensing, may identify means for 

optimization of targeting HIF-1α, possibly based on the OXPHOS 
status of tumors. For example, therapies targeting HIF-1α could 
be avoided in tumors suffering OXPHOS deficiency, whereas 
targeting complex I could be adopted as a strategy to block 
HIF-1α in tumors which rely on the activity of this pleiotropic 
transcription factor.
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