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Editorial on the Research Topic

How Reproductive History Influences Our Breast Cancer Risk

Reproductive history has profound effects on women’s breast cancer (BCa) risk. With fertility rates 
falling, the age of childbearing increasing, and the age of menarche decreasing each decade, it is 
critically important that we define the biological pathways linking reproductive history to BCa risk. 
In this special series on reproductive history and breast cancer risk, we hear from six groups who 
have expertise in this area and share their thoughts on the most pressing questions in the field.

Dall and Britt have an interest in the effects of hormones and reproductive events (menarche, par-
ity, menopause) on breast cancer risk. They describe the increased risk of breast cancer in nulliparous 
nuns and discuss the current studies attempting to define the role of the mammary stem cells, ER+ 
cells, and growth factors in parity-induced protection (1, 2). In contrast to the decreased risk that 
comes with pregnancy, a woman’s risk of ER+ BCa increases is she is older when she enters meno-
pause (3, 4). Polymorphisms in the ER gene, ER signaling (5, 6), DNA damage/repair, and FSH and 
immune components (7–10) have been associated with the age at menopause but together still only 
explain a small portion of the timing. As mice do not undergo a natural menopause, experimental 
data on menopause and breast cancer are lacking. The other reproductive time point to influence 
cancer risk is the age at menarche; a younger age at menarche increasing BCa risk. This is worrying 
as the age of menarche has declined from 16.5 years in the 1800s, 13.5 in the early 1900s, to 12 years 
today. Biologically, menarche begins in response to rising circulating hormones including estrogen, 
and elevated estrogens have been found in girls experiencing precocious menarche (11). Despite this, 
genome-wide sequencing studies failed to find a strong association with estrogen-regulated genes 
(9, 12, 13). Hormone replacement therapy and oral contraceptive pill use both increased BCa risk in 
current users and can have more detrimental effects on younger users (14, 15). Together, this work 
highlights that the young breast is particularly sensitive to hormonal changes.

Atashgaran and colleagues study the influence of the reproductive cycle on immune cells within 
the breast and how this might relate to the increased risk of BCa in women who cycle for extended 
periods. They explain the effects of fluctuating estrogen and progesterone (during menstrual cycling) 
on the mammary epithelial cells, immune cells, and extracellular matrix. The ability of transformed 
cells to evade the immune response is a hallmark of cancer (16). Fluctuations in hormones dur-
ing the mouse estrous cycle alters the abundance, phenotype, and function of local macrophages  
(17, 18), which can affect their ability to recognize DNA-damaged cells, phagocytose them, and 
generate adaptive immune responses (18). In particular, progesterone regulates the Th1/Th2 pheno-
types of T cells in the mammary gland (19) and induces Th2 cytokines during pregnancy (20). Th1 
cytokines are thought to mediate antitumor immunity and tumor rejection, whereas Th2 cytokines 
are produced by tumors and are involved in pro-tumorigenic responses (21, 22). Estradiol induces a 
pro-inflammatory cytokine profile in the estrus phase that can be mitigated by progesterone during 
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other phases of the cycle (23). It is possible that aberrant hormo-
nal exposure can negatively influence the inflammatory milieu of 
the breast and aid in tumor development and cancer progression.

Katz and her team have been trying to understand the role 
of insulin-like growth factors (IGF) in parity-induced protection 
against breast cancer. They dissected mammary glands from 
parous mice and age-matched virgins and a found Igf1r to be 
hypermethylated and silenced in parous mammary glands (2) 
aligning with the fact that high IGF1 levels are associated with 
increased BCa risk (24, 25). Parous mice, with a low tumor inci-
dence (16%) compared to nulliparous mice (100%) treated with 
carcinogen, had their protective effect eliminated if they were first 
treated with IGF (83%) (26). This work is supported by a recent 
DNA methylation study performed on parous and nulliparous 
women showing that the IGF acid labile subunit (responsible 
for transport of IGF1 in the circulation) was hypomethylated 
with parity (27). Unfortunately, targeting the IGF pathway using 
IGF1R inhibitors leads to toxic effects that will limit their use as 
a preventative (28–30); however, this work highlights the impor-
tance of exploring other options to promote the parity-associated 
breast cancer protection.

While there is a lot of interest in trying to define the role of 
hormones in parity-induced protection, prior to the protec-
tion instilled by parity, each woman passes through a transient 
increased risk period. Borges and colleagues have been studying 
this postpartum period of mammary gland involution, character-
ized by regression and remodeling of the epithelium. Postpartum 
BCa is diagnosed within 5 years of a woman’s most recent child-
birth (31, 32), and these cancers tend to be of poor prognosis with 
an increased likelihood to metastasize (31–34). Similarly, tumor 
cells implanted into postpartum murine hosts have increased 
growth, invasive and metastatic capacities compared to those 
implanted in nulliparous controls (35–39). This environment is 
driven by immunosuppression and lymphangiogenesis and, here, 
Borges and colleagues review the role for lymphangiogenesis, 
the outgrowth of new lymphatic vessels (40–42). New lymphatic 
formation or neo-lymphangiogenesis occurs in adult tissues in 
response to infection, inflammation, and wound healing and is 
stimulated by vascular endothelial growth factors within the dam-
aged tissue. The growth factors VEGF-A, -C, and -D produced by 
the local fibroblasts, inflammatory cells, and macrophages bind 
to their receptors on nearby lymphatic endothelial cells and cause 
the lymphatics to expand (43–47). Borges et al. have shown that 
neo-lymphangiogenesis occurs during postpartum mammary 
gland along as does an upregulation of VEGF-C, VEGF-D, and 
their receptors (36). This increase in lymphatic vessel density in 
the postpartum breast (1–5 years post pregnancy) may explain 
the increased likelihood of tumor development in these women 
who make up a large proportion of all BCa diagnosed in young 
(<45 years) Caucasian women (33).

Au and colleagues work on the role of adipose-derived estro-
gen in breast cancer development. Local estrogen production 
(through the enzyme aromatase) is increased in tumor-bearing 
breast tissue and systemic antiestrogen therapies are widely used 
to target this in ER+ BCa patients. These hormonally driven 
BCa are more prevalent in postmenopausal women where an 
increased BMI has been associated with increased local breast 

estrogen (48–50). In these women, the adipose tissue (rather 
than the ovaries) is the primary site of estrogen production (51). 
Aromatase is increased in breast adipose tissue of obese women 
as a number of obesity-associated factors (inflammatory mediator 
PGE2 and the adipokine leptin) can stimulate aromatase expres-
sion (52, 53). Au and colleagues have tried to find a factor that 
inhibits aromatase expression in the adipose as a novel targeted 
antiestrogen therapy. They found that the gut-derived hormone 
ghrelin (produced in the stomach to regulate appetite and growth 
hormone release) inhibits aromatase expression in adipose cells 
(54, 55). In addition, circulating levels of ghrelin, and its una-
cetylated form des-acyl ghrelin, are lower in obese women and 
cannot function as well to inhibit estrogen-driven BCa growth. 
They describe the work they are now doing on Ghrelin/des-acyl 
ghrelin mimetics as alternative endocrine therapeutics.

In order to define how aggressive a tumor is and possibly 
identify if it would be responsive to endocrine therapy, clinics are 
adopting gene-expression profiling on the tumors to provide an 
intrinsic, molecular portrait of the tumor and identify the likeli-
hood of recurrence. Bernhardt and colleagues are concerned 
that these tests have been developed using tumor tissue from 
postmenopausal women (non-cycling) but are being used for 
women at all ages. Of the gene expression tests available (PAM50, 
Oncotype DX and EndoPredict) were developed in postmeno-
pausal women and now not performing well in premenopausal 
women who make up 25% of all patients (56–58). It is postulated 
that this is because the tests are largely reliant on proliferation and 
estrogen signaling genes, which are expected to differ markedly 
in pre- and postmenopausal women. The former undergo cycli-
cal production of ovarian hormones which drive proliferation, 
differentiation, and apoptosis through gene expression changes 
(59, 60). These hormonally driven changes are not present in 
the postmenopausal women. Supporting these concerns, it has 
been found that the MammaPrint gene expression test that was 
developed and validated in women under 55 years of age (61, 62) 
is performing well for younger women. This suggests that for the 
most success in guiding clinical treatment, gene-expression tests 
should be developed in the women for which we intend to use 
them.
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