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Epithelial-to-mesenchymal transition (EMT) allows epithelial cancer cells to assume 
mesenchymal features, endowing them with enhanced motility and invasiveness, thus 
enabling cancer dissemination and metastatic spread. The induction of EMT is orches-
trated by EMT-inducing transcription factors that switch on the expression of “mesenchy-
mal” genes and switch off the expression of “epithelial” genes. Mitochondrial dysfunction 
is a hallmark of cancer and has been associated with progression to a metastatic and 
drug-resistant phenotype. The mechanistic link between metastasis and mitochondrial 
dysfunction is gradually emerging. The discovery that mitochondrial dysfunction owing 
to deregulated mitophagy, depletion of the mitochondrial genome (mitochondrial DNA) 
or mutations in Krebs’ cycle enzymes, such as succinate dehydrogenase, fumarate 
hydratase, and isocitrate dehydrogenase, activate the EMT gene signature has provided 
evidence that mitochondrial dysfunction and EMT are interconnected. In this review, 
we provide an overview of the current knowledge on the role of different types of mito-
chondrial dysfunction in inducing EMT in cancer cells. We place emphasis on recent 
advances in the identification of signaling components in the mito-nuclear communi-
cation network initiated by dysfunctional mitochondria that promote cellular remodeling 
and EMT activation in cancer cells.

Keywords: epithelial-to-mesenchymal transition, mitochondrial dysfunction, mitochondrial DnA, mitochondrial 
retrograde signaling, metastasis

inTRODUCTiOn

Mitochondria are the cell powerhouse, on which amino acid, nucleic acid, lipid, and iron–sulfur 
cluster metabolic pathways converge. During the last decade, mitochondria have been recognized as 
key players in several aspects of cancer biology, including cancer development, metastasis, and drug 
resistance (1, 2), due to their central role as receivers, integrators, and transmitters of intracellular 
signals regulating various processes (3). Mitochondria are highly dynamic organelles whose biogen-
esis and functions, depending on cellular needs, is under tight nuclear control, through the so-called 
anterograde regulation, which allows mitochondria adaptation to the ever-changing cellular milieu 
(4). Only 1% of mitochondrial proteins are encoded by mitochondrial DNA (mtDNA), with all 
the others encoded by the nuclear genome, including proteins involved in mtDNA replication and 
transcription, such as mitochondrial single-stranded DNA-binding protein (mtSSB or SSBP1), 
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FigURe 1 | The mechanism of epithelial-to-mesenchymal transition (EMT). (A) Cellular changes associated with EMT. Epithelial tumor cells are shown in light brown, 
and stromal cells are shown in cyan. EMT begins with alterations in gene expression of epithelial cancer cells (step 2) that determine loss of the epithelial phenotype 
accompanied by alterations in nearby stromal cells (shown as a shift of stromal cell color from blue to red) (step 3). Loss of cell-to-cell attachment receptors and 
integrins occurs and continues to step 4 and beyond. EMT allows the cells to increase their invasiveness determining degradation of extracellular matrix (ECM) 
proteins, cytoskeleton reconstruction, extravasation, angiogenesis, as well as anoikis and drug resistance (step 5). (B) The regulatory network of EMT. Some 
important extracellular molecules in the tumor microenvironment, such as TGF-β, HGF, FGF, EGF, and Wnt bind to their respective receptors to induce activation  
of intracellular pathway, such as MAPK, PI3K, and Wnt/β-catenin. In turn, they regulate induction of EMT-inducing transcription factors (EMT-TFs), including SNAIL, 
SLUG, ZEB, TWIST, and FOXC2, which are responsible for molecular and physical changes occurring during EMT. Also hypoxia contributes to trigger EMT and 
participates in the EMT regulatory network through activation of HIFs.
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transcription factor A of mitochondria (TFAM), and mito-
chondrial DNA polymerase γ (POLG) (5). When cells require 
enhanced mitochondrial function, anterograde transcriptional 
regulation of mitochondrial biogenesis is mediated by a set of 
transcription factors whose activity is regulated by the PPARγ 
co-activator 1 family members (4).

Epithelial-to-mesenchymal transition (EMT) is a complex 
transdifferentiation process that allows epithelial cancer cells to 
transiently acquire a predominantly mesenchymal phenotype 
(6, 7). EMT is characterized by loss of epithelial cell polarity 
and cell–cell/cell–extracellular matrix contacts, supported by 
concomitant changes in stromal cells, that enable some tumor 
cells to migrate out of the primary tumor, cross the basement 
membrane barriers, and intravasate into the blood stream (8, 9)  
(Figure  1A). These circulating tumor cells (CTCs) become 
sources of metastasis at distant sites as the “seeds” in Paget’s 
“seed and soil” theory (10). EMT requires a complex cellular 
reprogramming that may render the cells resistant to therapies 
designed against the primary tumor (11, 12) and has been con-
nected with cancer cell stemness properties (6, 13, 14).

The mutual interplay between EMT and mitochondrial 
metabolism in cancer has been recently highlighted (15–17). 
In this relationship, mitochondrial metabolic alterations can 
drive EMT or, else, EMT activation can fine-tune cancer cell 
metabolism by affecting the expression of metabolic genes. 

Mitochondrial dysfunction has been widely implicated in 
cancer development and progression [for a recent review, 
see Ref. (2)]. The precise mechanisms underlying mitochon-
drial dysfunction are multiple and may involve deregulated 
autophagic processes, unbalance in reactive oxygen species 
(ROS) homeostasis, mutations in oxidative phosphorylation 
(OXPHOS) complexes, electron transport chain (ETC), or 
Krebs’ cycle (TCA) enzymes. Despite the heterogeneity of the 
mechanisms, EMT induction has been described as one of the 
endpoint phenotypes in many epithelial tumor cells affected 
by mitochondrial dysfunction. In this review, we describe how 
dysregulation of the mitochondrial metabolism and genetics 
may promote EMT in cancer cells.

eMT in CAnCeR

Epithelial-to-mesenchymal transition has been initially described 
as a physiological process occurring at different stages of the 
embryonic development (type I EMT) (18). Type II EMT occurs 
in wound healing and fibrosis (18). Type III EMT is associated 
with cancer progression (18) and is the focus of this review.

Epithelial-to-mesenchymal transition is a multistep process 
that involves several molecular changes, including down-
regulation of the epithelial markers E-cadherin, claudins, 
desmosomes, and occludins (key components of intercellular 
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junctions) as well as upregulation of the mesenchymal mark-
ers N-cadherin, vimentin, and fibronectin, thus fostering 
motility and invasion (19) (Figure  1B). These changes are 
orchestrated by transcription factors known as EMT-inducing 
transcription factors (EMT-TFs), which include TWIST1 and 
TWIST2, SNAIL 1, SNAIL 2 (SLUG), ZEB1, and ZEB2 as well 
as non-canonical EMT-TFs such as KLF8, FOXC2, and GSC. 
EMT-TFs regulate directly or indirectly the expression of 
adhesive factors and can also induce the expression of matrix 
metalloproteinases (MMPs), which degrade the basement 
membrane facilitating invasion and intravasation. Some extra-
cellular factors, such as Wnt, TGF-β, EGF, FGF, and HGF can 
drive EMT by activating different signaling pathways (MAPK, 
Wnt/β-catenin, and PI3K) thus promoting the expression of 
EMT-TFs (20). In addition, tumor hypoxia is considered one 
of the possible triggers of EMT by inducing hypoxia-inducible 
transcription factors, e.g., HIF-1α and HIF-2α, which regulate 
the hypoxic response by modulating the expression of EMT-
TFs (21, 22) (Figure 1B).

The pro-metastatic role of EMT-TFs has been extensively 
demonstrated [for a review, see Ref. (23)]. For example, using 
genetic mouse models of breast cancer, Tran et al. (24) demon-
strated that transient expression of SNAIL 1 in breast tumors was 
sufficient to increase metastasis. Ectopic expression of TWIST1 
in Twist1-negative breast cancer cells also induces EMT and can-
cer stem cell-like features, including expression of the stem-cell 
marker CD44 (13, 25–27), suggesting that EMT and acquisition 
of stemness capacity may be part of the same pathway. Besides 
promoting migration, invasion and cancer stem-cell properties, 
EMT would also facilitate survival of CTCs in the peripheral 
system by inhibiting anoikis as well as apoptosis triggered by 
chemotherapy or radiotherapy (28, 29). Of note, EMT induction 
is also regulated by changes in the expression of splicing factors 
(30): suppression of epithelial-specific splicing proteins (ESPR) is 
an indicator of the EMT process (31). In addition, identification 
of epigenetic changes and microRNAs as potent EMT regulators 
adds further complexity to the regulatory network governing 
EMT (32, 33).

MiTOCHOnDRiAL DYSFUnCTiOn  
AnD eMT

Mitochondrial dysfunction has been associated with increased 
invasiveness, metastatic potential, and drug resistance of cancer 
cells (2, 34–37). The mechanisms contributing to mitochondrial 
dysfunction may be multiple and may occur at the level of 
mtDNA- or nuclear-encoded mitochondrial proteins. In the next 
paragraphs, we will summarize current knowledge on factors 
promoting mitochondrial dysfunction that has been implicated 
in EMT induction in cancer cells.

Mutations/Changes in expression of 
nuclear-encoded Mitochondrial Metabolic 
enzymes
Mutations in the TCA cycle enzymes fumarate hydratase (FH), 
isocitrate dehydrogenase (IDH), and succinate dehydrogenase 

(SDH) have long been recognized as oncogenic but only recently, 
they have been associated with EMT activation.

Fumarate hydratase mutations suppress conversion of 
fumarate to malate and cause hereditary leiomyomatosis and 
highly aggressive renal cell cancer able to metastasize at an 
early stage even when the primary tumor is still very small (38). 
Accumulation of fumarate in FH-deficient cells would promote 
EMT through an epigenetic mechanism: fumarate suppresses 
the antimetastatic miRNA cluster mir-200ba429 by inhibiting 
demethylation of a regulatory region, thus resulting in expression 
of EMT-TFs (39). This novel mechanism provides a rationale to 
explain the aggressive nature of FH-mutated tumors.

Isocitrate dehydrogenase promotes oxidative decarboxylation 
of isocitrate to α-ketoglutarate. Mutations in IDH1/2 isoforms 
are common in oligodendrogliomas and astrocytomas and have 
been also found in leukemia, melanomas, prostate, colon, and 
lung cancers (40). Mutant IDHs are neomorphic and catalyze 
the transformation of α-ketoglutarate to 2-hydroxyglutarate, an 
oncometabolite that has been shown to induce EMT and to be 
associated with the presence of distant metastasis in colorectal 
cancer (41). The oncometabolite 2-hydroxyglutarate, an inhibitor 
of Jumonji-family histone demethylase, would induce EMT by 
increasing the trimethylation of H3K4 in the promoter of the 
ZEB1 gene, thus increasing the expression of ZEB1, a master 
regulator of EMT (41).

Succinate dehydrogenase is another TCA cycle enzyme 
involved in EMT. It catalyzes the conversion of succinate to 
fumarate and loss-of-function SDH mutations predispose to 
hereditary pheochromocytoma, paraganglioma, gastrointestinal 
stromal tumor, and renal cell carcinoma (42). In metastatic pheo-
chromocytomas and paragangliomas, mutations in the SDHB 
subunit are associated with activation of SNAIL and SLUG as a 
result of epigenetic remodeling due to hypermethylation of pro-
moter CpG islands (43, 44). Focal deletions of SDHB have been 
also identified in serous ovarian (45) and colorectal (46) cancer 
and have been shown to promote EMT through an epigenetic 
mechanism.

Finally, a combined RNAseq and metabolomics profiling of 
different solid cancers has shown that downregulation of mito-
chondrial proteins, particularly those involved in OXPHOS, 
correlates with poor clinical prognosis across different cancer 
types and is associated with an EMT gene signature (47). 
Consistently, loss of OXPHOS genes was observed in metastatic 
cancer cell lines and in metastatic melanoma and renal cancer 
specimens. OXPHOS was downregulated in about 60% of low-
survival patients, with subunits of Complex I and IV of the ETC 
being the most affected. In cancers exhibiting OXPHOS down-
regulation, EMT was the most upregulated cellular program, 
suggesting a causal role of mitochondrial dysfunction in EMT 
induction, and, consequently, in cancer aggressiveness and poor 
outcome.

mtDnA Modifications
Mutations in mtDNA-encoded proteins also contribute to 
mitochondrial dysfunction by directly affecting the ETC/
OXPHOS system. Until a few years ago, mtDNA was believed 
to be very susceptible to damage because of absence of DNA 
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repair systems. Nowadays, it is widely accepted that both yeast 
and mammalian mitochondria are equipped with almost all 
known nuclear DNA repair pathways, including base excision 
repair, mismatch repair, single-strand break repair, and possibly 
non-homologous end joining and homologous recombination  
[for details, see Ref. (48, 49)]. Despite the presence of DNA 
repair systems, the mtDNA mutation rate is considerably 
higher than nuclear DNA, due also to the close proximity of 
mtDNA to ROS-generating sites. Accumulation of mtDNA 
mutations has been detected in several cancer types and has 
been associated with metastatic progression and/or chemore-
sistance (2, 50–52). In 2008, Ishikawa et al. (53) demonstrated 
that the mtDNA mutation G13997A in the NADH dehydro-
genase (ND) subunit 6 gene promotes metastasis through an 
ROS-dependent mechanism. Other mtDNA mutations, such as 
C12084T and A13966G affecting ND4 and ND5, respectively, 
confer a metastatic phenotype to breast cancer cells but in an 
ROS-independent manner (54). Another mtDNA mutation 
affecting ND3 (A10398G) has been detected selectively in bone 
metastasis of 7/10 prostate cancer patients, suggesting that the 
A10398G mtDNA mutation may confer a selective advantage 
to prostate cancer cells to colonize the bone metastatic sites 
(55). Frequent mtDNA mutations in Complex I genes have 
been detected in both benign and malignant oncocytic thyroid 
tumors (56, 57). Intriguingly, oncocytic thyroid carcinomas, 
also known as Hurthle cell carcinomas, are more aggressive 
than non-oncocytic thyroid cancers (58, 59), suggesting a 
potential role of mtDNA mutations in acquisition of the aggres-
sive phenotype. However, despite several evidences showing a 
link between certain mtDNA point mutations and metastasis, 
it remains to be investigated whether the mechanism involves 
EMT activation.

Besides single mtDNA mutations, reduction in mtDNA 
copy number has been reported in several cancer types and 
has been associated with metabolic reprogramming, increased 
metastatic potential, chemoresistance, and EMT activation. 
Different mechanisms have been proposed to explain reduc-
tion of mtDNA in cancer cells. Guo et al. (60) reported frequent 
truncating mutations in the mitochondrial transcription factor 
TFAM in colorectal cancer cells, which induced mtDNA deple-
tion and apoptosis resistance. A recent study has shown that 
methylation of the mitochondrial polymerase POLG may also 
regulate the mtDNA copy number in cancer cells (61). Besides 
methylation, POLG mutations have been associated with 
mtDNA depletion in breast cancer tissues (62). Expression 
changes in other nuclear genes have been reported to affect 
mtDNA content and induce EMT: for instance, reduced 
β-catenin levels in basal ErbB2-positive breast cancer cells 
promote an EMT program through reduction of the mtDNA 
content, correlated with downregulation of mitochondrial 
biogenesis transcription factors TFAM and PGC-1α (63). 
A recent study performed on 207 primary breast tumor 
specimens shows a direct correlation between low mtDNA 
content and presence of distant metastasis: patients with ≤350 
mtDNA molecules per cell showed a poorer 10-year distant 
metastasis-free survival compared with patients with> 350 
mtDNA molecules per cell (64), suggesting that low mtDNA 

content might be a prognostic marker for distant metastasis 
in breast cancer. Reduced mtDNA content has been associated 
with aggressive features also in other cancer types, including 
prostate (35, 65, 66) and colorectal (60) cancers, and it has been 
directly correlated with induction of EMT through activation 
of mitochondria-to-nucleus signaling (retrograde signaling; 
Figure 2).

Mitophagy
Autophagy is the master mechanism of cell homeostasis 
through which destruction of unnecessary or dysfunctional 
molecules and organelles occur (67, 68). Withdrawal of 
nutrients and various stress conditions, such as alterations 
in glucose metabolism (69, 70), mitochondrial dysfunction, 
and oxidative stress (71, 72), induce autophagy with the aim 
of removing damaged macromolecules and organelles and/or 
to digest cell components to help the cell’s own maintenance 
(73–76). Being a homeostatic process, autophagy may have a 
double and opposite role in cancer, behaving as both tumor-
promoter and tumor-suppressor depending on cancer cell type 
and tumorigenic context (77, 78). Cancer cells may indeed 
activate autophagy to overcome microenvironmental (nutri-
ent deprivation, cell detachment, and hypoxia) or therapeutic 
(radiotherapy and chemotherapy) stress, thus promoting 
cancer progression (79, 80).

Mitophagy is a selective form of autophagy that specifically 
removes dysfunctional mitochondria from the cells. Besides 
traditional autophagy-related (ATG) proteins, such as LC3 
(ATG8) and Beclin1 (ATG6), mitophagy relies upon specific 
proteins, including the E3 ubiquitin ligase Parkin (PARK2) and 
mitochondrially targeted PTEN-induced kinase-1 (81, 82). In 
yeast cells, Atg32, an outer mitochondrial membrane protein, 
is essential for mitophagy (83–86). Recently, Bcl2-L-13 has 
been identified as the mammalian homolog of Atg32: it induces 
mitophagy in Parkin-deficient cells (87), but its role in cancer 
remains to be investigated. Impaired Parkin activity in mam-
mals has been correlated with cancer progression, suggesting 
that mitophagy may represent a tumor suppression mechanism 
(82). On the other hand, Whelan et  al. (88) have recently 
reported that mitophagy supports EMT-mediated conversion 
of low CD44- to high CD44-expressing keratinocytes through 
modulation of oxidative stress and Parkin-dependent mito-
chondrial clearance. In this model, mitophagy was associated 
with mtDNA depletion, an event known to induce EMT and 
high-CD44 cell generation in mammary epithelial cells (89).  
It remains to be established if mitophagy drives EMT-mediated 
high-CD44 cell generation or is a permissive factor during this 
process. An independent recent study confirmed a positive 
role of mitophagy during EMT: Marín-Hernández et  al. (90) 
reported that simultaneous exposure of cancer cells to hypoxia 
and hypoglycemia results in EMT activation and increased inva-
siveness, accompanied by activation of mitophagy and impaired 
mitochondrial functionality.

Taken together, these studies indicate a possible dichotomous 
nature of the relationship between EMT and mitophagy, which 
may be ascribed to cell type- and context-dependent factors, but 
much remains to be investigated.
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FigURe 2 | Mitochondrial retrograde signaling and epithelial-to-mesenchymal transition (EMT). Mitochondrial dysfunction, such as mitochondrial  
DNA (mtDNA) depletion or oxidative phosphorylation (OXPHOS) inhibition, triggers mitochondrial retrograde signaling, which is evolutionary conserved from yeast  
to mammals. In yeast, Rtg2 regulates the Rtg1,3 translocation into the nucleus eliciting a metabolic reprogramming through the upregulation of specific genes 
involved in anaplerotic reactions (cyan arrows). In mammals, deregulation in calcium homeostasis due to mitochondrial stress [mtDNA depletion, OXPHOS/
electron transport chain (ETC) inhibition] can activate a Ca++-dependent retrograde signaling that converges on two possible branches: one mediated by 
calcineurin for the nuclear translocation of NF-κB or NFAT, and the other directly dependent on activation of Ca++-dependent protein kinases, such as PKC, JNK, 
MAPK, and CAMKIV. These pathways culminate with the activation of different transcription factors that lead to metabolic reprogramming, EMT induction, 
acquired stemness capacity, apoptosis resistance, and drug resistance (red arrows). Alternative RTG signaling pathways in yeast, Caenorhabditis elegans, and 
mammals are discussed in the text.
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MiTOCHOnDRiAL ReTROgRADe 
SignALing AnD eMT

Dysfunctional mitochondria can generate a wide range of 
retrograde responses, i.e., intracellular signals relayed from 
mitochondria to the nucleus, leading to changes in the expres-
sion of nuclear genes for metabolic adjustments and cytoprotec-
tion (91–93). The first mitochondrial retrograde signaling was 
discovered by Butow (94) in yeast Saccharomyces cerevisiae. The 
main positive regulators of mitochondria-to-nucleus in yeast 
are three retrograde response (RTG)  genes: RTG1 and RTG3, 
encoding for a heterodimeric transcription factor activating 
RTG target gene expression (95). RTG2, coding for a cytoplas-
mic protein with an N-terminal ATP-binding domain, acts as a 
sensor of the mitochondrial dysfunction and regulates Rtg1/3p 
localization (96). RTG genes dynamically interact with other 
regulators and signaling pathways to elicit a metabolic repro-
gramming through activation of anaplerotic reactions, supplying 
intermediates in response to respiratory defects initiated by 
mtDNA depletion/mutations or disruption of ETC/OXPHOS 

(97) (Figure  2). Interestingly, AUP1 encoding for a conserved 
mitochondrial protein phosphatase required for mitophagy in 
yeast has been shown to induce the RTG3-dependent retrograde 
signaling pathway (98), suggesting a possible interplay between 
mitophagy and mitochondrial retrograde signaling.

Another mitochondrial retrograde pathway, induced by 
mitochondrial proteotoxic stress, was discovered in mammalian 
cells by the pioneering work of Hoogenraad (99), but its detailed 
regulation has recently been elucidated in Caenorhabditis elegans 
(100). Disturbance of mitochondrial protein homeostasis and/or 
an increase in unassembled components initiates an retrograde 
response named mitochondrial unfolded-protein response 
(UPRmt). The current paradigm suggests that peptides resulting 
from proteolytic degradation of improperly folded mitochondrial 
proteins are released from mitochondria. However, mitochondrial 
import efficiency is reduced during mitochondrial dysfunction, 
causing ATFS-1, a pivotal transcription factor of the UPRmt, to 
accumulate in the cytosol and subsequently be imported into 
the nucleus. ATFS-1 in the nucleus regulates a transcriptional 
response to recover mitochondrial function including induction 
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of mitochondrial proteases and chaperones, ROS detoxifying 
genes, and metabolic regulators leading to metabolic reprogram-
ming (93, 100). The transcription factor ATF5 was recently 
identified as the mammalian ortholog of ATFS-1 (101). While a 
body of literature is already present on the function of ATF5 in 
cancer biology, notably in the regulation of survival and apoptosis 
(102, 103), it will be interesting to explore the role of ATF5 in the 
context of UPRmt and cancer, particularly in EMT regulation and 
metastasis.

The mitochondrial retrograde signaling is conserved in 
mammals both in response to energy metabolism impairment 
and to proteotoxic stress (93, 104). Of the multiple retrograde 
signaling pathways activated in mammals by mitochondrial 
dysfunction (91, 105), Ca++/calcineurin-mediated retrograde 
signaling has been involved in EMT activation (105) (Figure 2). 
Ca++ homeostasis strictly depends on mitochondria and its 
deregulation due to different mitochondrial stresses, such as 
mtDNA depletion or ETC/OXPHOS inhibition, can elicit an 
increase in cytosolic Ca++ that activates a Ca++-dependent 
retrograde signaling. Depending on cell type and conditions, 
there are essentially two branches in this pathway: (i) a Ca++-
calcineurin-mediated retrograde signaling, through the nuclear 
translocations of transcription factors, NF-κB, NFAT, CREB, 
and HnRNPA2; (ii) a direct activation of Ca++-dependent 
protein kinases, such as PKC, JNK, MAPK, and CAMKIV (94, 
104). Activation of these signaling pathways in epithelial cells 
converge on the upregulation of genes affecting several cellular 
functions, including apoptosis resistance, multidrug resistance, 
invasion, and EMT (66, 89, 106). Mitochondrial dysfunction 
induced by mtDNA depletion promotes EMT in breast epi-
thelial cells through a calcineurin A-mediated mitochondrial 
retrograde signaling that triggers transcriptional activation 
of SLUG, SNAIL, and TWIST, the MMP-9 metalloproteinase, 
and the mesenchymal markers fibronectin, vimentin, and 
N-cadherin, with a corresponding decrease in the epithelial 
marker E-cadherin. In addition, mtDNA-depleted breast cells 
exhibited loss of the ESPR such as ESPR1, indicative of their 
mesenchymal phenotype, and expressed stem-cell markers, 
suggesting generation of cancer stem cells (13) (Figure  2).  
Of note, mtDNA-depleted cells exhibit also unorganized trajec-
tory and higher mitochondrial fission, characteristic of cells 
with high metastatic ability (105). The potential link between 
mitochondrial dysfunction and EMT was also reported in pros-
tate and breast adenocarcinoma cell lines depleted of mtDNA, 
which acquired a mesenchymal phenotype and showed TGF-β 
overexpression (107). More recently, mtDNA depletion was 
shown to induce EMT in hepatocellular carcinoma cells through 

TGF-β/SMAD/SNAIL signaling (108). In addition, suppression 
of SSBP1 promoted triple-negative breast cancer cell metas-
tasis through mtDNA depletion, which triggered calcineurin 
A-mediated mitochondrial retrograde signaling resulting in 
c-Rel/p50 translocation to the nucleus, increased levels of TGF-β  
and TGF-β-driven EMT (109).

COnCLUDing ReMARKS

Epithelial-to-mesenchymal transition endows cancer cells with 
the ability to detach from the primary tumor bulk and survive 
during invasion, dissemination, and metastasis. The observation 
that mitochondrial dysfunction can drive EMT is important as 
it unfolds novel therapeutic scenarios: EMT could be potentially 
blocked by targeting mitochondrial stress-specific EMT marker 
genes, effectors of the mitochondrial retrograde signaling, specific 
metabolic enzymes, or metabolism-dependent epigenetic repro-
gramming, with the aim to limit or prevent cancer metastasis. 
Several questions, however, remain to be answered. For instance, 
how and why different types of mitochondrial dysfunction 
converge on EMT remains a puzzle. It is possible that transient 
transition to a mesenchymal phenotype may confer a survival 
advantage to epithelial cancer cells under nutrient or oxygen 
stress, or in the presence of genetic defects in metabolic enzymes. 
In this context, EMT would represent a strategy to equip cancer 
cells with the necessary “armor” (increased survival) and “skills” 
(increased motility, invasion) to strive while exploring more 
advantageous metabolic microenvironments. Further studies 
aimed at understanding the interplay between mitochondrial 
retrograde signaling pathways and changing microenvironments 
as well as identifying the molecular determinants of the mito-
nuclear network linking mitochondrial dysfunction with EMT 
activation may provide useful therapeutic targets for treatment 
and prevention of metastatic cancer.
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