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The concept that cancer is a metabolic disease is now well acknowledged: many 
cancer cell types rely mostly on glucose and some amino acids, especially glutamine 
for energy supply. These findings were corroborated by overexpression of plasma 
membrane nutrient transporters, such as the glucose transporters (GLUTs) and some 
amino acid transporters such as ASCT2, LAT1, and ATB0,+, which became promising 
targets for pharmacological intervention. On the basis of their sodium-dependent 
transport modes, ASCT2 and ATB0+ have the capacity to sustain glutamine need of 
cancer cells; while LAT1, which is sodium independent will have the role of providing 
cancer cells with some amino acids with plausible signaling roles. According to the 
metabolic reprogramming of many types of cancer cells, glucose is mainly catabolized 
by aerobic glycolysis in tumors, while the fate of Glutamine is completed at mitochon-
drial level where the enzyme Glutaminase converts Glutamine to Glutamate. Glutamine 
rewiring in cancer cells is heterogeneous. For example, Glutamate is converted to 
α-Ketoglutarate giving rise to a truncated form of Krebs cycle. This reprogrammed 
pathway leads to the production of ATP mainly at substrate level and regeneration of 
reducing equivalents needed for cells growth, redox balance, and metabolic energy. 
Few studies on hypothetical mitochondrial transporter for Glutamine are reported and 
indirect evidences suggested its presence. Pharmacological compounds able to inhibit 
Glutamine metabolism may represent novel drugs for cancer treatments. Interestingly, 
well acknowledged targets for drugs are the Glutamine transporters of plasma mem-
brane and the key enzyme Glutaminase.

Keywords: tumors, mitochondria, metabolism, proteoliposome, plasma membrane, drug design

inTRODUCTiOn

A conspicuous number of scientific reports clearly show that cancer is a metabolic disease (1–3). 
Metabolic reprogramming is driven by changes in expression of specific genes that allow cancer 
cells escaping control mechanisms active in healthy cells. The knowledge of these variations 
is relevant for designing novel and more specific pharmacological strategies. Therefore, many 
unknown or controversial aspects of cancer cell metabolism are object of active investigation. 
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In this respect, mitochondria are crucial for cell survival and 
their features in cancer vary profoundly in terms of DNA con-
tent, electron chain functionality, and ATP production (4, 5). 
In this complex scenario, Glutamine is a key player since it is 
a versatile amino acid whose carbon skeleton is employed in 
different cell compartments for several purposes. Noteworthy, 
in physiological conditions as well, Glutamine is the most 
abundant amino acid in plasma, reaching a concentration 
of 0.8 mM and it can rise up to 40% of the total amino acids 
intracellular content (6). Glutamine is endogenously synthe-
sized from α-Ketoglutarate, via Glutamate dehydrogenase 
and Glutamine synthetase. However, when cells are highly 
proliferative, the request of Glutamine increases and it has 
to be absorbed from external sources (7), making Glutamine 
a “conditionally essential” nutrient. Hence, some cancer cells 
are considered “glutamine addicted” because their growth 
and proliferation rates depended on availability of this amino 
acid (8, 9). Glutamine is engaged in different pathways, both 
cytosolic and mitochondrial, responsible for synthesis of many 
molecules (Figure 1A). Glutamine is also involved in other cell 
processes such as, Glutamine/Glutamate cycle in nervous tissue 
(Figure 1A) (10, 11). Glutamine ends its fate in mitochondria 
to be oxidized, producing ATP. Some aspects of the Glutamine 
transport and mitochondrial metabolism, which characterize 
cancer cells, will be dealt with. Noteworthy, Glutamine has 
been proposed to activate cell growth also independently from 
energy metabolism, by acting on signaling processes (11, 12).

GLUTAMine SUPPLY TO CAnCeR CeLLS

The higher demand of glutamine by some cancer cells requires 
the action of membrane transporters with two essential features: 
(i) specificity for Glutamine and (ii) high transport capacity. 
Membrane transporters for amino acids are characterized by a 
broad specificity. In other words, the same transporter is able to 
recognize different amino acids with a redundancy that is typical 
of this class of proteins (13). In particular, Glutamine is recog-
nized as substrate by some of the members of four different SLC 
families, which are clustered on the basis of phylogenetic analy-
ses: SLC1, SLC6, SLC7, and SLC38 (14). Each transporter can be 
indicated by either the SLC or the old nomenclature (Figure 1). 
Even though the genetic and biochemical characterization of 
Glutamine transporters began several years ago, many unclear 
aspects are still existing especially in the frame of concerted 
action and regulation of the transporters and to their importance 
in Glutamine homeostasis under physiological (Figure 1A) and 
pathological conditions (13, 14). A remark is, however, very clear: 
some of the transporters sharing specificity for Glutamine are 
overexpressed in many tumors, i.e., ASCT2, ATB0+, and LAT1 
(Table 1) (15–17); notwithstanding, not all of them are suitable for 
providing cells with high amount of this amino acid since they do 
not fulfill both the features above mentioned. A concise summary 
of the major players of Glutamine homeostasis is reported below 
together with an update on the most likely transport mechanisms 
underlying their role in cancer.

SLC1A5 is referred to as ASCT2, acronym standing for 
Alanine, Serine, Cysteine Transporter according to preliminary 

observations on substrate specificity (13). Recently, we showed 
that the actual preferred substrate is Glutamine and that Cysteine 
is not a substrate but, probably, a modulator of transport activ-
ity, in agreement with the previous reports describing a very low 
transport of Cysteine, if any (49, 50). The specificity of ASCT2 
toward Glutamine correlates well with its overexpression in 
several human cancers (16, 51); to better explain its role in 
Glutamine addiction, many authors depicted ASCT2 as a Na+-
dependent symporter of Glutamine, thus apparently fulfilling the 
two constraints above listed, i.e., specificity and high transport 
capacity (52–55). However, the proposed mechanistic model 
does not correlate with the actual transport mode of ASCT2 
that is a Na+-dependent antiporter, according to both initial 
and more recent studies, including ours, which well clarify this 
aspect (16, 49, 56, 57) (Figure 1A). Therefore, at variance with 
the common view, the uptake of Glutamine, required by cancer 
cells, must be coupled to an opposite and quantitatively equal 
efflux of another neutral amino acid. Under a metabolic point 
of view, it is reasonable that the most probable exchanged amino 
acids are Asparagine, Threonine, or Serine; these, indeed, are 
high affinity substrates of ASCT2 (56) and the antiport with 
Glutamine will allow the net entry of 1–2 carbon atoms into 
the cell, which can be oxidized in the TCA to produce ATP 
(Figure 1B). This reaction is energetically favored by extracel-
lular sodium gradient and membrane potential; the transporter 
is electrogenic due to net positive charge accumulation, as we 
recently highlighted (56). This “amino acid exchange” mechanism 
correlates well with the increased plasma concentration of Serine 
and Threonine, widely described in different cancers (58). Over 
the years, overexpression of ASCT2 has been associated also to 
another transporter of neutral amino acids, SLC7A5 referred to 
as LAT1 (59), as originally proposed by Fuchs and Bode (16). 
This protein is a Na+-independent obligatory antiporter and it 
has an heterodimeric structure, being associated to an ancillary 
protein named CD98 (SLC3A2) which, however, does not play 
any role in the intrinsic transport function (Figure  1A) (60). 
LAT1/CD98 heterodimer is broadly expressed and provides 
cells with essential amino acids, such as Leucine, in those body 
districts where these are required for cell growth. Indeed, strong 
genetic alterations of LAT1 in embryo are not compatible with 
life and very few are found in families characterized by some 
cases of Autism Spectrum Disorders, in which the metabolic 
damage is ascribed to altered supply/excessive loss of essential 
amino acids, in particular Histidine, to/from brain (61). LAT1 
is greatly overexpressed in tumors where it has a role in signal-
ing function (Table  1) (16, 51). Leucine, indeed, modulates 
the activity of one of the master cell growth regulators: mTOR 
(62). This protein kinase senses amino acid availability and it 
is particularly responsive to Leucine, Glutamine, and Arginine 
levels across lysosomes (62). In this respect, it is worth to note 
that LAT1, besides in plasma membranes, has also been found 
in lysosomes together with the “transceptor” SLC38A9 (63–65). 
Moreover, Leucine is a positive allosteric regulator of Glutamate 
dehydrogenase, which is responsible of Glutamine fate in mito-
chondria (17). For all the stated reasons, both LAT1 and ASCT2 
can be considered eminent targets for drugs (51). However, the 
commonly proposed model in which Glutamine is taken up via 
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TAbLe 1 | ATB0,+, ASCT2, and LAT1-associated cancers.

SLC6A14 (ATb0,+) SLC1A5 (ASCT2) SLC7A5 (LAT1) Reference

Prostate cancer Prostate cancer Prostate cancer (14, 18–22)

Colorectal cancer Colorectal cancer Colorectal cancer (14, 23)
Hepato cell carcinoma Hepato cell carcinoma (14)
Lung cancer Lung cancer (14, 24)

Breast cancer Breast cancer Breast cancer (14, 18, 25–28)
Neuroblastoma and glioma Neuroblastoma and glioma (14, 29)
Endometrioid carcinoma Endometrioid carcinoma (14, 30, 31)
Ovarian cancer Ovarian cancer (14, 32)
Renal cell carcinoma Renal cell carcinoma (14, 33, 34)

Pancreatic and biliary tract cancer Pancreatic and biliary tract cancer (14, 35, 36)
Gastric cancer Gastric cancer (14, 37–40)

Pleural mesothelioma (14)

Cervical cancer Cervical cancer (41, 42)
Oral squamous cell carcinoma Oral squamous cell carcinoma (43–45)

Thymic cancer (46)
Melanoma (47)
Leukemia (48)

List of cancer tissues in which ATB0,+, ASCT2, and/or LAT1 have been found overexpressed with related references.

FiGURe 1 | Continued  
(A) Membrane transporters of glutamine and mechanisms of transport. The shape of the transporters reflects their asymmetry in membrane. Transporters are 
indicated by both conventional and SLC names. Different colors highlight different transport modes: in green symporters, in blue antiporters. Arrows represent 
direction of transported amino acids (blue) and ion (grey) fluxes; red arrow indicates possible Glutamine exit via LAT1 (SLC7A5). In the orange box, the list of cell 
pathways in which Glutamine is involved; in the light green box, the list of molecules synthesized from Glutamine. (b) Mitochondrial and cytosolic pathways 
responsible for energy production from Glutamine. In the scheme, Glutamine (Gln, blue) uptake occurs via membrane transporters ATB0,+ and ASCT2 through a 
sodium coupled process. The pathways are indicated as solid or dotted (in the case of multistep pathways) arrows (in blue those related to Glutamine, in black 
those involved in other pathways). Carbon atoms of Gln are depicted in blue–red filled circles; Gln enters mitochondria via an inner membrane transporter whose 
existence is still questionable (?): it could be a Glutamine or a Glutamate transporter depending on the actual sub-localization of Glutaminase enzyme (GLS). Carbon 
atom derived from Gln and released as CO2 is indicated in red, carbon skeleton of Malate and Asparagine (Asn) in blue, carbon skeletons of Serine (Ser) in orange 
circled in red and of Threonine (Thr) in orange circled in black. The truncated form of TCA is highlighted by a yellow hemicycle. ATP and reducing equivalent 
molecules produced by Glutamine metabolism are indicated in red. Leucine enters through LAT1 and allosterically regulates GDH in the orange box. Some 
metabolic pathways are indicated by names: GSH synthesis, fatty acid synthesis, Glycolysis, OX-phos. Membrane transporters of lactate and glucose in grey, xCT in 
light blue. Enzymes highlighted: GLS, Glutaminase; GDH, Glutamate dehydrogenase; AT, aminotransferases; SS, succinylCoA synthetase; ME, malic enzyme; IDH1, 
isocitrate dehydrogenase. Amino acids and other molecules involved in glutamine pathways (azure): Glu, Glutamate; α-KG, α-ketoglutarate; ICit, isocitrate; SCoA, 
succinyl coenzyme A; Succ, succinate; Fum, fumarate; Mal, malate; OAA, oxaloacetate; Cit, citrate; Pyr, pyruvate; Lac, lactate.
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ASCT2 to boost the transport cycle of LAT1, for massive entry 
of Leucine, is questionable. Indeed, as above described, ASCT2 is 
not a symporter, but an antiporter, and Glutamine is a poor sub-
strate of LAT1 (60) (Figure 1). Thus, it is necessary to reconsider 
an integrated view of metabolism, which takes into account other 
membrane transporters. In particular, two members of SLC6 
family are characterized by both specificity for Glutamine and 
high transport capacity and are involved in supplying it to cells in 
physiological and pathological conditions (Figure 1): SLC6A14 
and SLC6A19 known as ATB0,+ and B0AT1, respectively (66). 
In the case of ATB0,+, Glutamine uptake has been proposed to 
be coupled with 2Na+ and 1Cl− while, in the case of B0AT1, it 
is coupled to Na+ (Figure 1A). The transport cycle of the two 
proteins is electrogenic making ATB0,+ and B0AT1 high capacity 
transporters. Despite this, no involvement in cancer is reported 
for B0AT1, so far. Altered expression of this protein is described 
only in an inherited disease referred to as Hartnup disorder 
(67). On the contrary, a number of studies shows overexpression 
of ATB0,+ in human cancers (25, 51) (Table 1). Therefore, this 

protein can be considered one of the players in accomplishing 
metabolic needs of cancer cells and, hence, a druggable target 
(Figure 1B). However, at this stage, a plausible unified model, 
including ASCT2, LAT1, and ATB0,+ cannot be predicted because 
the study on biology of the last one is still in embryonic form. 
The only available information concerns its broad specificity and 
localization (66). Another family characterized by a sizable num-
ber of Glutamine transporters is the SLC38, which accounts for 
11 members, the best known of which are described as Glutamine 
transporters coupled to Na+ or Na+/H+ fluxes (68) (Figure 1A). 
Wide proteomic/genomic data indicate that some of the SLC38 
members are overexpressed in human cancers (69). Further 
studies are required to establish a direct role of these transporters 
in Glutamine supply and, hence, their possible consideration as 
drug targets. Noteworthy, an important advancement has been 
recently provided in the field of cell signaling linked to amino 
acid sensing with the discovery that SLC38A9 is a lysosomal 
transporter responsible for Glutamine and Arginine flux across 
lysosome with consequent activation of mTOR cascade (64, 65).
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GLUTAMine MeTAbOLiSM in 
MiTOCHOnDRiA AnD THe STiLL 
UnSOLveD TRAnSPORT iSSUe

The relevance of Glutamine for energy production underlies 
a truncated form of TCA characterizing the mitochondrial 
metabolism of several type of cancers. In this pathway, the cycle 
is not completed and the carbon skeleton of Glutamine, entering 
the TCA as α-Ketoglutarate, escapes as Malate with production 
of ATP at substrate level in the reaction catalyzed by the Succinyl-
CoA Synthetase. According to this pathway, one out of the five 
carbon atoms of Glutamine, is released as CO2 (Figure 1B). The 
four remaining carbon atoms of Glutamine are exported in cyto-
sol as Malate that can give rise to different metabolic pathways. 
It can be converted into Pyruvate leading to NADPH production 
that can be used by fatty acid synthesis or other biosynthetic 
pathways (70). Pyruvate can, in turn, be transformed to Lactate, 
restoring NAD+ needed for anaerobic glycolysis and production 
of ATP (Figure 1B). This typical anaerobic pathway occurs even 
in the presence of adequate oxygen supply, according to the well-
acknowledged Warburg hypothesis (16, 71, 72). Alternatively, 
Malate can enter four carbon atom molecules among which 
Asparagine, i.e., one of the substrates necessary for ASCT2 
transport cycle (Figure 1B). In this case, Malate is converted into 
oxaloacetate via malate dehydrogenase and then, to aspartate 
via aspartate aminotransferase (resumed by the dotted arrow 
of Figure 1B). The alternative efflux substrate of ASCT2, Serine 
can derive from glucose via a three enzymes pathway, i.e., phos-
phoglycerate dehydrogenase, phosphoserine aminotransferase, 
and phosphoserine phosphatase (resumed by the dotted arrow 
of Figure 1B). Noteworthy, the reaction catalyzed by the second 
enzyme (aminotransferase) requires Glutamate, which in turn 
derives from Glutamine. On the other hand, Threonine, which 
could be an efflux substrate of ASCT2 as well, is an essential 
amino acid; thus, it should derive from import through other 
transporters or, hypothetically, from protein degradation. 
Moreover, Glutamine skeleton can also fuel fatty acid synthesis in 
cytosol by reductive carboxylation of α-Ketoglutarate, exported 
from mitochondria, to isocitrate through the action of a cytosolic 
isoform of IDH (Figure 1B). This is a non-conventional reaction 
for producing citrate, occurring in cells that undergo metabolic 
switch (70, 73, 74). Glutamine is involved also in ROS metabo-
lism, which is another crucial point for cancer development and 
progression (75). Cancer cells, indeed, need to keep the produc-
tion of ROS under strict control via mechanisms involving both 
enhanced glutathione (Glutamate-Glycine-Cysteine—GSH) 
synthesis and decreased respiratory chain activity. Glutamate 
needed for GSH synthesis derives, under these conditions, from 
Glutamine (Figure 1B) (76). Cysteine is taken up by cells via the 
Glutamate/Cystine transporter xCT (SLC7A11), which has been 
found overexpressed in several cancers and is responsible for a 
novel way of cell death called ferroptosis (77). Thus, Glutamine 
withdrawal can have dramatic effects on cancer cell metabolism 
(75, 78). Despite the described importance of Glutamine in mito-
chondrial metabolism, the network of proteins involved in its flux 
to mitochondrial matrix is still underneath. Several efforts have 
been made to shed light on two mitochondrial molecular entities, 

which are still mysterious: the enzyme Glutaminase and the mito-
chondrial transporter for Glutamine (Figure 1B). Glutaminase is 
produced by two different genes: GLS1 and GLS2. The first one is 
known as kidney-type Glutaminase and is ubiquitously expressed. 
The GLS2 gene is known as liver-type glutaminase (LGA) and is 
mainly expressed in liver. The GLS1 type is subjected to alterna-
tive splicing producing a full isoform and a truncated one, which 
differs for its C-ter region and is known as Glutaminase C (79). 
These two isoforms have been found overexpressed in different 
cancers, in line with the increased metabolic demand of mito-
chondrial Glutamine (80). The importance of this enzyme in the 
fate of Glutamine is testified by a number of different pathways 
involved in its regulation among which, c-Myc, whose action 
is exerted through inhibition of a microRNA, miRNA-23a that 
results in increased GLS1 expression and, then, activity (81). 
Under a pharmacological point of view, Glutaminase represents 
an important target for anticancer therapy (82). However, the 
sub-localization of mitochondrial Glutaminase is not yet defined 
and, as a consequence, the need of a mitochondrial Glutamine 
transporter. In fact, if Glutaminase faces the intermembrane 
space, here, releases Glutamate then, a Glutamate transporter, 
not a Glutamine one, is required to allow entry of Glutamate in 
the TCA. On the contrary, if Glutaminase faces the intra-mito-
chondrial matrix, then a Glutamine transporter is necessary to 
allow Glutamine reaching the substrate active site of Glutaminase 
(Figure  1B). Biochemical data, even though indirect, agree 
with the second hypothesis and, hence, with the existence of a 
Glutamine transporter (Figure 1B) whose molecular identity is 
not yet revealed (82–86). We have conducted in  silico analyses 
aligning a putative Glutamine binding motif with members of 
the mitochondrial transporter SLC25 family: the best score was 
obtained for three orphan SLC25 members resulting as possible 
mitochondrial Glutamine transporters (11).

GLUTAMine MeTAbOLiSM AS TARGeT 
FOR DRUGS

The complex network of enzymes/transporters involved in 
Glutamine metabolism explains the plethora of drug interven-
tions to specifically target cancer cells. A big challenge is the 
metabolic adaptation of cancer cells that can survive also under 
stress conditions, such as Glutamine withdrawal (87, 88). Last, but 
not less important, is the great diversity of cancers; thus, it is not 
surprising that therapeutic interventions needs to be specifically 
designed. Being Glutamine a key player in multiple pathways, the 
most important makers of its fate represent potential crossroad 
for cancer therapy. In particular, inhibitors of the key enzyme 
Glutaminase have been designed over the years (7, 82) and their 
studies are at a more advanced stage, being Glutaminase a soluble 
protein, i.e., easier to handle also in vitro. Interestingly, murine 
Glutaminase 3D structure has been obtained (pdb 4JKT) and, 
very recently, the human one has been deposited in the database 
(pdb 5UQE), as well. Some inhibitors showed very good results 
in in  vitro models of human cancers and few of them were 
promising in preclinical studies. In particular, one synthetic 
compound, i.e., CD-839 reached clinical trials due to its ability 
to block tumor growth in  vitro, in  vivo, and in mouse models 
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(89). The main challenges with respect to Glutaminase inhibitors 
are the presence of more than one isoform of GLS and the still 
unsolved issue of subcellular localization that can hamper the 
drug availability. The scenario around membrane transporters 
is even more complex. In fact, their relevance in pharmacology 
is obvious and relies on two main aspects: membrane proteins 
can be (i) target of designed drugs and/or (ii) responsible for 
drug traffic across membranes and, thus, for drug disposition. 
This second aspect is still not fully considered by the scientific 
community that did not include any transporter for amino 
acids in the list of the International Transporter Consortium for 
drug–transporter interactions (90). The frontiers of drug design 
are based on in silico models that, on the one hand, reduce the 
number of experimental analysis to be conducted; on the other 
hand, if the 3D model of the protein is obtained by homology, 
predictions may be uncertain. This circumstance, in the case of 
membrane transporter, occurs quite often because few 3D struc-
tures are available so far. The well-documented overexpression of 
some membrane transporters, above described (see Glutamine 
Supply to Cancer Cells; Table 1), boosted the research of potent 
and specific inhibitors; in particular, several reports dealt with 
the identification of inhibitors for ASCT2 (91) and LAT1 (92) via 
bioinformatics. The initial approach, attempted over the years, 
has been that of designing substrate analogs-based drugs to block 
either ASCT2 or LAT1 transport activities (93, 94). However, all 
the discovered molecules exhibited relatively low affinities and, 
hence, low effects on reducing cancer cell viability. The pitfalls of 
this strategy are explained by the frame schematically depicted 
in Figure 1A; in fact, membrane transporters of amino acids are 
poly-specific meaning that natural substrates can displace a hypo-
thetical substrate-based drug. These compounds, in fact, interact 

only transiently with the target protein leading to scarce effects. 
In the recent years, we have exploited a combined approach of 
bioinformatics, in silico screening and biochemical assays using 
the in vitro experimental model of proteoliposomes in order to 
identify covalent inhibitors for both ASCT2 and LAT1. Being irre-
versible, covalent inhibitors should be in principle, more efficient 
in chemically knocking-out the transporters. This strategy has the 
advantage of facilitating the compound screening studying the 
effects on the sole target protein, without interferences deriving 
from other systems present in the whole cells (95). Then, we iden-
tified potent covalent inhibitors of the rat ASCT2 (96). Soon after, 
we obtained also a set of covalent inhibitors of human LAT1 with 
the highest affinity so far described (97). LAT1, as mentioned 
above, even if is probably not directly linked to Glutamine uptake 
in cancer cells, is responsible for providing essential amino acids, 
among which Leucine (see Glutamine Supply to Cancer Cells). 
Test in intact cells showed that the compounds were also able to 
impair viability of cancer cells.
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