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Background: Recently, immune-checkpoint blockade has shown striking clinical results 
in different cancer patients. However, a significant inter-individual and inter-tumor vari-
ability exists among different cancers. The expression of the toxins granzyme A (GZMA) 
and perforin 1 (PRF1), secreted by effector cytotoxic T cells and natural killer (NK) cells, 
were recently used as a denominator of the intratumoral immune cytolytic activity (CYT). 
These levels are significantly elevated upon CD8+ T-cell activation as well as during a 
productive clinical response against immune-checkpoint blockade therapies. Still, it is not 
completely understood how different tumors induce and adapt to immune responses.

Methods: Here, we calculated the CYT across different cancer types and focused on 
differences between primary and metastatic tumors. Using data from 10,355, primary 
tumor resection samples and 2,787 normal samples that we extracted from The Cancer 
Genome Atlas and Genotype-Tissue Expression project databases, we screened the 
variation of CYT across 32 different cancer types and 28 different normal tissue types. 
We correlated the cytolytic levels in each cancer type with the corresponding patient 
group’s overall survival, the expression of several immune-checkpoint molecules, as well 
as with the load of tumor-infiltrating lymphocytes (TILs), and tumor-associated neutro-
phils (TANs) in these tumors.

results: We found diverse levels of CYT across different cancer types, with highest 
levels in kidney, lung, and cervical cancers, and lowest levels in glioma, adrenocortical 
carcinoma (ACC), and uveal melanoma. GZMA protein was either lowly expressed 
or absent in at least half of these tumors; whereas PRF1 protein was not detected in 
almost any of the different tumor types, analyzing tissue microarrays from 20 different 
tumor types. CYT was significantly higher in metastatic skin melanoma and correlated 
significantly to the TIL load. In TCGA-ACC, skin melanoma, and bladder cancer, CYT 
was associated with an improved patient outcome and high levels of both GZMA and 
PRF1 synergistically affected patient survival in these cancers. In bladder, breast, colon, 
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esophageal, kidney, ovarian, pancreatic, testicular, and thyroid cancers, high CYT was 
accompanied by upregulation of at least one immune-checkpoint molecule, indicating 
that similar to melanoma and prostate cancer, immune responses in cytolytic-high 
tumors elicit immune suppression in the tumor microenvironment.

conclusion: Overall, our data highlight the existence of diverse levels of CYT across 
different cancer types and suggest that along with the existence of complicated associa-
tions among various tumor-infiltrated immune cells, it is capable to promote or inhibit the 
establishment of a permissive tumor microenvironment, depending on the cancer type. 
High levels of immunosuppression seem to exist in several tumor types.

Keywords: granzyme a, perforin 1, immune cytolytic activity, metastasis, cancer immunotherapy, survival rate, 
tumor-infiltrating lymphocytes, tumor-associated neutrophils

inTrODUcTiOn

In normal cells, the role of cytotoxic T  lymphocyte antigen-4 
(CTLA-4 or CD152), programmed death-1 (PD-1 or CD279), 
or other similar immune-checkpoint molecules is to inhibit an 
autoimmune response and restrict an immune cell-mediated tis-
sue damage. Cancer cells on the other hand, regularly use these 
immune-checkpoint molecules to escape from being detected 
and eliminated by the cells of the immune system (1–3).

Cytotoxic T cells (CTLs) and natural killer (NK) cells release 
perforin 1 (PRF1), granzymes, and granulysin, upon their expose 
to infected or dysfunctional somatic cells. The first cytotoxin 
polymerizes and creates a channel in the membrane of the target 
cell. Through these pores, granzymes will then enter the cytoplasm 
and trigger a caspase cascade, composed of cysteine proteases 
that will ultimately lead to apoptosis (4, 5). However, apoptosis 
can also be induced via cell–surface interaction between the CTL 
and the infected cell. Upon the activation of a CTL, the FAS ligand 
(FasL or CD95L) is expressed on its surface, and it binds to Fas 
(CD95) being expressed on the target cell (6). Furthermore, the 
TNF-related apoptosis-inducing ligand (TRAIL) and its recep-
tors (TRAILR1/2) constitute another important axis of immune 
cytolytic activity (CYT) that leads to apoptosis (7).

Apart from tumor cells, the tumor microenvironment contains 
many different immune cell types, including neutrophils, mac-
rophages, dendritic cells (DCs), NK cells, T and B cells (8–10). 
Spontaneous tumor immunity due to the infiltration of such 
immune cells to the tumor site (11) and immunotherapy can be 
used to predict the patient outcome in cancer (12–14). However, 
it is now known that these nonmalignant tumor-infiltrating 
immune cells can also contribute to cancer by taking part in the 
modulation of the tumor microenvironment together with other 
nonimmune stromal cells, including fibroblasts and endothelial 
cells (15–17).

Immunotherapies that depend on the blockade of such immune-
checkpoint molecules can stimulate an anticancer response 
(18–21). Among them, PD-1 targeting drugs (Pembrolizumab 
and Nivolumab) or PD-L1 (Atezolizumab, Avelumab, and 
Durvalumab), and CTLA-4 inhibitors (Ipilimumab) can benefit 
treatment of several cancer types, comprising skin melanoma, 
non-small cell lung cancer, kidney cancer, bladder cancer, head 

and neck cancer, and Hodgkin lymphoma (22–24). Nevertheless, 
success rate varies from one tumor type to other and some 
cancers do not respond to therapy or they gradually develop  
resistance to it.

The interactions between cancer cells and cells of the immune 
system can be further understood using high-dimensional 
genomic and transcriptomic datasets stored in online reposi-
tories. One such publically available repository is The Cancer 
Genome Atlas (TCGA),1 which contains comprehensive, multi-
dimensional maps of the key genomic changes in 33 different 
cancer types. Latest analysis of the TCGA datasets has linked the 
genomic landscape of tumors with tumor immunity, implicating 
neoantigen load in driving T-cell responses (25), and identifying 
somatic mutations associated with immune infiltrates (26). The 
Human Protein Atlas (HPA)2 (27–30) is another open access 
platform that provides a map to all the human proteins in cells, 
tissues, and organs, and integrates different “omics” technolo-
gies, such as antibody-based imaging, mass spectrometry-based 
proteomics, transcriptomics, and systems biology.

Here, we have used a large number of TCGA and HPA datasets 
containing thousands of solid tumor samples to understand how 
different cancers induce and adapt to immune responses. RNA-seq 
data for the genes of interest were extracted from different data-
sets in Fragments Per Kilobase Million (FPKM) and subsequently 
transformed to Transcripts Per Kilobase Million (TPM) values 
using the formula TPMi = FPKMi/sum(FPKMj) × 106. We have 
further supported the RNA-level information using protein-level 
data across all cancer datasets. The CYT from each dataset has 
been further associated with the corresponding patient group’s 
overall survival. To associate the CYT with patient survival both 
in primary and metastatic cancers, we have focused our attention 
on skin melanoma, breast, and thyroid cancers. We have also 
evaluated the density of tumor-infiltrating lymphocytes (TILs) 
and tumor-associated neutrophils (TANs) using hematoxylin and 
eosin (H&E)-stained sections of primary and metastatic tumors 
and made associations of their load with patient survival in each 
type of cancer.

1 https://cancergenome.nih.gov/.
2 https://www.proteinatlas.org/.
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MaTerials anD MeThODs

cancer Datasets
Using the Genomic Data Commons (GDC) Data Portal (The 
Cancer Genome Atlas, TCGA program3) and the GTEx web 
portal (Genotype-Tissue Expression project4), we extracted data 
from a total of 10,355 tumor resection samples and 2,935 normal 
samples and screened the variation of CYT across these 32 dif-
ferent cancer types and 28 different normal solid tissue types. 
TCGA-derived data represent mainly untreated primary tumors 
(n  =  9,913). In addition, we extracted 47 recurrent and 395 
metastatic cancer cases. The Skin Cutaneous Melanoma (SKCM) 
dataset included the majority of these metastatic cases (n = 368). 
Patients who received neoadjuvant therapy were excluded from 
the analysis. Where available, TCGA tumor samples were paired 
with their corresponding normal tissues, providing a germline 
reference.

In specific, the following tumor types were selected: diffuse 
large B-cell lymphoma (DLBCL, n = 48), kidney clear cell cancer 
(KIRC, n = 539), kidney papillary cancer (KIRP, n = 289), kid-
ney chromophobe cancer (KIRCH, n = 65), testicular germ cell 
cancer (TGCT, n = 156), lung adenocarcinoma (LUAD, n = 535), 
lung squamous cell carcinoma (LUSC, n = 502), cervical squa-
mous cell carcinoma and endocervical adenocarcinoma (CESC, 
n = 306), thymoma (THYM, n = 119), (SKCM, n = 471), acute 
myeloid leukemia (LAML, n = 151), head and neck squamous 
cell carcinoma (HNSC, n = 502), pleural mesothelioma (MESO, 
n  =  86), sarcoma (SARC, n  =  263), stomach adenocarcinoma 
(STAD, n = 375), colorectal cancer (COAD, n = 480), and rectum 
adenocarcinoma (READ, n = 167), uterine corpus endometrial 
carcinoma (UCEC, n  =  552), uterine carcinosarcoma (UCS, 
n  =  56), bladder cancer (BLCA, n  =  414), pancreatic cancer 
(n  =  178), breast cancer (BRCA, n  =  1109), bile duct cancer 
(n  =  36), ovarian serous cystadenocarcinoma (OV, n  =  379), 
liver hepatocellular carcinoma (LIHC, n =  374), thyroid carci-
noma (THCA, n = 510), esophageal cancer (n = 162), prostate 
adenocarcinoma (PRAD, n = 499), glioblastoma (GBM, n = 169), 
brain lower grade glioma (LGG, n = 529), pheochromocytoma 
and paraganglioma (PCPG, n = 183), adrenocortical carcinoma 
(ACC, n = 79), and uveal melanoma (UVM, n = 80) (where each 
acronym denotes the corresponding project’s code and “n” is the 
number of cancer tissue samples).

“Level 3” mRNA-Seq expression data of the genes of interest, 
along with the corresponding patient clinical information for 
each disease type (tumors and normals) were extracted from 
TCGA public access web portal [launch data portal3] and GTEx4 
(for normal samples only). Gene expression data were addition-
ally accessed from the Fantom5 Consortium5 and were used to 
evaluate gene expression markers.

We also retrieved protein expression data derived from 
antibody-based protein profiling using immunohistochemistry 
(IHC) from the Tissue Atlas of The Human Protein Atlas (HPA) 

3 https://portal.gdc.cancer.gov/.
4 https://www.gtexportal.org/home/.
5 http://fantom.gsc.riken.jp/5/.

(27–29). Information regarding the cellular distribution of each 
cytolytic protein (GZMA and PRF1) was also retrieved across all 
major cancers from the same repository. In total, we extracted IHC 
data from 19 different tumor types, among them BRCA (n = 12), 
cervical cancer (n = 11), colorectal cancer (n = 11), endometrial 
cancer (n = 12), glioma (n = 12), head and neck cancer (n = 3), 
liver cancer (n = 11), lung cancer (n = 12), lymphoma (n = 12), 
melanoma (n = 12), ovarian cancer (n = 12), pancreatic cancer 
(n = 10), prostate cancer (n = 10), renal cancer (n = 11), skin 
cancer (n = 11), stomach cancer (n = 11), testis cancer (n = 9), 
thyroid cancer (n = 4), and urothelial cancer (n = 11).

calculation of cYT Followed by 
Downstream rna-seq and Protein 
Profiling analyses
We calculated the CYT (or “cytolytic index”) as the geometric 
mean of GZMA and PRF1, as formerly defined (31). Briefly, 
we divided the total raw read counts per gene by the gene’s 
maximum transcript length to signify a coverage depth estimate. 
Coverage estimates were then scaled to sum to a total depth of 
1e6 per sample and inferred as Transcripts Per Kilobase Million 
(TPM). We compared the cytolytic index between metastatic and 
non-metastatic (primary) cancers, wherever a sufficient number 
of metastatic tumor cases were available (TCGA-BRCA, TCGA-
SKCM, and TCGA-THCA datasets). We also calculated the 
expression of several other CTL/NK or non-CTL/NK expressing 
genes, including immunosuppressive factors, the C1Q complex, 
and interferon-stimulated chemokines, all of which were previ-
ously shown to associate with an increased CYT in cancer. We 
further correlated the cytolytic index with the expression of 
immune-checkpoint molecules, including CTLA-4, PD-1, CD274 
(PD-L1), PDCD1LG2 (PD-L2), LAG3, IDO1, CD73 (NT5E), and 
ENTPD1 (CD39), across all TCGA datasets. The p-values from 
the comparisons of the CYT between tumor and normal samples 
or between metastatic and primary cancer samples were FDR-
adjusted. Loess regression was applied to diminish the noise of 
the variables during correlation analysis.

We also extracted GZMA and PRF1 protein expression data 
from the Tissue Atlas of HPA, and further analyzed them. GZMA 
was stained with an anti-GZMA antibody produced in rabbit 
(HPA054134, 1:200 dilution, Sigma-Aldrich) and PRF1 using two 
different antibodies produced in rabbit (either HPA037940, 1:29 
dilution, or CAB002436, 1:10 dilution, Sigma-Aldrich) (27–29).

Overall survival and synergistic Target 
analysis on the Tcga Datasets
We performed Kaplan–Meier curves analysis to calculate the 
overall survival of each TCGA-dataset’s patient group, based 
on their cytolytic index, TIL, and TAN load, or specific tumor 
subtype (e.g., triple negative vs triple positive BRCA). In total, we 
assessed overall survival data of patients suffering from 25 differ-
ent cancer types (37 TCGA-datasets). Analysis was performed 
using the log-rank (Mantel Cox) test with a statistical significance 
at the 95% level (p < 0.05). We further tested the synergistic effect 
of the genes PRF1 and GZMA on each dataset’s patient survival 
outcome, using SynTarget (32).
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Detection and Quantification of 
lymphocyte and neutrophil infiltration 
among Primary and Metastatic cancers
We extracted digital slide images with H&E-stained histological 
slides of skin melanoma, breast, and thyroid cancer from The 
Cancer Digital Slide Archive (CDSA)6 and compared the load of 
TILs and TANs between metastatic and primary cancers. TILs 
were distinguished by the typical features of lymphocytes (33), 
including size, shape, and staining of the nucleus. The percentage 
(%) of lymphocyte and neutrophil infiltration was compared to 
the information extracted from the corresponding datasets at the 
GDC Data Portal. We further compared the percentage of necrosis 
between primary and metastatic cancers, as well as the percentage 
of tumor, normal, and stromal cells. We correlated the levels of 
immune CYT (TPM counts) with the load of TILs and TANs, as 
well as with the percentage of necrosis found among metastatic 
and non-metastatic breast, skin melanoma, and thyroid cancers, 
using Pearson’s correlation test.

resUlTs

immune cYT across Different  
Tumor Types
To assess the intratumoral immune cytolytic T-cell activity across 
various tumor types, we quantified the transcript levels of GZMA 
and PRF1, as previously done by Rooney et  al. (31). GZMA is 
a tryptase leading to apoptosis through the caspase pathway, 
whereas PRF1 is a pore-forming enzyme facilitating the entrance 
of granzymes into the target cells. Both effector molecules are 
considerably overexpressed upon CD8+ T-cell activation (34) 
and during productive clinical responses to anti-CTLA-4 or anti-
PD-L1 immunotherapy (12, 13). CTL/NK  cells can kill cancer 
cells by overexpressing GZMA and PRF1. We now know that 
effector T cells at the tumor site are good predictors of a favorable 
outcome across various cancer types (35–40).

Although Rooney et  al. previously measured the immune 
CYT of the local immune infiltrate across various tumor types 
(31), some datasets did not contain enough data at the time (e.g., 
there were only three normal cervix samples in the TCGA-CESC 
dataset). Given the increased number of tumor samples in the 
TCGA platform since 2014, we have now significantly enlarged 
the total number of different cancer types, from 18 to 32. We have 
also considerably increased the sample number in many datasets, 
thus providing an opportunity to better estimate the different 
cytolytic levels across diverse tumors.

Consistent with previous findings (31, 41), we found that the 
cytolytic index was highest in the kidney (in clear cell and papil-
lary renal cell carcinoma, but not in chromophobe carcinoma), 
lung, and cervical cancers. Importantly, we show for the first time 
that DLBCL and testicular cancer also rank among the top cyto-
lytic active tumors, with DLBCL exhibiting even higher cytolytic 
levels compared to KIRC (>100 TPM). In addition, melanoma 
and head and neck cancer exhibited significantly higher CYT 

6 http://cancer.digitalslidearchive.net/.

compared to the corresponding normal tissues. Acute myeloid 
leukemia, pleural mesothelioma, sarcoma, and stomach cancer, 
also exhibited high tendency in CYT. On the contrary, ovar-
ian, liver, thyroid, esophageal, and prostate cancers, as well as 
glioblastoma, glioma, pheochromocytoma and paraganglioma, 
adrenocortical carcinoma and uveal melanoma, exhibited the 
lowest cytolytic indexes (Figure 1A).

Although most normal tissues (11 tissues from TCGA or 
GTEx) showed significantly lower CYT compared to their cor-
responding tumors, some of them exhibited significantly higher 
activity. Specifically, lung cancer, thymoma, stomach, colorectal, 
uterine, bladder, breast, liver, and thyroid cancers, all exhibited 
lower CYT compared to their corresponding normal tissues. In 
the cases of lung adenocarcinoma, colorectal, uterine, liver, and 
thyroid cancers, the differences between cancer, and the normal 
tissues were statistically significant (Figure 1A). The vast range in 
CYT across different cancers and compared to their correspond-
ing normal tissues reveals the existence of a combination of tis-
sue- and tumor-specific mechanisms that control local immunity. 
In line with their synchronized roles, the expression of GZMA 
and PRF1 was strongly coordinated across the different cancer 
samples (Spearman rank correlation, rho = 0.87) (Figure 1B).

At the protein level, we analyzed tissue microarray (TMA) data 
from 20 different tumor types, and found that GZMA was either 
lowly expressed or absent in at least half of these tumors, whereas, 
PRF1 was not detected in almost any of the different tumor types 
(Figure 1C). GZMA exhibited medium protein expression in the 
majority of the pancreatic cancers (70%), in <35% of breast, cer-
vical, liver, ovarian, prostate, renal, stomach, testis, and urothelial 
cancers, as well as in <10% of lymphomas and melanomas. These 
data are consistent with the low TPM values derived from our 
RNA-seq analysis (Table 1). Further information regarding anti-
GZMA and anti-PRF1 antibody staining, intensity, quantity, and 
location are provided in Table S1 in Supplementary Material.

immune cYT in Primary and  
Metastatic cancers
Next, we focused our attention on whether the cytolytic index 
differs between primary and metastatic cancers. Among all 
TCGA datasets, the metastatic tumors were composed of 368 
SKCM, seven BRCA, eight THCAs, one PRAD, two cervical 
cancers (CESC), one colorectal adenocarcinoma (COAD), one 
esophageal carcinoma (ESCA), two HNSCs, one pancreatic 
adenocarcinoma (PAAD), two PCPGs, one PRAD, and one sar-
coma (SARC) sample. Therefore, since the majority of metastatic 
tumors were composed mainly of skin melanomas, breast and 
thyroid carcinomas we focused our downstream analysis on the 
corresponding datasets of these tumors.

To assess the cytolytic index in them, we obtained RNA-seq 
data from TCGA for 103 primary and 368 metastatic skin resec-
tion melanomas, 1,102 primary and seven metastatic BRCAs, as 
well as for 502 primary and eight metastatic THCAs. Although 
all metastatic tumors had higher CYT compared to their cor-
responding primary tumors, the difference was statistically 
significant only for the skin melanoma dataset. This is obviously 
due to the significantly higher number of metastatic melanoma 
cases (n = 368) (Figure 2).
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FigUre 1 | (a) Varied immune cytolytic activity for each of 31 different TCGA tumor types and normal tissues. Normal tissue samples are derived both from TCGA 
and GTEx projects. Boxes in box plot represent interquartile ranges and vertical lines represent 5th–95th percentile ranges, with a notch for the median. p-values are 
adjusted and calculated by Wilcoxon rank-sum test (comparison to relevant normal). Asterisks (*) denote events significant at 10% FDR. (B) Granzyme A (GZMA) vs 
perforin 1 (PRF1) expression across TCGA tumor biopsies. Points are colored according to cancer type using the same color coding employed in Figure 1A. Across 
all cancers, a Spearman rank correlation (r) of 0.87 was observed. (c) Low levels GZMA and PRF1 protein expression detected in tissue microarrays of 20 different 
tumor types. All representative immunohistochemistry images of each tumor type derived from the Human Protein Atlas.
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Similarly, we investigated the expression of various sup-
pressive factors previously shown to be associated with CYT, 
and compared their expression levels between metastatic and 
primary tumors. These genes included the immune-checkpoint 
molecules, CTLA-4, PD-1 (PDCD1), PD-L1 (CD274), PD-L2 
(PDCD1LG2), LAG3, CD73 (NT5E)/CD39 (ENTPD1), IDO1/2, 
DOK3, the GMCSF receptors (CSF2RA, CSF2RB) (42), CD70, 
UBD, DOC3, NKG7, PLA2G2D, and the C1Q complex. We also 
included interferon-stimulated chemokines that attract T  cells 
(CXCL9, CLCL10, and CXCL11) (11). We further investigated the 
expression of alternative genes through which T cells can induce 
cytolysis of cancer cells, including CD95-CD95L (FAS-FASLG) 
and TRAIL-TRAILR (TNFSF10, TNFRSF10A/B). Among the 
investigated genes, CD247, GZMK, GZMH, NKG7, PRF1, 
GZMA, GZMB, GZMH, GZMK, CD3E, and CD2 are expressed 
in CTL/NK  cells; whereas CSF2RB, LTA, DOK3, PDCD1LG2, 
IDO1, PLA2G2D, CXCL9, CXCL10, CXCL11, CXCL13, UBD, 
C1QA, C1QB, C1QC, BATF2, and CSF2RA are expressed in 
non-CTL/NK cells (31).

In TCGA-SKCM, all genes (apart from CD70) exhibited 
significantly higher levels in metastatic skin melanomas 
compared to primary tumors. We also noticed a similar, but 

non-significant trend in datasets TCGA-BRCA and TCGA-
THCA, presumably due to the small sample number of meta-
static cases (Figures 3–5).

Kaplan–Meier and synergistic survival 
analysis of gZMa and PrF1 across  
Tcga-Datasets
We next performed Kaplan–Meier survival analysis on 37 
TCGA-datasets deriving from 25 different cancer types in order 
to estimate the risk of individual and/or simultaneous high (or 
low) PRF1 and GZMA expression on patient overall survival.

In TCGA-ACC, non-metastatic cutaneous melanoma (“m0” 
TCGA-SKCM), and bladder urothelial carcinoma (TCGA-BLCA 
but not the GSE32894 dataset), both individual and simultaneous 
high levels of PRF1 and GZMA were significantly associated with 
better prognosis. On the reverse, simultaneous low expression of 
both genes led to a significant shift toward negative effect vs all 
other ACC (or SKCM) patients. As expected, metastatic mela-
noma sufferers succumbed much earlier than non-metastatic skin 
melanoma patients did. These data provide significant evidence 
that high expression of both cytolytic genes in these cancer types, 
synergistically affects patient survival (Figure 6A).

http://www.frontiersin.org/Oncology/
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TaBle 1 | Protein expression profiles of granzyme A (GZMA) and perforin 1 (PRF1) across 19 different cancer types, using antibody-based protein profiling data from 
immunohistochemistry (the Human Protein Atlas).

Tumor patients expressing cytolytic genes

gZMa PrF1

Tumor high Medium low not detected high Medium low not detected

breast cancer 0/12 (0) 4/12 (33) 7/12 (58) 1/12 (8) 1/10 (0) 1/10 (0) 1/10 (0) 10/10 (100)
cervical cancer 0/11 (0) 3/11 (27) 5/11 (45) 3/11 (27) 0/11 (0) 0/11 (0) 1/11 (9) 10/11 (91)
colorectal cancer 0/11 (0) 0/11 (0) 3/11 (27) 8/11 (73) 0/12 (0) 0/12 (0) 0/12 (0) 12/12 (100)
endometrial cancer 0/12 (0) 0/12 (0) 1/12 (8) 11/12 (92) 0/11 (0) 0/11 (0) 0/11 (0) 11/11 (100)
glioma 0/12 (0) 0/12 (0) 0/12 (0) 12/12 (100) 0/12 (0) 0/12 (0) 0/12 (0) 12/12 (100)
head and neck cancer 0/3 (0) 0/3 (0) 1/3 (33) 2/3 (67) 0/4 (0) 0/4 (0) 0/4 (0) 4/4 (100)
liver cancer 0/11 (0) 3/11 (27) 1/11 (9) 7/11 (64) 0/12 (0) 0/12 (0) 0/12 (0) 12/12 (100)
lung cancer 0/12 (0) 0/12 (0) 4/11 (33) 8/12 (67) 0/12 (0) 0/12 (0) 0/12 (0) 12/12 (100)
lymphoma 0/12 (0) 1/12 (8) 1/12 (8) 10/12 (83) 0/11 (0) 0/11 (0) 0/11 (0) 11/11 (100)
melanoma 0/12 (0) 1/12 (8) 6/12 (50) 5/12 (42) 0/11 (0) 0/11 (0) 0/11 (0) 11/11 (100)
ovarian cancer 0/12 (0) 3/12 (25) 2/12 (17) 7/12 (58) 0/10 (0) 0/10 (0) 0/10 (0) 10/10 (100)
pancreatic cancer 0/10 (0) 7/10 (70) 2/10 (20) 1/10 (10) 0/12 (0) 0/12 (0) 0/12 (0) 12/12 (100)
prostate cancer 0/10 (0) 3/10 (30) 6/10 (60) 1/10 (10) 0/11 (0) 0/11 (0) 0/11 (0) 11/11 (100)
renal cancer 0/11 (0) 2/11 (18) 3/11 (27) 6/11 (55) 0/12 (0) 0/12 (0) 0/12 (0) 12/12 (100)
skin cancer 0/11 (0) 0/11 (0) 4/11 (36) 7/11 (64) 0/12 (0) 0/12 (0) 0/12 (0) 12/12 (100)
stomach cancer 0/11 (0) 2/11 (18) 6/11 (55) 3/11 (27) 0/12 (0) 0/12 (0) 0/12 (0) 12/12 (100)
testis cancer 0/9 (0) 2/9 (22) 2/9 (22) 5/9 (56) 0/12 (0) 0/12 (0) 0/12 (0) 12/12 (100)
thyroid cancer 0/4 (0) 0/4 (0) 2/4 (50) 2/4 (50) 0/4 (0) 0/4 (0) 0/4 (0) 4/4 (100)
urothelial cancer 0/11 (0) 3/11 (27) 5/11 (45) 3/11 (27) 0/11 (0) 0/11 (0) 0/11 (0) 11/11 (100)

Numbers indicate the tumor patients expressing each gene out of the total number (percentage, %).
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In TCGA-LIHC, only the individual high levels of PRF1 
and GZMA were significantly associated with a positive effect 
on patient survival. A similar non-significant association of 
(individual or simultaneous) high GZMA and PRF1 expression 
with better effect on patient survival could also be observed 
in TCGA-MESO, ovarian cancer (GSE13876 and GSE49997), 
TCGA-STAD, TCGA-THCA, and TCGA-UCEC (Figure S1 in 
Supplementary Material). These data suggest that high CYT 
is widely associated with an improved prognosis among the 
above-mentioned cancer types.

On the contrary, across TCGA-LGG, BRCAs (GSE25066), 
and TCGA-THYM, both individual and simultaneous high 
levels of GZMA and PRF1 were significantly associated with 
a worse prognosis, whereas the simultaneous low levels of 
both genes led to a significant shift toward positive effect 
(Figure 6B). Regarding BRCA, though, we could not confirm 
these results using the independent datasets METABRIC and 
TCGA-BRCA, which revealed a tendency for the opposite 
effects of both cytolytic genes on patient survival. Regarding 
the METABRIC dataset, we separated BRCA patients who 
were subjected to hormonal therapy plus radiotherapy (HT/
RT) (n = 605) from the untreated patients; however, an asso-
ciation of high levels of GZMA and PRF1 with a worse prog-
nosis could not be confirmed (Figure S6 in Supplementary 
Material).

Analogous non-significant associations of (individual or 
simultaneous) high cytolytic levels with worse effect on patient 
survival were also observed in lung cancer (GSE30219, TCGA-
LUAD, and TCGA-LUSC), TCGA-PAAD, TCGA-PRAD and 
GSE16560, and TCGA-READ (Figure S2 in Supplementary 
Material).

In colon cancer, neither the individual nor the simultane-
ous high levels of the two genes were associated with a better 
prognosis, although simultaneous low levels of GZMA and PRF1 
tended to shift toward a negative effect. Depending on the probe 
used, it seemed that a combination of high PRF1 and low GZMA 
levels yields a better patient outcome (GSE39582, TCGA-COAD, 
TCGA-COADREAD). Among metastatic colon cancer patients 
(“M1” patients in the TCGA-COAD dataset), simultaneous high 
levels of both genes were marginally significantly associated 
with worse prognosis, but simultaneous low levels of both genes 
could not provide the reverse trend (Figure S3 in Supplementary 
Material). We did not notice the same trend in the TCGA-
COADREAD colorectal cancer patient cohort, though, implying 
that the aforementioned results are specific for colon (but not 
rectum) cancers.

Among clear-cell (TCGA-KIRC) and papillary renal cell 
carcinomas (TCGA-KIRP), we could not deduce any similar 
association among metastatic or non-metastatic tumors. In chro-
mophobe renal carcinoma (TCGA-KICH) though, individual 
and simultaneous high levels of both genes tended to associate 
with better patient survival. On the other hand, concurrent low 
levels of both cytolytic genes, tended to associate with a worse 
prognosis. Interestingly, in the TCGA-KIPAN dataset, both the 
individual and synchronized high levels of GZMA and PRF1 
significantly connected with worse patient survival. The simul-
taneous low expression of both genes exhibited reverse outcome 
(Figure S4 in Supplementary Material).

In DLBCL (GSE10846, and GSE32918), using various combi-
nations of distinct molecular probes for the two cytolytic genes 
(PRF1, 214617_AT, 1553681_A_AT, or ILMN_1740633; GZMA, 
205488_AT, or ILMN_1779324), we could not provide any 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FigUre 2 | (a) Metastatic cancers exhibit higher cytotoxic T cell levels. Significantly, increased levels of immune cytolytic activity (CYT) were scored in metastatic 
skin melanomas, in the TCGA-SKCM dataset. The cytolytic index was also higher in metastatic breast (BRCA) and thyroid cancers (THCA), but did not differ 
significantly between metastatic and primary tumors. Bars denote mean ± SEM. (B) Pearson’s correlations between CYT and the percentage of tumor-infiltrating 
lymphocytes and neutrophils, as well as with the percentage of necrosis in primary and metastatic SKCM, BRCA and THCA.
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significant association with patient survival. A similar absence 
of significant associations was also detected in glioblastoma 
(GSE4271, GSE13041, and TCGA-GBM) and non-metastatic 
HNSCs. We could not deduce any further association or trend 
between the expression of both cytolytic genes and the survival 
of TCGA-TGCT and uterine carcinosarcoma patients (Figure S5 
in Supplementary Material).

infiltration of lymphocytes and 
neutrophils in Primary and Metastatic 
Tcga-Datasets
We further evaluated the infiltration of lymphocytes (TILs) and 
neutrophils (TANs) to the tumor site of primary and metastatic 
cancer samples across the TCGA-SKCM, TCGA-BRCA, and 
TCGA-THCA datasets, using the Cancer Digital Slide Archive (see 
text footnote 6). TILs contained both stromal- and intratumoral-
compartment lymphocytes, as previously defined (43). Both of 
them were mainly composed of T cells and a smaller number of 
B cells, NK cells, and macrophages (44, 45).

In the TCGA-BRCA dataset, the number of TILs appeared 
enriched in the stroma of the primary tumors compared to 
the corresponding areas on the slide of the metastatic BRCAs. 
However, this might probably be due to the higher number of 
stroma cells detected in the primary breast tumors (percentage 

of stromal cells in primary vs metastatic BRCA, 21.15 ± 0.520 vs 
7.143 ± 3.595; p = 0.032).

Although the number of TILs and neutrophils was higher 
in several cases of primary BRCA, the overall difference was 
not statistically significant (mean% of TILs ± SD in primary vs 
metastatic BRCAs, 6.102 ± 0.403 vs 4.714 ± 2.179; p = 0.78 and 
mean% of neutrophil infiltration ± SD in primary vs metastatic 
BRCAs, 1.625 ± 0.167 vs 0 ± 0; p = 0.44). Among primary tumors, 
comparing between triple negative (ER−, PR−, Her2/neu−, or 
TNBC), and triple positive (ER+, PR+, Her2/neu+, or TPBC) 
BRCAs, the load of TILs (and TANs) was not significantly differ-
ent and was not significantly associated with a worse outcome, 
in argument with previous observations (46–48). In addition, 
the percentage of necrosis did not differ between metastatic and 
primary skin melanoma (<2%) (Figure 7).

In the TCGA-SKCM dataset, although in several cases the 
number of TILs was more enriched in the stroma of primary 
melanomas (as opposed to metastatic cancers), the overall load of 
TIL and TAN did not differ significantly between them. It is also 
worth noticing that the number of stroma cells counted in meta-
static melanomas was higher compared to primary skin tumors 
(percentage of stromal cells in primary vs metastatic melanoma, 
5.835 ± 1.083 vs 9.043 ± 0.571; p = 0.009). In addition, the rate 
of necrosis was marginally higher in metastatic skin melanoma 
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FigUre 3 | A trend for higher expression (TPM) of a group of genes being expressed in cytotoxic T cell/natural killer (CTL/NK) and non-CTL/NK cells and correlating 
with cytolytic activity (CYT) in metastatic breast cancers compared to primary tumors. Bars denote mean ± SEM.
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compared to primary tumors (p =  0.042). The overall survival 
did not differ between high TIL load (>1% TILs) or low TIL load 
(<1% TILs) in primary skin melanoma patients. However, among 
metastatic patients, a high percentage of lymphocytic infiltration 
shifted toward a better prognosis (Figure 8). According to recent 
data, the number of TILs in stage III metastatic melanoma associ-
ates with the response to Ipilimumab once these patients progress 
to stage IV disease (49).

In the TCGA-THCA dataset, the infiltration of lymphocytes 
was significantly higher in metastatic thyroid tumors and the 
high TIL load (>2% TILs) was associated with a better prognosis 
within the primary tumor group (mean% of TILs ± SD in primary 
vs metastatic cancers, 1.597 ± 0.160 vs 8.375 ± 3.59, p < 0.0001). 
The infiltration of neutrophils was minor (<0.1%) and did not 
differ between primary and metastatic THCAs. The necrotic rate 
was equally low between the two groups (Figure 9).

correlation of the cytolytic index with 
immune-checkpoint Molecules and Tils 
in Primary and Metastatic Tcga-Datasets
In order to understand the context of PRF1/GZMA deregula-
tion relative to the expression of various immune-checkpoint 
molecules, we correlated the cytolytic index with the expression 
of CTLA-4, PD-1, CD274 (PD-L1), PDCD1LG2 (PD-L2), LAG3, 
IDO1, CD73 (NT5E), and CD39 (ENTPD1) across all TCGA 

datasets (Figure S7 in Supplementary Material). In the majority of 
the cancers, a high cytolytic index was accompanied by upregu-
lation of at least one immune-checkpoint molecule, indicating 
that similar to melanoma (42) and prostate cancer (41), immune 
response in CYT-high tumors elicits multiple host and tumor 
mechanisms of immune suppression in the tumor microenviron-
ment (Figure S7 in Supplementary Material). For example, in 
TCGA-BRCA, CTLA-4, and PD-1 expression was significantly 
associated with a high cytolytic index (CTLA-4, p = 8.75e−199, 
Pearson’s rho = 0.75; PD-1, 4.09e−309, Pearson’s rho = 0.85). As 
expected, this correlation was 20 times stronger compared to the 
normal breast, due to absence of immunosuppression in the latter 
(CTLA-4, p = 2.44e−12, Pearson’s rho = 0.60; PD-1, 1.12e−14, 
Pearson’s rho  =  0.65). Importantly, this association was even 
stronger among metastatic melanomas, suggesting the existence 
of a more intense immunosuppression in these tumors (e.g., in 
primary melanoma, PD-1, p = 1.14e−35, Pearson’s rho = 0.887; 
LAG3, p = 1.03e−45, Pearson’s rho = 0.930; IDO1, p = 3.05e−08, 
Pearson’s rho  =  0.513. In metastatic melanoma, PD-1, 
p  =  1.48e−148, Pearson’s rho  =  0.917; LAG3, p  =  4.28e−163, 
Pearson’s rho = 0.931; IDO1, p = 2.38e−53, Pearson’s rho = 0.690) 
(Figure S8 in Supplementary Material).

The cytolytic index was significantly correlated with lympho-
cyte infiltration in BRCA, thyroid cancer, and skin melanoma. 
The association between a high TIL load and CYT was stronger 
among primary breast and THCAs, but not in melanomas. 
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FigUre 4 | Significantly higher expression (TPM) of a group of genes being expressed in cytotoxic T cell/natural killer (CTL/NK) and non-CTL/NK cells and 
correlating with cytolytic activity (CYT) in metastatic skin melanomas compared to primary tumors. Bars denote mean ± SEM.
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Consistent with the fact that apoptosis is a hallmark of CYT, 
we scored no further correlation between CYT and necrosis or 
between CYT and infiltration of neutrophils (Figure 2B).

number of Tumor and normal cells  
across Metastatic and non-Metastatic  
Tcga-Datasets
Expression analysis can be hampered due to a different number 
of cells within each tumor, thus reducing the ability to confidently 
measure the cytolytic index and correlate it with the expression of 
immune-checkpoint molecules in each dataset, as well as to com-
pare gene expression between primary and metastatic cancers. To 
address this, we calculated the number of tumor and normal cells 
within each tumor. Overall, the primary and metastatic cancer 
samples across the three datasets contained an equal number of 
tumor cells (70–90% tumor cells, p > 0.05) (Figures 7–9). Thus, 
the detected differences should not be the result of enrichment 
in tumor cells in one group or the other. Similarly, the percentage 
in normal cells did not differ between primary and metastatic 
BRCAs (3.48 ± 0.26, in primary cancers vs 7.86 ± 3.56, in meta-
static cancers; p = 0.188). On the other hand, primary melanomas 
had higher percentage of normal cells compared to metastatic 
tumors (7.485 ± 1.263 vs 1.155 ± 0.313, p < 0.001), and meta-
static THCAs had a higher percentage of normal cells compared 

to their primary counterparts (8.125 ± 8.125 vs 2.126 ± 0.305, 
p = 0.021).

DiscUssiOn

In this study, we quantified the cytolytic index based on the expres-
sion of GZMA and PRF1, both of which mediate cytolysis. This 
index is strongly associated with CTLs, plasmacytoid dendritic 
cells, counter-regulatory Tregs, and known T-cell co-inhibitory 
receptors (31).

In agreement with Rooney et al. (31), we found a great varia-
tion in the immune CYT across different types of cancer, which 
possibly reflects the existence of merged tissue- and tumor-
specific mechanisms orchestrating the local immunity. Cancers 
of the ovaries, liver, thyroid, esophagus, and prostate, as well as 
glioblastoma, glioma, pheochromocytoma and paraganglioma, 
adrenocortical carcinoma and uveal melanoma all exhibited 
minimal levels of CYT. On the contrary, DLBCL, clear-cell renal 
cell carcinoma, testicular cancer, cervical cancer, skin melanoma, 
and head and neck carcinoma exhibited increased levels of CYT.

The tumor-intrinsic resistance to CYT has been suggested to 
be due to different mechanisms. Among them, recurrent muta-
tions in immune-related genes have been proposed, such as B2M, 
HLA-A, -B, and -C, and CASP8, as well as copy number aber-
rations in loci containing immunosuppressive factors, including 
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FigUre 5 | A trend for higher expression (TPM) of a group of genes being expressed in cytotoxic T cell/natural killer (CTL/NK) and non-CTL/NK cells and correlating 
with cytolytic activity (CYT) in metastatic thyroid cancers compared to primary tumors. Bars denote mean ± SEM.
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the receptors PD-L1/2 and CTLA-4 (31). PD-1 is transiently 
induced in activated T cells (50) and its expression is preserved 
in TILs (51–53). PD-L1 expression is high in several human 
malignancies, such as skin melanoma, lung, head and neck, and 
ovarian cancers (54, 55). PD-L1 expression is also correlated with 
a bad prognosis among patients with esophageal, colon, ovarian, 
or kidney cancer (56–60). The PD-1/PD-L1 axis is significant in 
tumor-induced immune evasion and both molecules are hopeful 
target candidates for immunotherapy. Actually, recent clinical tri-
als have demonstrated that blockage of this signaling can benefit 
patients with advanced melanoma, kidney, or non-small cell lung 
cancer (2, 61–63). In metastatic melanoma, PD-L1 expression on 
peripheral T cells was recently shown to be prognostic on overall 
and progression-free survival (64).

CTLA-4 expression levels are low on resting T  cells, but 
increase upon T-cell activation. In acute infection, CTLA-4 is 
transiently induced and binds to B7-1/2, thus competing with 
CD28 and weakening the T-cell response (65). On the other hand, 
CTLA-4 is constitutively expressed in T  cells during chronic 
infection and cancer due to chronic antigen exposure. CTLA-4 
is also constitutively expressed on antigen-experienced memory 
CD4+ and CD8+ T cells, as well as Tregs (65). Similarly, B7-1 
is not expressed on resting antigen-presenting cells (APCs) (as 
opposed to B7-2) and is induced after APC activation. Anti-
CTLA-4 therapy (Ipilimumab) was shown to induce cancer 

regression in metastatic kidney cancer (22, 66) and melanoma 
(67–70). Importantly, CTLA-4 blockade was reported to associate 
with bowel inflammation in melanoma patients (71), signify-
ing that its signaling is crucial for the preservation of immune 
homeostasis in the gut.

Another example of immune-inhibitory molecule is 
indoleamine-pyrrole 2,3-dioxygenase (IDO). This molecule 
is constitutively expressed in the tumor microenvironment 
either by tumor cells or by host immune cells and is stimulated 
by inflammatory cytokines as IFN-γ, leading to host immune 
inhibition through increased Treg and effector T-cell prolifera-
tion blockade. A combination of IDO inhibition and immune-
checkpoint blockade are currently under clinical investigation, 
with promising results (72).

Arginase is also an immune-inhibitory metabolic enzyme 
being expressed by both tumor cells as well as infiltrating myeloid 
cells (73). Both IDO and arginase inhibit immune responses by 
locally depleting the essential amino acids for anabolic functions 
in T  cells or synthesizing specific natural ligands for cytosolic 
receptors, which can change the functions of lymphocytes. 
Inhibition of both IDO and arginase can enhance intratumoral 
inflammation (74, 75).

We found that high levels of several immune-checkpoint 
molecules, including CTLA-4, PD-1, PD-L1/2, LAG3, IDO1, 
CD73, and CD39 are associated with an increased cytolytic 
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FigUre 6 | (a) In datasets TCGA-ACC, TCGA-SKCM, and TCGA-BLCA, both individual and simultaneous high levels of perforin 1 (PRF1) and granzyme A 
(GZMA) were significantly associated with an improved prognosis. On the reverse, simultaneous low expression of both cytolytic genes led to a significant shift 
toward negative effect vs all other patients. (B) On the contrary, in datasets TCGA-LGG, GSE25066, and TCGA-THYM, accordingly, both individual and 
simultaneous high levels of GZMA and PRF1 were significantly associated with a worse prognosis, whereas the simultaneous low levels of both genes led to a 
significant shift toward positive effect vs all other patients. Abbreviations: “ALL.high,” PRF1 high expression and GZMA high expression vs all others; “ALL.low,” 
PRF1 low expression and GZMA low expression vs all others; “GZMA.ALL,” GZMA high expression vs GZMA low expression; “PRF1.ALL,” PRF1 high expression 
vs PRF1 low expression.
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index, across many cancers; and we expect that a combinatorial 
targeting of such immune-checkpoint molecules can provide a 
synergistic effect in cancer immunotherapy. Garg et al. found that 
predictive biomarkers of responsiveness to immune-checkpoint 
inhibitors in glioblastoma (GBM) exhibited inconsistent patterns 
among patients, predicting either resistance or susceptibility to 
therapeutic targeting of CTLA-4 or IDO1 (76).

Furthermore, different levels of tumor-intrinsic resistance to 
CYT can be attributed to the diverse levels of neoepitopes in these 
tumor types. Neoepitopes are tumor-specific antigens produced 
from DNA mutations occurring in cancer cells. Such mutations 
can be missense mutations, indels (insertions/deletions), and/or 
gene fusions. Increasing evidence shows that neoepitope-specific 
antitumor immune responses occur naturally in cancer cells 
and have great potentials as immunotherapeutic agents (77). 
Theoretically, immune responses to neoepitopes are not dimin-
ished by host central tolerance in the thymus and cannot trigger 
an autoimmune reaction (77, 78). These neoepitopes were lately 
shown to facilitate recognition of a tumor as foreign (78, 79), and 
an increased load of them is associated with effective immune 
responses to immune-checkpoint therapy (80). Currently, 

strategies to selectively enhance T-cell reactivity against geneti-
cally defined neoepitopes are under development (78, 81–84). 
Furthermore, recent findings identified target neoepitopes which 
can be helpful in the design of a vaccine against murine mela-
noma (85). Importantly, the immunogenicity and specificity of 
these neoepitopes was validated in vivo, after administering mice 
either mutated or wild type synthetic peptides. Further advance 
in the field was made by Verdegaal et al. who analyzed the sta-
bility of neoantigen-specific T-cell responses and the antigens 
they recognize in melanoma patients treated by adoptive T-cell 
transfer. This study demonstrated that T cells mediate neoantigen 
immunoediting, indicating that the therapeutic induction of 
broad neoantigen-specific T-cell responses should be used to 
avoid tumor resistance (86).

In comparison to melanoma, the immune CYT in breast 
cancer, the burden of nonsynonymous mutations, and the pre-
dicted load of neoepitopes were previously found to be relatively 
modest, suggesting that a combination of immune agents with 
nonredundant mechanisms of action should be of high-priority 
(87). Recently, Vonderheide et  al. highlight the critical steps 
that need to be followed for a more successful immunotherapy 
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FigUre 7 | Overall percentages of lymphocyte and neutrophil infiltration and necrosis (upper part); overall percentage of tumor, normal, and stromal cells (middle 
part); overall patient survival with respect to the percentage of tumor-infiltrating lymphocytes (TILs) (>5%, high TILs, <5%, low TILs); and representative hematoxylin 
and eosin slides of ER+, PR+, Her2/neu+ (TPBC) and triple negative breast cancer (lower part).
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in breast cancer, including immune suppression in the tumor 
microenvironment and failed or suboptimal T-cell priming (87).

Also Chen et al. (88) categorized the tumor microenvironment 
into four types, depending on the expression of PD-L1, as well as 
the ratio CD8A/CYT, and proposed that this classification can 
serve the design of more suitable immunotherapeutic strategies.

A very interesting improvement in the field was further made 
by Riaz et  al. (89), who showed that the mutation burden in 
melanoma patients decreases with successful anti-PD-1 blockade 
therapy, suggesting that the selection against mutant neoepitopes 
is a critical mechanism of action of this immunotherapy.

All these advances, show that neoepitopes can be used as bio-
markers to predict the clinical response to immunotherapy and 
the outcome, as well as to serve as immunotherapy targets (25, 
90). Besides epitope selection, the reduction of gene expression 
heterogeneity within tumor cells, the definition of the optimum 
number of simultaneously targeted neoantigens, of the patient 
profile that can benefit from neoantigen-based immunotherapy 
and escape the risk of adverse effects, and a synergistic combination 

of immune-checkpoint blockade and/or adoptive T-cell therapy, 
are all issues that need to be successfully addressed in order to 
select potent neoantigens for cancer immunotherapy (77).

Adding to the variability in cytolytic levels that we detected 
among different cancer types, CYT has also been previously 
shown to correlate with oncogenic viruses in certain tumor 
types. For example, CYT is associated with HPV infection in 
cervical cancer, and head and neck cancer, with EBV infection 
in stomach cancer, and with HBV and HCV infection in liver 
cancer (31). Overall, it seems that CYT is part of an inflam-
matory environment in a premalignant state of certain tumor 
types, whereas, in others, oncogenic mutations, copy number 
aberrations, or viral infection can induce a tumor-promoting 
inflammatory microenvironment, within which complex inter-
actions between different cell types regulate cancer development 
and metastasis (91, 92).

In the context of metastasis, we observed that CYT was 
significantly higher in metastatic skin melanoma compared to 
primary skin tumors. The increased cytolytic levels could be 
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FigUre 8 | Overall percentages of lymphocyte and neutrophil infiltration and necrosis (upper part); overall percentage of tumor, normal, and stromal cells (middle 
part); overall patient survival with respect to tumor-infiltrating lymphocytes and representative hematoxylin and eosin slides of primary and metastatic skin 
melanomas (lower part).
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further observed in metastatic breast and thyroid cancers sug-
gesting that although initially regarded as an indicator of a failed 
immune response, CTLs/NK  cells (among other inflammatory 
cells) also support tumor development (93, 94). This observation 
is in agreement with previous reports supporting that regardless 
of the tumor’s origin, an inflamed tumor microenvironment has 
many tumor-promoting effects (91, 92). In line with this, we 
found significantly elevated expression of various suppressive 
factors, correlating with a high cytolytic index, in metastatic skin 
melanomas, breast, and thyroid cancers. For example, high levels 
of CTLA-4, PD-1, PD-L1/2, LAG3, and IDO1 that we detected in 
metastatic melanoma, were many fold times more significantly 
associated with high cytolytic levels, pointing towards the exist-
ence of immunosuppression in these metastatic tumors (Figure 
S8 in Supplementary Material).

The above-mentioned vast range in the CYT and the dif-
ferent levels of infiltration of inflammatory cells (T  cells and 
neutrophils) is best reflected by the different survival curves 
produced among different types of cancer. In some tumor types 

(ACC, SKCM, BLCA, LIHC, MESO, OV, STAD, THCA, and 
UCEC), high CYT was associated with an improved outcome; 
whereas in others (LGG, BRCA, THYM, LUAD/LUSC, PAAD, 
PRAD, and READ) it is correlated with a worse outcome. Among 
LGG, THYM, and BRCA, we showed that both individual and 
simultaneous high levels of GZMA and PRF1 were significantly 
associated with a worse prognosis, whereas the simultaneous low 
levels of both cytolytic genes led to a significant shift toward a 
positive effect. Nevertheless, we could not observe this across 
different breast cancer datasets. Furthermore, contrasting results 
mentioning a worse effect of PRF1 on survival of BRCA patients 
were also recently reported in another large-scale meta-analysis 
(95). The difference between the two studies might be due to 
cohort-specific bias or power-related discrepancies. Of interest, 
among certain tumor types including ACC, SKCM and BRCA, 
the simultaneous expression of both cytolytic genes synergisti-
cally affected patient survival.

Tumor-infiltrating lymphocytes are mononuclear cells of the 
immune system that intrude the tumor tissue, and their presence 
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has been reported in solid tumors, such as breast, colon, lung, 
and cervical cancers, as well as in melanoma (43, 96–98). Low 
levels of CD8+ TILs are related with the likelihood of response 
and may escalate during therapy in responding tumors (2, 99). 
Further, the location of CD8+ TILs at the invasive margin of 
tumors may indicate an effective immune response (42, 99, 100). 
The tumor microenvironment may limit extravasation of effector 
T cells into the tumor, diminish their expansion, or reduce their 
viability (101). In BRCA, an increased TIL load in the stroma of 
the tumor was reported to associate with a higher prospect of 
therapy in early stage TNBC and Her2+ patients (98). Assessing 
light microscopy data of tissue slides, we found a higher TIL load 
in primary BRCA compared to the metastatic counterparts, but 
the differences were not significant (p > 0.05). These lymphocytic 
infiltrates mirror favorable host antitumor immune responses 
within these samples. Although the presence of high TIL levels 
has been previously linked with a more favorable prognosis in 
patients with Her2+ and early stage TNBC (46–48), we found no 
significant difference in the outcome of TNBC or TPBC between 
high and low TIL load.

Tumor-associated neutrophils also compose a significant 
part of the inflammatory cell infiltrate in several tumor types 
(102–105), but the mechanisms by which they affect tumor pro-
gression are only now being investigated. Recent studies point 
toward the tumor-promoting effects of neutrophils. Histologic 
studies performed on a variety of tumor types have shown that the 
increased TAN load correlates with unfavorable recurrence-free, 
cancer-specific and overall patient survival in kidney cancer, skin 
melanoma, colorectal cancer, and head and neck cancer (106). 
It has also been suggested that TANs can drive the metastasis of 
breast cancer cells to the liver or the lung (107, 108), activating 
angiogenesis (109, 110). In contrast, older reports suggested that 
neutrophils have antitumoral effects, by inducing direct cytotox-
icity of target cells, and decreasing the size and the number of lung 
metastatic foci (111–113). Interestingly, the anticancer activity of 
TANs was reported to mostly culminate into anticancer activity 
via oxidative burst (114, 115). Despite the heavily debated role in 
favor or against cancer, the latest research shows that TANs do 
play a key role in various aspects of tumor development, from 
malignant transformation to tumor progression, modification 
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of the extracellular matrix, angiogenesis, cell migration, and 
immunosuppression (116–121). Due to their contradictory roles 
in cancer, neutrophils are now classified into two subpopulations, 
antitumor and pro-tumor TANs (117). We detected very low per-
centage of TANs in primary breast and thyroid carcinomas and 
almost null levels in their metastatic counterparts. We noticed 
higher neutrophilic infiltration in TNBC compared to TPBC, 
but without reaching statistical significance (p  >  005). In skin 
melanoma, we noticed even less neutrophilic infiltration, being 
slightly higher in the metastatic tumors.

Overall, the multiple crosstalks among different tumor-infil-
trating immune cells, including TILs and TANs, was suggested 
to promote or inhibit the establishment of a permissive tumor 
microenvironment (17). A better understanding of the role of 
these cells will provide opportunities for the immunomodulation 
and the improvement of the existing antitumor therapies.

To conclude, we have measured the CYT in terms of RNA and 
protein levels in a large number of TCGA datasets, in order to 
understand how different cancers induce and adapt to immune 
responses. We associated each cancer’s CYT with patient survival 
both in primary and metastatic cases and evaluated the tumor-
infiltration of lymphocytes and neutrophils in H&E-stained 
sections of the same tumors. Our data suggest that the cytolytic 
index along with the existence of complicated associations among 
various tumor-infiltrated immune cells is capable to promote eva-
sion from immunosurveillance in certain cancers.
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