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Breast cancer represents a highly heterogeneous disease comprised by several 
subtypes with distinct histological features, underlying molecular etiology and clinical 
behaviors. It is widely accepted that triple-negative breast cancer (TNBC) is one of the 
most aggressive subtypes, often associated with poor patient outcome due to the 
development of metastases in secondary organs, such as the lungs, brain, and bone. 
The molecular complexity of the metastatic process in combination with the lack of 
effective targeted therapies for TNBC metastasis have fostered significant research 
efforts during the past few years to identify molecular “drivers” of this lethal cascade. In 
this review, the most current and important findings on TNBC metastasis, as well as its 
closely associated basal-like subtype, including metastasis-promoting or suppressor 
genes and aberrantly regulated signaling pathways at specific stages of the metastatic 
cascade are being discussed. Finally, the most promising therapeutic approaches 
and novel strategies emerging from these molecular targets that could potentially be 
clinically applied in the near future are being highlighted.
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inTRODUCTiOn: TUMOR HeTeROGeneiTY AnD CURRenT 
CHALLenGeS in TRiPLe-neGATive BReAST CAnCeR (TnBC) 
TReATMenT

Breast cancer is the most frequently diagnosed cancer among women in the United States and 
Europe (1, 2). Despite the relative improvement in patient survival rates, breast cancer remains 
the most commonly diagnosed cancer and the second leading cause of cancer deaths in women 
worldwide. One of major challenges for the effective treatment of breast cancer is its intertumoral 
and intratumoral heterogeneity (3). Breast cancer can be initially classified into three different types 
based on the presence or absence of estrogen receptors (ERs), progesterone receptors (PRs), and 
the human epidermal growth factor receptor 2 (Her2/neu) (4). Hormone receptor-positive breast 
cancers that express ER and/or PR constitute approximately 60% of all breast cancers (5). The 
Her2/neu receptor is overexpressed in approximately 20% of all breast cancer cases; while TNBC 
constitute approximately 20% of breast cancer cases and are negative for the expression of ER, PR, 
and Her2/neu (6, 7).
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Based on their molecular profile, breast cancers may also be 
clustered into basal-like and luminal subsets. Luminal breast 
cancers are more heterogeneous compared to basal cancers in 
terms of gene expression, mutation spectrum, copy number 
changes, and patient outcomes and can be further subdivided 
into luminal A and B subtypes (8, 9). The luminal A subtype 
represents 50–60% of breast cancer cases and is characterized 
by low histological grade and good prognosis. Luminal A 
cancers express ER and PR and have a low frequency of P53 
mutations (9). Luminal B represents 10–20% of all breast 
cancers; compared with the luminal A subtype, these cancers 
are more aggressive; they have a higher grade, worse prognosis, 
and worse proliferative index. Luminal B display an increased 
expression of proliferation genes; they are ER+, PR+/−, Her-
2+/−, and EGFR+ and have a higher frequency of P53 mutation 
(9). Because luminal cancers have a high frequency of PIK3CA 
mutations, the gene that encodes the p110α catalytic subunit of 
the phosphatidylinositol 3-kinase (PI3K), agents targeting the 
PI3K/AKT/mammalian target of rapamycin pathway may be 
useful for their treatment (10).

The basal-like subtype represents 10–20% of breast cancer 
cases. They are characterized by high proliferation, high histo-
logical grade, and poor prognosis. Basal-like cancers can be triple 
negative and have a high frequency of P53 mutations combined 
with loss of Rb1 (9, 11). However, not all basal-like cancers are 
triple negative; studies have shown that 5–45% of basal-like 
cancers express ER while 14% express Her2/Neu (12, 13). TNBC 
is a diverse group of malignancies and can be further categorized 
to different subtypes. An analysis of 21 breast cancer data sets 
containing 587 TNBC cases identified seven subtypes based on 
differential expression of a set of 2,188 genes: two basal like (BL1 
and BL2), a mesenchymal (M), a mesenchymal-stem cell-like, an 
immunomodulatory, a luminal androgen receptor/luminal-like, 
and an unclassified type (14).

The deregulation of adult mammary stem cells (aMaSC) 
during tumorigenesis is believed to contribute to the develop-
ment of TNBC. aMaSCs give rise to common progenitor cells 
that can differentiate either to basal progenitors that develop 
mature basal cells, or luminal progenitors. Disruption in 
the homeostasis of luminal progenitor cells may lead to the 
development of TNBC. Contributors in the development of 
TNBC include aberrantly activated signaling pathways, such 
as Wnt/β-catenin and Notch, transcriptional factors, like Snail, 
and embryonic stem cell markers including Sox2, Nanog, and 
Oct4. These alterations allow the restoration of proliferation 
capacity as well as the de-differentiation of these progenitor 
cells, leading to the accumulation of mutations that give rise 
to TNBC (15).

Traditionally, due to the lack of ER, PR, and Her2/Neu 
expres sion, the ineffectiveness of current breast cancer targeted 
therapies as well as due to the challenges in identifying key 
molecular drivers of TNBC progression, chemotherapy has 
been the foundation of treatment for patients with this disease 
over the last decades. Despite its sensitivity to chemotherapy, 
TNBC is associated with a higher risk of distant recurrence, 
high rates of metastases, higher probability of relapse and worse 
overall survival (OS) compared to other subtypes (16, 17).

COMPLeXiTY OF TnBC MeTASTASiS

The dissemination of breast cancer cells and eventual metastatic 
growth to distant organs—predominantly the bone, lungs, and 
brain—represents a significant clinical problem, as metastatic 
disease is incurable and is the primary cause of death for the vast 
majority of TNBC patients. Metastatic spread of tumor cells is 
a highly complex, yet poorly understood process, and consists 
of multiple steps, including acquisition of invasive proper-
ties through genetic and epigenetic alterations, angiogenesis, 
tumor–stroma interactions, intravasation through the basement 
membrane, survival in the circulation, and extravasation of some 
cancer cells to distal tissues (18). However, disseminated cells 
that survive pro-apoptotic signals in their new environment often 
remain quiescent in secondary organs undergoing long periods 
of latency, also known as the dormancy period (19). It is well 
established that the outgrowth of metastatic cells in a foreign 
tissue microenvironment is a highly inefficient process and is 
considered as the rate-limiting step of breast cancer metastasis 
(20) (Figure 1). During this stage, breast cancer cells are usually 
difficult to detect and exhibit resistance to chemotherapy due to 
lack of proliferation (19). This remains a major clinical problem 
since patients, often considered as “survivors,” can develop 
metastatic disease years later. Disseminated tumor cells (DTCs) 
can enter a state of dormancy in secondary organs by exiting 
the proliferative cycle for an indefinite period or by achiev-
ing a balanced state of proliferation and apoptosis. Successful 
emergence from dormancy is the result of further evolution of 
surviving DTCs, by accumulating molecular alterations as well 
as via permissive interactions with the tumor microenvironment 
(19). By acquiring these characteristics, metastatic populations 
can optimally adapt to the host microenvironment and initiate 
colonization. While significant progress has been made to high-
light some of the specific processes required for the breast tumor 
initiation, efforts have recently been focused on elucidating the 
roles of critical genes, the underlying molecular mechanisms and 
signaling pathways involved in the fatal late stages of metastatic 
dissemination. These studies are of outmost importance for the 
development of novel effective treatments against metastasis of 
TNBC.

GeneS iMPLiCATeD in MULTiSTeP TnBC 
MeTASTASiS

Local invasion/intravasation
Upon accumulation of genetic and/or epigenetic alterations, 
breast cancer cells at the primary tumor initially acquire prop-
erties, such as self-renewal, ability to migrate, and invade the 
surrounding normal tissues. During local invasion, breast can-
cer cells undergo epithelial-to-mesenchymal transition (EMT),  
a highly orchestrated transcriptional program, initially described 
during embryonic development, associated with dramatic 
remodeling of cytoskeleton, loss of apico-basolateral polarity, 
dissolution of cell–cell junctions, concomitant with downregu-
lation of epithelial markers and upregulation of mesenchymal 
genes (21). This process is triggered by EMT-master regulators, 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FiGURe 1 | A model for the molecular basis of triple-negative breast cancer. During local invasion and intravasation, an epithelial-to-mesenchymal transition (EMT) 
transcriptional program is initiated along with the activation of matrix metalloproteases and pro-migratory signaling. Upon entering the circulation, breast cancer  
cells can interact with platelets, enable pro-survival pathways to suppress anoikis, and resist apoptotic signals. Then, migrated cancer cells extravasate through the 
endothelial blood vessel wall to a secondary organ where they enter a prolonged dormant state by forming micrometastases. Finally, the activation of metastasis-
colonizing genes and the interaction with the local microenvironment create permissive conditions for macrometastatic outgrowth. Red: metastasis promoters, 
green: metastasis suppressors.
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such as the transcription factors Slug, Snail, and Twist to pro-
mote TNBC cell migration and intravasation in the circulation 
(22–24). The TGFβ pathway plays a critical role in regulating this 
early metastatic event. During intravasation, TGFβ promotes 
overexpression of musculoaponeurotic fibrosarcoma oncogene 
family protein K (MAFK) to induce EMT and enhance tumor 
formation and invasion in  vivo (25). The TGFβ-Smad signal-
ing axis controls the EMT step in the malignant progression of 
breast cancer cells either by inducing the expression of master 
transcriptional regulators of EMT, as described above, or by epi-
genetic silencing of epithelial genes, including CDH1 (26). The 
EMT program regulated by TGFβ/Smad signaling also involves 
WAVE3, a WASP/WAVE family actin-binding protein. In TNBC 
cells, depletion of WAVE3 expression prevented TGFβ-induced 
EMT phenotype (27). However, despite numerous studies using 
cell lines and animal models suggesting a functional role of EMT 
and EMT-inducing transcription factors in promoting breast 
cancer metastasis, the in vivo role and clinical relevance of this 
process remains controversial (28–31).

Moreover, the majority of genes implicated in TNBC metas-
tasis have been reported to play a major role at the initial stages 

of cancer cell dissemination which include migration, invasion, 
and intravasation. This is not surprising given the fact that 
cancer cell dissemination is thought to be an early event during 
breast cancer evolution and that primary and metastatic tumor 
growth is likely to progress in parallel (32). For example, activa-
tion of CXCR4 receptor via its ligand CXCL12 or ANGPTL2 
was found to induce MLK3 and Erk1/2 signaling and promote 
intravasation which leads to the development of lung and bone 
metastases (33–39). This hyperactive signaling axis may also 
function in multiple stages of the metastatic cascade, including 
angiogenesis, extravasation, and osteolysis at the secondary 
organ. At the same time, it is becoming increasingly clear that 
trans-endothelial migration and invasion of breast cancer cells 
in the vasculature is inhibited by metastasis suppressors, includ-
ing TP63, LIFR, lysyl oxidase-like 4 (LOXL4), FOXF2, SSBP1, 
RAB1B, and TIEG1 (25, 40–47), suggesting that the migra-
tory and invasive potential of breast cancer cells is ultimately 
determined by the balance in the activity of these molecules. 
The identification of numerous genes implicated in the initial 
stages of TNBC metastasis highlights the significant challenges 
for early molecular diagnosis and therapy.
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Survival in Circulation
Upon entering the blood vessels, circulating tumor cells express 
proteins that have antiapoptotic and pro-survival functions 
which allow them to attach to and infiltrate specific secondary 
sites. Neurotrophic tyrosine kinase receptor TRKB was shown 
to inhibit anoikis, a form of cell death caused by lack of adhe-
sion, via the PI3K/Akt pathway. These studies indicated that 
TRKB induces survival and proliferation of breast cancer cells 
to promote infiltration in the lymphatic and blood vessels and 
colonization in distant organs (48). In TNBC cells, brain-derived 
neurotrophic factor (BDNF) binds and activates TRKB receptor 
to regulate a network consisting of metalloproteases and calmo-
dulin and thus modulate cancer–endothelial cells interaction. 
Importantly, Erk1/2 inhibitors were able to block the BDNF-
induced phenotype, suggesting that blocking this pathway may 
be explored for therapeutic purposes against TNBC metastasis 
(49). In addition, the binding of platelets with circulating breast 
cancer cells has been shown to essential for their survival, 
evasion of pro-apoptotic signals, whereas interfering with this 
interaction inhibits the development of lung metastasis in TNBC 
mouse models (50, 51).

extravasation in Distal Sites
Many of the genetic alterations found to be involved in intra-
vasation are also implicated in extravasation (Table  1) since, 
in large part, these two processes are considered “mirrored” 
to each other. The TGFβ pathway plays an important role in 
regulating both these metastatic steps. More specifically, TGFβ 
induces the assembly of a mutant-p53/Smad protein complex 
to inhibit the function of the metastasis suppressor TP63 and 
promote cell migration and invasion (40). During extravasation, 
TGFβ induces angiopoietin-like 4 (ANGPTL4) expression via 
the Smad signaling pathway; the increased levels of ANGPTL4 
enhance the retention of cancer cells in the lungs by disrupting 
vascular endothelial cell–cell junctions, thus increasing the 
permeability of lung capillaries to facilitate trans-endothelial 
passage of breast cancer cells (52). Moreover, targeting the 
decoy interleukin-13 receptor alpha 2 (IL13Ra2) upregulates 
the metastasis suppressor TP63 in an IL13-mediated, STAT6-
dependent manner and impairs extravasation of basal-like 
breast cancer cells to the lungs (41). Several reports also high-
light the importance of the synergistic effects of genes in pro-
moting metastasis by regulating specific stages of the process. 
For example, EREG, COX2, MMP1, and MMP2 can collectively 
promote metastatic extravasation to the lungs. These four genes 
were found to be overexpressed in TNBC cells independently 
of VEGF. Individual reduction of each gene or their silencing 
in different combinations produced limited effects on tumor 
growth in vivo while concurrent silencing of all four achieved 
nearly complete growth abrogation (53).

Metastatic Colonization
Following extravasation and infiltration at the secondary site, 
a genetic program is initiated so that cancer cells can escape 
dormancy and form micro and macrometastatic tumors. 
Initially, EMT plasticity and the reversal to MET phenotype 

have been shown to be important for metastatic colonization 
(113). During this process, epithelial phenotype becomes 
re-established through miR-200-mediated downregulation 
of ZEB1, SIP1 to promote metastatic colonization (114, 115). 
Also, breast DTCs in the bone marrow gain the ability to 
form typical osteolytic metastases by producing parathyroid 
hormone-related protein (PTHLH), tumor necrosis factor-α 
(TNFα), interleukin-6 and/or interleukin-11. These factors 
stimulate the release of receptor activator of nuclear factor-κB 
ligand (RANKL) from osteoblasts which induces osteoclast 
formation (33, 58, 83, 116). Furthermore, inflammation in the 
lung microenvironment could also be responsible for triggering 
the escape of metastatic breast cancer cells from latency leading 
to metastatic colonization (117). A subset of genes contributing 
to primary tumor growth can also promote survival and growth 
at the secondary site. Chemokines CXCL1/2 mediate chemore-
sistance and lung metastasis by attracting myeloid cells into the 
tumor, which produce low molecular weight calcium-binding 
proteins S100A8/9 that enhance cancer cell survival by binding 
to the receptor for advanced glycation end products (RAGE) 
(59). Another calcium binding protein, S100A7 has been found 
to enhance tumor growth and metastasis, by binding to RAGE 
and activating Erk and NFκB signaling (88, 90). Furthermore, 
fibroblast growth factor receptor (FGFR) was shown to trigger 
pro-survival signals through PI3K/Akt signaling and promote 
outgrowth of metastatic breast cancer cells to the lungs (62). 
However, it needs to be highlighted that cellular and genetic 
context among cancers influences whether proteins act as 
tumor suppressors or metastasis promoters. One controversial 
example is LOXL4 which has been shown to recruit bone 
marrow-derived cells and facilitate colonization of TNBC to the 
lungs via a HIF1α-dependent mechanism (118). However, in 
another study, knockdown of LOXL4 expression in TNBC cells 
promoted primary tumor growth and lung metastasis which was 
associated with thickening of collagen bundles and remodeling 
of the extracellular matrix (ECM) within tumors (25). Overall, 
it is noteworthy that while some genes have been associated 
only with TNBC metastasis so far (i.e., TIEG1, MAFK, MLK3, 
SDPR), the majority is also involved in other tumor types, sug-
gesting a more fundamental role in cancer progression.

COnCLUDinG ReMARKS On CURRenT 
AnD FUTURe PeRSPeCTiveS On TnBC 
MeTASTASiS THeRAPY

Due to their molecular heterogeneity, there are no drugs that can 
target the entire spectrum of TNBC tumors and each subtype is 
vulnerable to specific therapeutic approaches. Despite the lack 
of FDA-approved targeted therapies for TNBC to date, ongoing 
clinical trials are assessing the efficacy of single or combinatorial 
approaches that tackle different TNBC molecular alterations. Up 
to 20% of TNBC have been associated with germ-line mutations 
in BRCA1 (119). TNBC tumors with loss of function of BRCA1 
or BRCA2 are sensitive to poly(ADP-ribose) polymerase inhibi-
tors and alkylating agents that induce DNA double-strand breaks 
(120). Olaparib has been the most successful PARP inhibitor 
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TABLe 1 | List of genes involved triple-negative breast cancer metastasis.

Metastasis-promoting genes

Gene Function Signaling pathway Gene ontology Stage Organ 
site

Reference

ANGPTL2 Promotes osteolysis
Migration
Angiogenesis

Activates CXCR4 and Erk1/2  
signaling

Receptor binding, extracellular space Intravasation, extravasation
Angiogenesis
Micro- to macrometastasis 
colonization

Bone (37)

ANGPTL4 Promotes trans-endothelial cancer cell 
migration by disrupting lung capillary cell 
junctions

Activated by TGFβ signaling Angiogenesis Extravasation Lungs (52)

CDCP1 Reduces lipid droplets, stimulates fatty acid 
oxidization and oxidative phosphorylation

Interacts with and inhibits acyl-CoA-
synthetase ligase

Plasma membrane, protein binding Intravasation, extravasation
Metastatic colonization and growth

Lungs (54)

COX2 Migration, invasion
Promotes cancer stem cell maintenance

Mediates TGFβ-induced cancer  
cell stemness

Prostaglandin biosynthetic process, 
angiogenesis

Intravasation, extravasation
Self-renewal

Bone (53, 55–57)

CSF2 Osteoclast activation Activated by NFκB signaling Granulocyte macrophage colony-stimulating 
factor receptor binding

Micro- to macrometastasis 
colonization

Bone (58)

CXCL1/2 Recruitment of myeloid cells Activated by tumor necrosis factor-α/NFκB 
pathway

Receptor binding, extracellular region Cancer cell survival at primary  
and metastatic sites

Lungs (59, 60)

CXCL12 Binds CXCR4 to initiate downstream signaling Activates CXCR4 signaling Response to hypoxia, migration, endothelial 
cell proliferation, receptor binding

Intravasation, extravasation
Angiogenesis

Lungs (34)

CXCR4 Mediates actin polymerization  
and formation of lamellopodia
Migration,
Invasion
Angiogenesis

Activated by ANGPTL2 Activation of MAPK activity, response to 
hypoxia, chemotaxis, G-protein coupled 
receptor activity

Intravasation, extravasation
Angiogenesis

Lungs (33–36)

CYR61 Vascularization Activated by Sonic-Hedgehog/Gli1 
signaling

Regulation of cell growth, angiogenesis Angiogenesis
Micro- to macrometastasis 
colonization

Lungs (61)

EREG Promotes vessel remodeling  
and invasion

VEGF-independent MAPK cascade, angiogenesis Intravasation
Extravasation
Angiogenesis

Lungs (53)

FGFR Suppresses apoptosis and  
promotes survival

Activates PI3K/Akt signaling MAPK cascade, angiogenesis Survival
Primary tumor growth
Micro- to macrometastasis 
colonization

Lungs (62)

FSCN Migration, invasion Activates NFκB signaling
Increases MMP2, MMP9 expression

Stress fiber, podosome, actin binding Intravasation, extravasation Lungs (63, 64)

ID1, ID3 Promotes tumor re-initiation Induced by NFκB-mediated IGF2/PI3K 
signaling

DNA binding transcription factor activity, 
angiogenesis

Micro- to macrometastasis 
colonization

Lungs (65–67)

IL13Ra2 Migration Suppresses IL13–STAT6–P63 signaling Cytokine receptor activity, signal transducer 
activity

Extravasation Lungs (41, 60)

(Continued )
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Metastasis-promoting genes

IRAK1 Invasion
Promotes cancer stem cell maintenance

Activates NFκB and p38 signaling Activation of MAPK activity, regulation  
of cytokine-mediated signaling

Intravasation, extravasation
Self-renewal

Lungs (68)

LDH Catalyzes final reactions of glycolysis Activates glycolytic pathway Response to hypoxia, lactate dehydrogenase 
activity, lactate/pyruvate metabolism 

Metastatic growth and colonization Brain (69, 70)

LPA Produced by platelets to promote osteolysis Induces interleukin-6 and IL8 secretion by 
breast cancer cells

Fibronectin binding, endopeptidase activity Micro- to macrometastasis 
colonization

Bone (71)

MAFK Promotes epithelial-to-mesenchymal transition 
(EMT)

Activated by TGFβ pathway DNA binding transcription factor activity Intravasation, extravasation Lungs (72)

MLK3 Drives invasion and trans-endothelial migration Mediates CXCL12/CXCR4 signaling  
to promote paxillin phosphorylation
Increases FRA1, MMP1 and MMP9 levels

Activation of MAPK activity, protein  
serine/threonine kinase activity

Intravasation
Extravasation

Lungs (38, 39)

MYOF Regulates lipid metabolism and mitochondrial 
function and promotes  
vesicle trafficking

Loss of MYOF suppresses AMPK 
phosphorylation and HIF1α stabilization 
due to metabolic stress

Phospholipid binding, plasma  
membrane, caveola

Metastatic growth and colonization Lungs (73)

NOS Promotes EMT, self-renewal, migration, 
invasion

Activates TGFβ and hypoxia signaling Response to hypoxia, nitric-oxide synthase 
activity

Intravasation, extravasation
Self-renewal

Lungs (74)

NOTCH1/
NOTCH2

Migration, invasion
Promotes cancer stem cell maintenance

Activate Notch signaling Golgi membrane, cell fate determination, 
receptor activity

Intravasation, extravasation
Tumor initiation and self-renewal

Lungs
Bone

(75)

OPN Mediates MSC-to-cancer-associated fibroblast 
transformation, tumor growth  
and invasion

Mediate TGFβ1 signaling to increase 
MMP2 and uPA levels

Osteoblast differentiation, cytokine activity Tumor growth Invasion Lung
Liver

(76, 77)

PCDH7/CX43 Promotes cancer cell-astrocyte interaction Activates IFNγ, NFκB pathway Calcium ion binding, plasma membrane, cell 
adhesion

Micro- to macrometastasis 
colonization

Brain (78)

PKCλ/i Migration, invasion Activated by TGFβ/IL1β
Activates NFκB

Golgi membrane, protein serine/threonine 
kinase activity

Intravasation, extravasation Lungs (79)

PML Migration, invasion Activated by hypoxia/HIF1α signaling Response to hypoxia Intravasation, extravasation Lungs (80)

POSTN Expressed by stromal or cancer cells
Promotes cancer stem cell maintenance

Activates Wnt1 and Wnt3A signaling
Activates NFκB and Erk signaling

Negative regulation of cell–matrix adhesion, 
response to hypoxia

Micro- to macrometastasis 
colonization

Lungs (81, 82)

PTHLH Osteoclast activation Activated by TGFβ signaling
Induced by miR-218-5p

Osteoblast development, hormone activity Micro- to macrometastasis 
colonization

Bone (83, 84)

PTK6 Promotes EMT via Snail upregulation Activates EGF and PI3K/Akt signaling Protein tyrosine kinase activity Local invasion
Intravasation

Lungs (85, 86)

RAD51 Promotes aberrant DNA repair Double-strand break repair pathway Double-strand break repair via homologous 
recombination

Intravasation, extravasation Lungs (87)

RAGE Binds S100A7 to promote recruitment of 
tumor-associated macrophages  
and migration

Activates Erk and NFκB pathways Cytokine production, inflammatory 
responses

Primary and metastatic tumor 
growth
Intravasation, extravasation

Lungs (88)

TABLe 1 | Continued
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Metastasis-promoting genes

RANKL Migration
Osteoclast activation

Activates NFκB signaling
Induced by miR-218-5p

Osteoblast proliferation, cytokine activity, 
monocyte chemotaxis

Intravasation, extravasation
Micro- to macrometastasis 
colonization

Bone (84, 89)

S100A7 Promotes inflammation, recruitment of tumor-
associated macrophages and angiogenesis

Activates STAT3, Akt and Erk pathways Response to ROS, angiogenesis Primary and metastatic  
tumor growth

Lungs (90)

SERPINS (NS, 
B2, D1)

Inhibit plasminogen activation
Promote vascular co-option

Inhibits FasL-mediated apoptotic pathway Serine-type endopeptidase inhibitor activity, 
chemotaxis, blood coagulation

Survival
Micro- to macrometastasis 
colonization

Brain (91)

SLUG Promotes EMT
Migration
Invasion
Survival by suppressing  
Puma-induced apoptosis

Activated by Erk, FGF signaling
Activates TGFβ signaling

EMT Local invasion
Intravasation Metastatic 
colonization

Lungs (22, 92–94)

SNAIL Promotes EMT
Migration
Invasion

Activated by EGF signaling
Activates TGFβ signaling

EMT, Mesoderm formation Local invasion
Intravasation

Lungs (23, 94–96)

SPRY1 Promotes EGFR stability
Promotes EMT, migration, invasion

Activates EGFR signaling Mitotic spindle orientation Intravasation, extravasation Lungs (97)

ST6GALNAC5 Mediates brain infiltration across  
the blood–brain barrier

Catalyzes cell-surface sialylation Golgi membrane, sialytransferase activity Extravasation Brain (98)

TGFβ1 EMT
Migration
Invasion
Promotes osteoclastic bone resorption

Activates AP1- and Smad4-dependent 
interleukin-11 and CTGF expression.
Maintains Smad2-dependent, DNMT1 
mediated DNA methylation and silencing 
of CDH1

EMT, vasculogenesis, neural tube  
closure, response to hypoxia

Intravasation, extravasation
Colonization

Lungs
Bone

(26, 99, 
100)

TNC Promotes survival and outgrowth of 
macrometastases

Activates Notch and Wnt signaling Osteoblast differentiation, extracellular region Micro- to macrometastasis 
colonization

Lungs (101)

TRKB Suppresses anoikis to promote  
survival in circulation
Modulates breast cancer-endothelial  
cell interaction

Interacts with brain-derived neurotrophic 
factor ligand
Activates Erk and PI3K signaling

Vasculogenesis, neuron migration Survival in circulation Lungs
Bone

(48, 49)

TWIST Promotes EMT
Migration
Invasion

Induced by Wnt signaling Neuron migration, neural tube closure, 
morphogenesis

Local invasion
Intravasation

Lungs (24, 102)

VCAM1 Osteoclast activation through interaction  
with integrin α4β1
Binds metastasis-associated  
macrophages via α4 integrins

Activated by NFκB pathway
Activates PI3K/Akt pathway

Inflammatory response, integrin binding, 
extracellular space

Survival
Micro- to macrometastasis 
colonization

Bone
Lungs

(60, 103, 
104)

WAVE3 Promotes EMT Activates TGFβ signaling Actin binding, cytoskeleton organization, 
lamellipodium

Intravasation, extravasation Lungs (27)
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Metastasis-promoting genes

Wnt1 Maintains CSC renewal
Migration
Invasion

Activates Wnt/β-catenin signaling
Induced by miR-218-5p

Embryonic axis specification, frizzled binding, 
cytokine activity

Intravasation, extravasation
Colonization

Lungs
Bone

(84, 
105–107)

ΔNp63 Promotes migration, invasion
EMT

Activates PI3K signaling and CD44v6 
expression

Transcription factor activity, p53 binding Intravasation, extravasation Lungs
Bone

(108)

Metastasis suppressor genes

FOXF2 Inhibits migration, invasion Blocks EMT by suppressing Twist Transcription factor activity,
EMT

Intravasation, extravasation Lungs (44)

LIFR Inhibits migration, invasion Targeted by miR-9
Activates Hippo/YAP pathway

Regulation of cytokine-mediated  
signaling pathway

Intravasation, extravasation
Metastatic colonization

Lungs (43)

LOXL4 Inhibits migration, invasion, primary  
and metastatic tumor growth

Suppresses collagen synthesis Scavenger receptor activity, oxidoreductase 
activity

Intravasation, extravasation Lungs (25)

TP63 Inhibits migration, invasion
Regulates miRNA processing

Inhibited by TGFβ-induced Smad/
mutant-p53 complex
Induced by IL13
Upregulates Dicer to control miRNA 
processing

Transcription factor activity, p53 binding Intravasation, extravasation Lungs (40–42)

RAB1B Inhibits migration, invasion Activates TGFβ/Smad signaling Golgi membrane Intravasation, extravasation Lungs (46)

SDPR Inhibits extravasation, Apoptosis Silenced by DNA methylation
Suppresses NFκB, Erk

Phosphatidylserine binding Extravasation
Apoptosis at secondary organ

Lungs (109)

SHARP1 Promotes degradation of  
hypoxia-inducible factors
Inhibits migration, invasion

Suppresses hypoxia-inducible pathway DNA binding transcription factor activity Extravasation Lungs (110)

SSBP1 Inhibits TGFβ-induced EMT Regulates mitochondrial retrograde 
signaling

Single-stranded DNA binding, RNA binding, 
mitochondrial matrix

Intravasation, extravasation Lungs (45)

TIEG1 Inhibits migration, invasion Downregulates EGFR expression to 
suppress EGF signaling

DNA binding transcription factor activity Intravasation, extravasation Lungs (47)

TXNIP Blocks glucose uptake and aerobic  
glycolysis
Suppresses EMT

Suppressed by Myc oncogene and 
miR-373

Mitochondrial intermembrane space, enzyme 
inhibitor activity

Intravasation, extravasation
Metastatic colonization and growth

Lungs (111, 112)

A comprehensive list of genes implicated in various stages of the metastatic cascade, their reported functions, upstream or downstream regulatory signaling pathways involved, gene ontology, as well as the secondary organs which 
become affected.
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against BRCA-mutated TNBC, inducing partial responses in 54% 
of patients when administered as a single agent (121) and an over-
all response rate of 88% when combined with carboplatin (122). 
Anti-androgens as well as FGFR inhibitors have been tested in 
clinical trials against TNBCs that are androgen receptor-positive 
or harbor FGFR amplification, respectively (123, 124). Gamma-
secretase inhibitors that block the NOTCH pathway are currently 
in clinical trials for TNBC patients with upregulated NOTCH 
signaling (125). All together clinical trials have shown that each 
agent alone provides small or no benefit in TNBC patients sug-
gesting that further effort is needed to discover novel targets of 
TNBC and to identify each patient’s molecular profile that will 
lead to a more individualized treatment.

Toward this goal, some of the metastasis-promoting genes 
reported here could be further exploited for the future devel-
opment of promising targeted therapies. Since local invasion, 
intravasation and possibly extravasation are thought to occur 
relatively early in the metastatic process (32), a plausible strategy 
would be to target dormancy and the outgrowth of macrometa-
static tumors in distal organs. Since this final stage is considered 
the critical “rate-limiting” step of the “invasion-metastasis” 
cascade requiring even years to be completed, it provides a 
window of opportunity for effective therapy. Therefore, different 
approaches could aim against “druggable” molecules that facili-
tate metastatic colonization, such as overexpressed receptors 
or secreted molecules (i.e., CXCL1/2, FGFR, TGFβ1, WNT1, 
ANGPTL2, CSF2, RANKL), which target commonly deregu-
lated signaling networks at this late-stage (Table  1). Ongoing 
clinical trials are evaluating the efficacy of the TGFβR1 inhibitor 
LY2157299 with paclitaxel (NCT02672475), whereas the FGFR 
inhibitor Lucitanib is also under testing (NCT02202746) for 
patients with metastatic TNBC. The ultimate goal would be, if 
not to completely eliminate dormant metastatic breast cancer 
cells, to prolong dormancy period and hopefully transform this 
stage into a chronic inactive cancer cell state.

Importantly, recent studies have shown that tumor cells are 
able to evade immune responses by activating negative regula-
tory pathways, also known as immune checkpoints, that block 
T-cell activation through cytotoxic T-lymphocyte protein 4 
(CTLA4) or via binding of the programmed cell death protein 
1 (PD1) receptor expressed on T-cell surface to the PDL1 ligand 
expressed by cancer cells in response to various cytokines (126). 
The recent development and FDA approval of anti-CTLA4, 
anti-PDL1, and anti-PDL1 monoclonal antibodies that elicit 

antitumor clinical responses in a variety of solid cancers created 
enthusiasm for cancer therapy (127). Currently, several clinical 
trials are underway to evaluate the efficacy of this approach in 
TNBC as well (128).

However, a major clinical problem is that breast cancer is 
considered one of the most desmoplastic tumor types due to 
the production of excessive amounts of ECM components, 
such as collagen and hyaluronan, which generate mechanical 
stresses within the growing tumor (129). This results in blood 
vessel compression, hypoperfusion, and hypoxia which pro-
mote cancer progression and metastasis as well as hinder drug 
delivery (130). Therefore, targeting components of the tumor 
microenvironment has also been recently proposed as another 
promising strategy for TNBC therapy by improving tumor 
penetration and delivery of cytotoxic drugs (131). For example, 
targeting of cancer-associated fibroblasts using pirfenidone, an 
FDA-approved drug for idiopathic pulmonary fibrosis, has been 
shown to suppress metastasis of TNBC in combination with 
doxorubicin (132). This effect is likely to be mediated through 
remodeling of tumor microenvironment which reduces ECM 
components through suppression of TGFβ signaling, improves 
perfusion and delivery of chemotherapy (133). Similar effects 
have also been demonstrated using the anti-fibrotic drug 
Tranilast or the anti-hypertensive drug Losartan in combination 
with chemotherapy or nanotherapy in mouse models for TNBC 
(134–136).

In conclusion, this evidence suggests that efforts in the near 
future should be focused toward the development and testing 
of novel anti-metastatic targeted therapies for late-stage TNBC 
that could be used in combination with existing chemotherapies, 
immunotherapies as well as with microenvironment-remodeling 
agents that can improve drug penetration and overall therapeutic 
efficacy.
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