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It is well known that genetic mutations can drive drug resistance and lead to tumor 
relapse. Here, we focus on alternate mechanisms—those without mutations, such 
as phenotypic plasticity and stochastic cell-to-cell variability that can also evade drug 
attacks by giving rise to drug-tolerant persisters. The phenomenon of persistence 
has been well-studied in bacteria and has also recently garnered attention in cancer. 
We draw a parallel between bacterial persistence and resistance against androgen 
deprivation therapy in prostate cancer (PCa), the primary standard care for metastatic 
disease. We illustrate how phenotypic plasticity and consequent mutation-independent 
or non-genetic heterogeneity possibly driven by protein conformational dynamics can 
stochastically give rise to androgen independence in PCa, and suggest that dynamic 
phenotypic plasticity should be considered in devising therapeutic dosing strategies 
designed to treat and manage PCa.

Keywords: bet-hedging, stochasticity, androgen independence, non-genetic heterogeneity, phenotypic plasticity, 
intermittent androgen therapy

iNTRODUCTiON

Phenotypic plasticity, the ability of cells/organisms in a population to switch states (phenotypes) 
in response to environmental conditions despite identical genetic contents, can have far-reaching 
consequences (1). In particular, it is widely acknowledged that the stochastic differentiation of a 
population of genetically identical cells (in other words, a clonal population) into distinct phenotypes 
can offer survival advantage in unpredictable fluctuating environments (2, 3). The phenomenon of 
bacterial persistence—the ability of a subpopulation of a clonal bacterial population to survive expo-
sure to high concentrations of an antibiotic—is a striking example of the advantages of phenotypic 
plasticity (4). The existence of persisters protects the population from extinction under sudden harsh 
conditions and accounts for prolonged and recurrent infections (5). Recently, the concept of pheno-
typic plasticity has gathered much attention in cancer biology as well. Genetically identical cancer 
cells can manifest diverse phenotypes during tumor progression via mechanisms, such as epithelial–
mesenchymal transition (EMT) (6), mesenchymal-amoeboid transition (6, 7), and neuroendocrine 
differentiation (8, 9). Such phenotypic plasticity can facilitate metastasis and therapeutic resistance 
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FiGURe 1 | Bacterial Persistence. (A) Biphasic time-kill curve in bacterial populations exposed to antibiotics: faster killing rate of sensitive cell (green dotted line) 
followed by a slower killing rate (red dotted line) of persisters. In contrast, the antibiotic-resistant population continues to grow in presence of antibiotic (blue curve). 
(B) (top) An isogenic population of antibiotic sensitive cells can give rise to persisters via non-genetic/phenotypic plasticity. These slow-cycling persisters survive in 
the antibiotic treatment and tend to resume growth and generate a new population identical to the original population upon antibiotic removal (bottom). Persisters 
and non-persisters can switch among one another; the switching rate can be influenced by external stress factors. (C) Non-genetic heterogeneity of a key regulator 
of persistence (say X) in an isogenic population may give rise to two (or more) subpopulations that may continue switching stochastically among themselves to 
maintain persisters.
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in cancer cells (10, 11). These examples have illustrated the dire 
unmet need to investigate the underlying mechanisms regulating 
phenotypic plasticity and consequent non-genetic heterogeneity.

BACTeRiAL PeRSiSTeNCe: A HALLMARK 
OF PHeNOTYPiC PLASTiCiTY

Many clonal bacterial populations respond to antibiotic drug 
treatment in a biphasic manner; the initial steep decrease in 
survival (fast killing rate) of a “normal” (drug-naïve) bacterial 
population is followed by a much slower decrease (slow kill-
ing rate), revealing the existence of persisters (4) (Figure  1A). 
These persisters, when isolated and regrown in the absence of 
drug, give rise to a population that is strikingly similar to the 
original population. When this population is exposed to the 
same antibiotic treatment, a similar time-kill curve is reproduced 
which was observed in the initial population, thereby indicating 
that the slower rate of killing of the persistent population is not 
permanent (Figure  1B). Thus, the phenomenon of persistence 
is different than that of resistance (defined as inherited ability of 
microorganisms, often due to genetic mutations, to grow at high 
concentrations of antibiotic irrespective of the duration of treat-
ment) (4) (Figure  1A). Instead, bacterial persistence has been 
reported to act as a “phenotypic switch” where individual E. coli 
persisters stochastically transit into an actively growing state with 

their growth rate indistinguishable from the non-persisters and 
vice-versa (12) (Figures 1B,C). A lack of change in the persisters’ 
DNA sequence lends further credence to the idea that persistence 
is a non-genetic trait (13), i.e., the emergence of persisters need 
not depend on mutational or heritable changes in DNA sequence, 
but can result from diversity in cellular response to a repertoire 
of signals.

Direct single-cell and flow cytometry observations have sug-
gested that persisters may arise as a subset of pre-existing dormant 
cells in an E. coli population (5). Specifically, some persister cells 
may have formed a priori even before the lethal antibiotic treat-
ment. This pre-existing heterogeneity can be viewed as an example 
of “bet-hedging”—an evolutionary strategy that aims to maxi-
mize the fitness of an isogenic or a clonal population in dynamic 
environments through phenotypic heterogeneity, i.e., giving rise 
to two or more distinct subpopulations (14). Concomitant with 
this concept, bistability (existence of two distinct subpopulations 
that may reversibly transition to one another) in biochemical 
networks driving persistence has been proposed to give rise to 
persisters (15–17); this continued switching between different 
cell states can help to maintain a subpopulation of persisters 
(Figure 1C).

Another way of generating persisters is responsive diversifica-
tion, where the application of sub-lethal levels of stress, including 
antibiotic treatment, can stimulate their formation (3, 5). Here, an 
initially homogeneous population can, while actively responding 
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to the environmental change, generate stochastically different 
subpopulations of cells, via induced bistability in the underlying 
networks (18). The above-mentioned bacterial responses high-
light how bacteria can deal efficiently with multiple antibiotics. 
Besides generating persisters, bacteria have been observed to 
display advanced social community skills, such as quorum sens-
ing and developing biofilms to enhance their survival (19).

DRUG-TOLeRANT PeRSiSTeRS (DTPs) 
AND MUTATiON-iNDePeNDeNT 
PHeNOTYPiC SwiTCHiNG iN CANCeR

More complicated and complex counterparts of the social features 
discussed earlier often drive adaptive tumor dynamics (20–23), 
for instance, cooperation among cancer cells in evading chemo-
therapy (24) and in successfully colonizing distant organs (25–28). 
“Complicatedness” refers to the number and diversity of compo-
nents in a tumor microenvironment (TME) (29)—besides wide-
spread intratumor clonal heterogeneity (30), TME contains diverse 
cell types, such as endothelial cells, macrophages, fibroblasts, and 
other immune cells (31). On the other hand, “complexity” refers 
to the gamut of regulatory connections among those components 
(29)—tumor cells communicate among themselves and with these 
stromal cells via multiple mechanical and/or chemical cues, and 
can thus alter cellular phenotypes reversibly (32–40). For example, 
M1 and M2 macrophages can affect epithelial–mesenchymal plas-
ticity oppositely (34), whereas mesenchymal breast cancer cells 
can polarize macrophages toward M2 polarization (35). Nonlinear 
dynamics emerging from this multi-scale crosstalk defines the 
adaptive evolution of tumors and can dictate therapeutic response 
(41, 42). Thus, with this combination of clonal diversity and non-
mutational mechanisms, such as dynamic phenotypic plasticity, 
the tumor, as an ecosystem, can withstand many therapeutic 
assaults and present clinically insuperable challenges of tumor 
relapse, metastasis, and therapy resistance (19).

While the implications of clonal diversity leading to therapy 
resistance and devising effective therapeutic strategies have been 
well-appreciated (43, 44), contributions of cellular plasticity 
driven by intrinsic (for example, the hypoxic or metabolic state 
of a cell) and/or extrinsic (for example, the chemokines or matrix 
stiffness a cell is exposed to) signals—without any essential com-
plicity of genetic mutations (45–49)—have only recently begun 
to be elucidated. Here, we focus on the striking parallels between 
bacterial persistence and resistance of prostate cancer (PCa) cells 
against androgen deprivation therapy (ADT). These parallels aim 
to better understand how cancer, a community of heterogeneous 
subpopulations (19), may benefit from bet-hedging and thus 
evade multiple, potent-targeted therapies, and appreciate how 
cancer can exhibit traits of a robust, diverse, and adaptive social 
ecosystem.

Cancer has largely been considered a genetic disease driven by 
mutations (50). These primary and secondary mutations owing to 
clonal heterogeneity have been regarded as keystones of therapy 
resistance (51) (Figure 2A). However, the role of mutation-inde-
pendent heterogeneity and phenotypic switching in cancer biol-
ogy, such as cell-fate switching between a more dedifferentiated 

drug-resistant state and a well-differentiated drug-sensitive state 
in clonal or isogenic populations (32, 45), is gaining acceptance 
(46, 52). This dynamic cell-fate switching enables the emergence 
of multiple phenotypes from a single genotype, thus defying a 
precise linear genotype–phenotype mapping relationship and 
obfuscating the identification and targeting of mutations believed 
to be causal (53).

Striking recent observations in non-small cell lung cancer 
(NSCLC), melanoma, pancreatic ductal adenocarcinoma 
(PDAC), and breast cancer have illustrated the role of mutation-
independent dynamic and adaptive phenotypic switching with 
implications in therapeutic design. For instance, treatment of 
multiple NSCLC cell lines sensitive to the epidermal growth fac-
tor receptor (EGFR) tyrosine kinase inhibition with a drug con-
centration 100-fold higher than the IC50 value led to the isolation 
of DTPs (45, 54). When propagated in drug-free media, DTPs 
resume growth and regain sensitivity to EGFR inhibition (45). 
This reversible phenomenon of persistence and the clonality of the 
population in which both persisters and non-persisters co-exist 
indicate that this phenotypic switching is mutation-independent 
(46). Similarly, some melanoma tumors that do not respond to 
B-raf proto-oncogene (BRAF) or mitogen-activated protein kinase 
inhibition may upregulate EGFR; this process can be reversed by 
discontinuing drug treatment, thereby re-sensitizing the appar-
ently resistant cell population (54). Recent single-cell phenotyp-
ing and genome-wide transcriptomics reveal that in response to 
BRAF inhibition, many patient-derived BRAFV600-mutant cell 
lines undergo reversible cell-state transitions from a drug-naïve 
melanocytic state to a drug-resistant mesenchymal-like state (55). 
These transitions are driven not by selection of de novo genetically 
resistant clones, but instead result from the dynamics of underly-
ing signaling networks (56) that can drive this adaptive transition 
(55). These instances of reversible and adaptive resistance against 
therapies are fundamentally different from de novo resistance 
(resistance due to “hard-wired” mechanisms, such as genetic 
mutations) and can help to explain clinical observations showing 
that some patients tend to regain sensitivity to BRAF inhibitor 
vemurafenib after a “drug holiday” (57). Furthermore, circulat-
ing tumor cells cultured from ER-positive/HER2-negative breast 
cancer patients revealed discrete HER2+ (proliferative) and 
HER2− (less proliferative, more drug-resistant) subpopulations 
that can interconvert spontaneously (58). Finally, a majority of 
PDAC cells were able to tolerate KRAS inhibition in both acute 
and sustained manner by adaptive switching through rewiring of 
signaling pathways (48). This switching did not invoke any sig-
nificant mutational changes, underlining its non-genetic mecha-
nism (48). These illustrative examples have motivated extensive 
investigations into phenotypic switching and DTPs in melanoma 
(47, 59, 60) and NSCLC (61), implying that drug resistance may 
be a reversible trait instead of a fixed modification, or that cells 
may dynamically enter and exit a window of drug resistance.

Similar mechanisms of phenotypic switching have been 
reported to regulate a dynamic equilibrium between cancer stem 
cells (CSCs)—a subpopulation with tumor-enhanced initiation 
potential and often enriched therapy resistance—and non-CSCs 
in breast cancer (62–64). These subpopulations have very similar, 
if not identical, genomic landscapes (62) and switching can be 
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FiGURe 2 | Modes of therapeutic resistance in cancer cells. (A) Cancer cells may resist cytotoxic drugs due to genetic mutations either pre-existing (de novo) in 
different clones that together constitute the cancer cell population, or those acquired during expansion of the drug-resistant clone. (B) An isogenic or a clonal 
population may be able to survive therapeutic assaults due to stochastic cell-to-cell variability of a key player regulating the formation of persisters. Drug treatment 
may enhance this non-genetic heterogeneity due to responsive diversification and/or drug-induced cellular reprogramming. This non-genetic heterogeneity can 
survive addition of cytotoxic drug, however, it can also lead to different acquired mutations by drug-tolerant persisters (DTPs) that can then be inherited by DTP 
clones. Dotted black line indicates which cells are persisters (to the right of it) versus which are not (to the left of it). (C) Same as (B), but without any change in 
variation of the levels of X; instead, the mean levels of X change. Cells shown in one color represent identical genetic makeup.
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regulated by chromatin-mediated mechanisms (63), reminiscent 
of NSCLC studies (45), or cell–cell communication (32). Thus, 
similar to drug resistance, stemness need not be a static mutation-
driven trait, but may be a functional reversible state that cancer 
cells can transiently adopt (46, 65, 66). Although the precise 
relation between DTPs and CSCs remains to be fully elucidated, 
mechanisms of drug resistance exhibited by CSCs and those by 
DTPs are remarkably similar (67).

ROLe OF STOCHASTiCiTY AND  
CeLL-CeLL COMMUNiCATiON iN 
GeNeRATiNG DTPs

Given that persistence tends to optimize the fitness of a clonal 
population by distributing the limited community resources into 
phenotypically distinct subpopulations (5), it is not surprising that 
cell–cell communication may be instrumental in generating DTPs 

and/or CSCs via bet-hedging and/or responsive diversification 
mechanisms. Similar to quorum sensing in bacterial persisters 
(5), cell–cell communication via soluble cytokines can maintain a 
dynamic equilibrium of CSCs and non-CSCs (32). Similarly, DTPs 
isolated from multiple breast cancer cell lines (68) display enhanced 
Notch-Jagged signaling (69), an evolutionarily conserved cell–cell 
communication pathway that can contribute to multiple hallmarks 
of cancer (70, 71), and potentially stabilize a persister cell state (72).

Further, similar to stress-induced dynamic responsiveness in 
bacteria, phenotypic transitions in cancer cells can be induced by 
therapy (68, 73, 74). One way these transitions could happen is by 
enhancing the pre-existing stochastic non-genetic heterogeneity 
(75–77) (Figure 2B); an alternative mechanism could be by alter-
ing the mean levels of a key regulator of cell survival (Figure 2C). 
Stochasticity is a fundamental feature of biological systems because 
all biochemical reactions may contain random fluctuations given 
that no two cells have the exact same number of key components, 
such as RNA polymerase, transcription factors, etc., that can 
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affect gene expression or activity (78). Such cell-to-cell variability 
has been implicated not only in modulating the probability of 
differentiation of embryonic stem cells into varied developmental 
lineages (79, 80), but also in improving population survival by 
diversifying cells to be able to survive stressful conditions (81, 
82), i.e., by “bet-hedging”. Stochastic single-cell behavior can also 
play a crucial role in recreating the population heterogeneity of 
breast cancer cells; apparently homogeneous subpopulations of 
breast cancer cells exhibiting distinct phenotypes, when cultured 
in vitro separately, often return to equilibrium populations over 
time (83). This inherent cell-to-cell variability can be enhanced 
by drug treatment by pushing a cell population to different cell 
states (55). Taken together, these observations argue for taking 
into account the inherent noise or stochasticity while assessing 
and optimizing anti-cancer therapies (84).

It should be noted that although DTPs are exemplars of 
non-genetic heterogeneity, genetic and non-genetic aspects of 
surviving therapeutic assaults may be intertwined. For instance, 
DNA damage—a key driver of genomic instability and genetic 
heterogeneity—can trigger persistence in S. cerevisiae by activat-
ing stress response (85). Similarly, induction of SOS response 
(response to DNA damage in which cell cycle gets arrested) 
increases the fraction of persisters in E. coli (86). On the other 
hand, EGFR T790M mutations were observed in NSCLC DTPs 
that were T790M-negative a priori (61, 87), indicating that DTPs 
provide a pool of cells from which various genetic modes of 
resistance can evolve (87) (Figure  2B). In the EGFR-addicted 
NSCLC cell line PC9 that initially revealed the existence of DTPs 
upon EGFR tyrosine kinase inhibition (45), 17 different persister-
derived erlotinib-resistant colonies (PERCs) were established 
from a single persister (87). These PERCs displayed different 
genetic mechanisms of resistance, such as T90M mutation in 
EGFR and MET amplification (87). These two acquired resistance 
mechanisms account for over half of clinically reported cases that 
develop resistance against EGFR inhibitors (88). Furthermore, 
recent studies in melanoma, where vemurafenib treatment con-
verted a transient transcriptional state in a clonal population into 
stable clones exhibiting resistance against vemurafenib (47) argue 
that genetic and non-genetic causes of resistance are not mutually 
exclusive. These observations are reminiscent of bacterial persist-
ers acquiring stable resistance against antibiotics (89), and suggest 
that transient effects due to drug-induced cellular reprogramming 
and/or cell-to-cell heterogeneity may prevent cancer cells from 
extinction by giving them time to acquire inheritable second-
ary mutations that can stably drive the progression to relapse. 
Furthermore, given the growth-arrested state of persisters, the 
mechanism by which they gain mutation(s) may be independent 
of cell division, for instance, genome instability driven through 
DNA damage and consequent repair. Thus, preventing the forma-
tion of these persisters may contribute to reduced resistance.

NON-MUTATiONAL MeCHANiSMS OF 
ANDROGeN iNDePeNDeNCe iN PCA

Prostate cancer is a leading cause of cancer incidence and cancer-
related deaths in men. The 5-year survival rate of patients with 

local and regional PCa is almost 100%, but this rate drops to 28% 
in patients with metastasis to a distant organ (90). The primary 
standard of care therapy for locally advanced and metastatic PCa 
is ADT—surgical or chemical castration that lowers testosterone 
levels by stably suppressing androgen secretion (91, 92). This 
treatment has been in place for over 75  years, since Charles 
Huggins and colleagues described its efficacy in 1941 (92). While 
PCa patients typically respond well to ADT, most patients expe-
rience recurrence of the disease—termed as castration-resistant 
prostate cancer (CRPCa)—within 2–3 years of ADT (91). New 
treatments for CRPC, such as enzalutamide and abiretarone 
have been approved, but they extend median survival by merely 
2–8 months (91), thus illustrating CRPC as an unmet urgent need.

Multiple mechanisms have been reported to contribute to 
resistance against ADT, such as increased expression of androgen 
receptor (AR), mutations in the ligand-binding domain of AR, 
and production of splice variants of AR (91) that can be upregu-
lated in CRPC (93). Most frequently observed genetic aberrations 
in metastatic CRPC occur in AR, TP53, ETS family, RB1, and 
PTEN (94). Loss of PTEN function—often achieved by somatic 
mutations—has been correlated with worse survival (95) and can 
suppress the levels of androgen responsive genes by modulating 
AR activity (96). Loss of RB1 function enhances AR mRNA levels 
significantly and can induce resistance against ADT (97). Fusion 
of ETS family members, such as ERG to androgen-regulated gene 
TMPRSS2 can attenuate AR transcriptional activity, and thus 
drive selective pressure for development of PCa resistant to ADT 
(98). Also, inhibition of TP53 may diminish AR-mediated signal-
ing (99). Thus, while no universal mechanism has been identified 
to drive evolution to CRPC, the AR pathway usually plays a key 
role (100, 101).

However, other non-mutational-based mechanisms similar to 
bacterial persistence may also contribute to this aggressive behav-
ior. Metastatic CRPC has been reported to contain a mixture of 
cells displaying a range of AR expression levels (92). It is thus 
possible that this heterogeneity may exist a priori before the onset 
of ADT and/or is a product of responsive diversification, i.e., 
ADT induces the formation of these subpopulations from a clonal 
population. Recent evidence supports at least the former possibil-
ity, i.e., an isogenic population of PCa cells harbors a continuum 
of phenotypes with varying sensitivity to ADT, or, in other words, 
varying androgen-dependence. Different subclones established 
from a parental LNCaP cell line that is generally thought to be 
androgen-dependent had varying androgen sensitivity and AR 
activity levels that correlated with their different invasive and 
proliferative potential (102). Given that most of the differentially 
expressed genes among these clones were located on regions 
where no copy number variation was observed (102), the exist-
ence of these subclones possibly indicates a role of stochasticity or 
cell-to-cell variability in the control of AR activity levels.

Stochasticity or noise in a cell can arise due to multiple rea-
sons. Besides the well-characterized transcriptional noise (103), 
there may be random fluctuations in the interaction networks 
themselves, especially those that comprise intrinsically disor-
dered proteins (IDPs)—proteins that lack rigid 3D structures 
either along their entire length or in localized regions (104). Such 
promiscuity in interactions may give rise to “conformational 
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FiGURe 3 | Non-genetic heterogeneity in prostate cancer. (A) Androgen receptor (AR)/prostate-associated gene 4 (PAGE4)/activator protein-1 (AP-1) circuit can 
give rise to oscillations of AR activity in a cell that can dynamically vary its dependence on androgen. These oscillations need not be synchronized across the 
population. (B) These oscillations, together with any other mechanisms of persistence, may survive a continuous androgen deprivation therapy and eventually 
regrow the entire population leading to tumor relapse (dotted black curve). However, “drug holidays,” such as intermittent androgen deprivation or bipolar androgen 
therapy may convert persisters to drug-sensitive cells, thus always keeping the number of androgen-independent (resistant) cells in check (solid green curve).
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noise” (104). IDPs have been found to be present as hub proteins 
in protein interaction networks from yeast to humans (105, 106), 
thus significantly impacting biological information transfer and 
propagating noise in signaling pathways. In contrast to well-
defined energy landscapes of ordered proteins that determine 
their structure, IDPs may dynamically populate an ensemble 
of interconvertible structural conformations due to many local 
energy minima separated with low-energy barriers (107), espe-
cially when overexpressed (108). Several well-known oncogenes 
and tumor suppressor proteins, such as p53 (109), BRCA1 (110), 
PTEN (111), c-MYC (112, 113), and KRAS (114), and other key 
players regulating the formation of CSCs, such as LIN28, OCT4, 
NANOG, and SOX2 (115) have been reported to contain intrinsi-
cally disordered regions (IDRs). Further, many core modulators of 
EMT—a mechanism of phenotypic plasticity that shares molecu-
lar and functional overlaps with CSCs (116)—was predicted to 
contain IDRs (117). In the context of PCa, a striking example 
of an IDP is the key target of ADT itself, AR (118). Similarly, a 
majority of cancer/testis antigens (CTA)—a heterogeneous group 
of proteins that are typically expressed in testis with little or no 
expression in most somatic tissues, but aberrantly expressed in 
PCa—have been reported as IDPs (119).

Intrinsically disordered proteins may undergo a disorder-to-
order transition to varying extents upon interacting with a cognate 
ligand, or upon specific post-translational modifications prior to 
ligand interaction (113, 120–122). Moreover, IDPs tend to have 
faster kinetics of interaction with their partners (faster binding/
unbinding rates) (123), potentially amplifying promiscuity in 
interactions, and increasing stochasticity by allowing more flex-
ibility in conformational switching. Considered together, these 
observations underscore the role of IDPs/IDPRs in phenotypic 
switching and thus the adaptability of biological systems in hos-
tile environments (124, 125).

Our recent work employing multiple biophysical approaches 
illustrated how intrinsic disorder in a CTA named prostate-
associated gene 4 (PAGE4) (126) can lead to its different con-
formations with implications for response to ADT (127). PAGE4 
is a stress-response protein that is upregulated in response to 
many stress factors, such as inflammation; it is undetectable in 
normal adult glands, but aberrantly expressed in diseased gland 
and in prostatic lesions infiltrated with inflammatory cells (128). 

Epithelial PAGE4 correlates with and is an independent predictor 
of survival for patients with hormone-naïve PCa (129). PAGE4 
is associated with attenuated AR signaling (129); one of the 
underlying mechanisms appears to involve the ability of PAGE4 
to potentiate the transcription factor activator protein-1 (AP-1) 
(130) that can negatively regulate AR activity (131, 132). PAGE4 
is phosphorylated by another component of the stress-response 
pathway homeodomain-interacting protein kinase 1 (HIPK1) 
predominantly at T51 which is critical for its ability to potentiate 
the transactivation of c-Jun (133), the most potent transcriptional 
activator of the AP-1 complex (134). PAGE4 is hyper-phospho-
rylated by CDC-like kinase 2 (CLK2) at many S/T residues, 
including T51. The interaction of PAGE4 with these two kinases 
leads to opposite functions. HIPK1-phosphorylated PAGE4 
(HIPK1-PAGE4) potentiates c-Jun, while CLK2-phosphorylated 
PAGE4 (CLK2-PAGE4) attenuates c-Jun activity. This functional 
difference most likely arises from the different conformations 
of the PAGE4 ensemble, as elucidated using small-angle X-ray 
scattering, single-molecule fluorescence resonance energy 
transfer, and multidimensional NMR. HIPK1-PAGE4 exhibits 
a relatively compact conformational ensemble that binds AP-1, 
but CLK2-PAGE4 is more expanded and attains a random-coil 
conformation with less affinity for AP-1 (127).

As mentioned above, AP-1 can inhibit AR activity; moreover, 
AR can transcriptionally inhibit CLK2 (127), thereby forming a 
negative feedback loop in PAGE4/AR/AP-1 interactions. A recent 
mathematical model has predicted that this feedback loop can 
give rise to sustained or damped oscillations in the levels of AR 
activity, HIPK1-PAGE4 and CLK2-PAGE4 (Figure 3A), suggest-
ing that androgen dependence of a cell can be a dynamic trait. 
Therefore, as the intracellular levels of HIPK1-PAGE4 and CLK2-
PAGE4 vary dynamically, cells can go on phenotypic excursions 
with varying insensitivities to ADT [cells “resistant” to ADT have 
typically increased AR activity as an adaptive auto-regulatory 
mechanism (135)]. Additional interactions of these components 
could convert these oscillations into a multistable system. As 
already emphasized above, this heterogeneous population can 
thus potentially better evade the effects of ADT as compared to a 
homogeneous PCa population. This non-genetic mechanism is in 
contrast with the Darwinian clonal evolution model (136) which 
assumes the existence of mutually exclusive androgen-dependent 
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and androgen-independent clones. Thus, in addition to genetic 
changes, phenotypic plasticity in PCa may be driven by underly-
ing dynamics of the PAGE4/AP-1/AR circuit.

Another plasticity mechanism that has been recently reported 
to be associated with PCa relapsing from antiandrogen therapies is 
where PCa cells acquire morphologic features of neuroendocrine 
carcinoma, a cell lineage whose survival no longer depends on AR 
(137, 138). Similar to the observed plasticity between epithelial 
and mesenchymal phenotypes in breast cancer (6, 52), between 
proneural and mesenchymal phenotypes in glioma (139), and 
between neuroendocrine and mesenchymal phenotypes in small 
cell lung cancer (9), this more macroscopic plasticity in PCa may 
mediate cellular response to multiple therapies (8, 140) and serve 
as a hallmark for aggressive disease progression (141).

iMPLiCATiONS OF DYNAMiC 
PHeNOTYPiC PLASTiCiTY AND 
STOCHASTiC STATe SwiTCHiNG iN 
THeRAPeUTiC DeSiGN

Resistance against various therapies can unquestionably result 
from secondary mutations (142–145) and/or pre-existing clones 
with specific genetic changes (43, 146–149). But, non-mutational 
stochastic cell-to-cell variability that can affect drug response and 
therapy-induced cellular reprogramming can also drive acquired 
resistance (45, 46, 52, 60, 61, 68, 73, 87, 150–152). Thus, similar 
to precision medicine attempts focusing on genomic landscape 
differences (153), effective therapeutic dosing strategies, and tar-
get identification calls for considering the effects of non-genetic 
heterogeneity and therapy-induced phenotypic plasticity that 
may give rise to persisters.

The existence of these persisters may offer a plausible expla-
nation for the success of interval dosing therapeutic strategies 
in stalling tumor growth in many cancer types (57, 154–156). 
Such discontinuous treatment regimens may exploit the fitness 
disadvantage typically exhibited by the DTPs in the absence of 
drug (157), thereby leading to a regression of persister subpopu-
lation. Particularly, in the context of PCa, treatment paradigms 
that involve cycles of ADT followed by no ADT [referred to as 
intermittent androgen deprivation (IAD)] (158) or ADT followed 
by supra-physiological dose of androgen [referred to as Bipolar 
ADT or bipolar androgen therapy (BAT)] (159) may be as good in 
terms of disease-free survival rates. Continuous ADT can result 
in a sustained pool of PCa persisters that may provide a latent 
reservoir of cells that can eventually acquire diverse genetic muta-
tions accounting for stable drug-resistance, while intermittent 
ADT may discourage the maintenance of persisters, thus restrict-
ing phenotypic heterogeneity and resulting in higher disease-free 
survival rates (Figure  3B). Thus, an intermittent approach is 
likely to be more potent in targeting the vulnerabilities of differ-
ent subpopulations at once, as compared to a continuous therapy 
treatment that can not only spare a set of recalcitrant population, 
but also stabilize a transient mechanism of drug resistance (160).

An alternative approach to intermittent or discontinuous dos-
ing strategy is combinatorial therapy. A recent study that analyzed 
both human clinical trial data and the drug responses of various 

patient-derived xenografts (PDXs) highlighted how combinato-
rial therapy can be beneficial even without any synergy in drug 
actions, due to patient-to-patient variability (161). Combinatorial 
therapy has also shown initial promise in PTEN-deficient PCa, 
where PI3K and AR signaling inhibit each other, potentially gen-
erating multiple subpopulations (162). Inhibiting either pathway 
singly activates the other, enabling adaptive response. However, 
pharmacological inhibition of both these pathways causes almost 
complete regression of the disease both in PTEN-deficient PCa 
mouse models and in human prostate PDXs (162).

Combinatorial therapy can also help to target the vulnerabili-
ties of DTPs. Goldman et al. (68) observed that the treatment of 
breast cancer cells with high concentrations of taxanes generates 
persisters that drive aggressive tumor formation in vivo. These per-
sisters display activated Src family kinase/hemopoietic cell kinase 
pathways whose pharmacological inhibition in a temporally con-
strained manner led to enhanced apoptosis (68). Similarly, Deb 
et al. (163) identified two mutually exclusive clonal subpopulations 
in altered signaling states—one with upregulated pSTAT3 and 
the other with downregulated SMAD2/3—and targeted STAT3 
and BCL6 (a transcription factor downstream of SMAD2/3) in 
a combinatorial manner to overcome non-genetic heterogeneity. 
Furthermore, dual inhibition of Wnt and Yes-associated protein 
(YAP) signaling can restrict the population of both epithelial-like 
and mesenchymal-like CSCs (164). These combinatorial therapies 
are reminiscent of combinations of drug pyrazinamide (that 
specifically targets M. tuberculosis persisters) with other canonical 
treatments (165). However, persisters in both bacterial and cancer 
cell populations can often be heterogeneous in their mechanisms 
and extent of drug-tolerance (4, 47, 150, 166). In fact, the very 
idea of defining IC50 (50% inhibitory concentration—the drug 
concentration where the viability of the population is half as that of 
the control case) implies that individual cells in a given population 
exhibit heterogeneous response to treat the cells with drug concen-
trations considered to be lethal (165). Valuable insights into the 
extent of heterogeneity can be gauged by other pharmacological 
parameters, such as the variability in maximum susceptibility of 
all cells in a given population to cell death, and the range of doses 
over which different subpopulations get killed (165).

Given that ADT has remained the primary standard of treat-
ment for advanced/metastatic PCa for more than 75  years, we 
envisage that the conceptual framework outlined above can help 
to guide alternative treatment options. For example, clinicians 
may consider prescribing IAD or BAT, thus sparing the patient of 
the huge costs and undesirable side effects of chronic androgen 
deprivation. Indeed, in a recent report, albeit on just three cases, 
non-metastatic PCa patients were treated effectively with long-
term primary IAD (167). Although IAD is not a standard therapy 
for patients with non-metastatic PCa, this exploratory clinical 
study underscores the benefits of challenging the cancer cell’s 
adaptive robustness due to its innate phenotypic plasticity. While 
the debate over the merits and controversies of administering 
either ADT regimen continues, and convincing data are needed 
to favor one over the other (157, 168), we trust the arguments 
presented here may inspire clinicians to reconsider treatment 
options and management of PCa that is currently estimated to 
strike one in every six men in the USA.
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Phenotypic plasticity need not be a mechanism specific to 
PCa—it may also help normal prostate cells to cope with the 
significant diurnal variation (20–25%) in circulating testosterone 
levels in men (169). Thus, it is possible that as an adaptive evolu-
tionary mechanism, PCa cells may be highly adept in phenotypic 
plasticity and persisting as a response to chronic and high fluc-
tuations in hormonal levels and aggressive ADT—both of which 
represent the frequency of stressful conditions that can tune the 
rates of switching, and hence the frequency of persisters (170).

CONCLUSiON

Phenotypic plasticity allows for a clone to sample many phe-
notypes—each with varying sensitivities—thus generating 
mutation-independent heterogeneity and enhancing clone sur-
vival. Therefore, phenotypic plasticity may serve as an effective 
bet-hedging strategy that may help overcome the varying selec-
tion pressures faced by a tumor (171). Here, we argue that besides 
genetically encoded resistance to ADT, PCa recurrence may also 
emerge from a phenomenon that bears a close resemblance to 
bacterial persistence—a bet-hedging strategy to face unpredict-
able harsh environmental fluctuations by generating non-genetic 
or mutation-independent phenotypic heterogeneity. Two crucial 
mechanisms underlying this heterogeneity—stochastic cell-to-
cell variability and drug-induced cellular reprogramming—have 

already been implicated in forming DTPs. Here, we present one 
potential implementation strategy for generating cell-to-cell vari-
ability—the protein conformational dynamics of an intrinsically 
disordered protein PAGE4—that can generate dynamically vary-
ing AR levels in a cell, and thus give rise to different subpopulations, 
each with a varied sensitivity toward ADT. This “bet-hedging” 
may facilitate the presence of persisters—drug-tolerant reservoirs 
of cells from which multiple mechanisms of drug-resistance may 
evolve. Modulating inherent dynamic phenotypic plasticity and 
consequent heterogeneity may increase therapeutic efficacy.
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