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Cancer cells reprogram energy metabolism by boosting aerobic glycolysis as a main 
pathway for the provision of metabolic energy and of precursors for anabolic purposes. 
Accordingly, the relative expression of the catalytic subunit of the mitochondrial H+-ATP 
synthase—the core hub of oxidative phosphorylation—is downregulated in human 
carcinomas when compared with its expression in normal tissues. Moreover, some 
prevalent carcinomas also upregulate the ATPase inhibitory factor 1 (IF1), which is the 
physiological inhibitor of the H+-ATP synthase. IF1 overexpression, both in cells in culture 
and in tissue-specific mouse models, is sufficient to reprogram energy metabolism to an 
enhanced glycolysis by limiting ATP production by the H+-ATP synthase. Furthermore, 
the IF1-mediated inhibition of the H+-ATP synthase promotes the production of mito-
chondrial ROS (mtROS). mtROS modulate signaling pathways favoring cellular prolifer-
ation and invasion, the activation of antioxidant defenses, resistance to cell death, and 
modulation of the tissue immune response, favoring the acquisition of several cancer 
traits. Consistently, IF1 expression is an independent marker of cancer prognosis. By 
contrast, inhibition of the H+-ATP synthase by α-ketoglutarate and the oncometabolite 
2-hydroxyglutarate, reduces mTOR signaling, suppresses cancer cell growth, and con-
tributes to lifespan extension in several model organisms. Hence, the H+-ATP synthase 
appears as a conserved hub in mitochondria-to-nucleus signaling controlling cell fate. 
Unraveling the molecular mechanisms responsible for IF1 upregulation in cancer and the 
signaling cascades that are modulated by the H+-ATP synthase are of utmost interest to 
decipher the metabolic and redox circuits contributing to cancer origin and progression.

Keywords: oxidative phosphorylation, ATPase inhibitory factor 1, mitohormesis, metabolic reprogramming,  
hepa tocarcinogenesis, inflammation

OveRview OF MeTABOLiC RePROGRAMMinG in CAnCeR

Cancer cells experience a series of alterations during oncogenic transformation that confer them 
new features (1). Cellular metabolism is a central player in the acquisition of this new phenotype. 
Indeed, cancer cells are highly proliferative and readapt their metabolism to meet the demands 
imposed by the new phenotype, namely higher requirements of metabolic energy and of precur-
sors for biosynthetic purposes (Figure 1) (2–5). One prominent feature of the metabolic repro-
gramming experienced by cancer cells is an enhanced glycolytic rate in the presence of oxygen, 
what is known as aerobic glycolysis (6) (Figure 1). Glycolysis provides cancer cells with various 
metabolic precursors that serve for the synthesis of amino acids, nucleotides, and lipids, as well 
as reducing power and ATP. In addition, mitochondrial function is readapted during oncogenic 
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FiGURe 1 | Metabolic reprogramming in proliferation. The changes in flux 
through the main pathways of cellular metabolism are depicted in proliferative 
cells (red) relative to that of quiescent cells (green). Arrows’ length is 
proportional to the relative change in flux. Data adapted from Ref. (2–5). 
Abbreviation: TCA cycle, tricarboxylic acid cycle.
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transformation and mutations in genes encoding mitochondrial 
proteins contribute to cancer development (7, 8). In particular, 
the relative contribution of mitochondria to energy provision is 
reduced, the organelles becoming mostly dedicated to produce 
anabolic precursors through the tricarboxylic acid (TCA) cycle 
(9) (Figure 1). Likewise, mitochondria, which are crucial hubs 
in intracellular signaling (10), readapt this function in cancer 
(11). Intermediates of the TCA cycle contribute to signaling 
tumorigenesis (12) and mtROS, which are key mediators in 
mitochondrial communication (13), activate signaling path-
ways that promote cell proliferation and tumorigenesis (14, 15). 
Moreover, mitochondrial dynamics is also reprogrammed in 
cancer (16).

THe H+-ATP SYnTHASe iS 
DOwnReGULATeD in CAnCeR

A critical enzyme complex within the mitochondria is the  
H+-ATP synthase, the rotatory engine of the inner mitochondrial 
membrane responsible for ATP synthesis by oxidative phos-
phorylation (OXPHOS) (17). The H+-ATP synthase consumes 
the proton electrochemical gradient generated across the inner 
mitochondrial membrane by the electron transport chain to 
drive ATP synthesis (17, 18). In addition, the H+-ATP synthase 
is a critical component of the mitochondrial permeability transi-
tion pore (PTP) whose prolonged opening triggers the execution 
of cell death (19–21). Although its mechanism of participation in 
PTP opening is currently debated (22–24), recent findings have 
mapped the residues in subunits of the H+-ATP synthase for Ca2+ 

activation (25) and pH inhibition (26) of the PTP, reinforcing the 
role of the H+-ATP synthase in PTP function and providing first 
evidence that single point mutations in the enzyme affect PTP 
modulation. Hence, the H+-ATP synthase integrates the bio-
energetic and death-signaling functions of mitochondria, what 
makes it a relevant target for oncogenic transformation (27, 28). 
Actually, mutations in the mitochondrial-encoded subunit a of 
the H+-ATP synthase (MT-ATP6), which are found in different 
human carcinomas, promote tumor growth by restraining cell 
death (29, 30). Recent findings in yeast MT-ATP6 mutants have 
confirmed the role of these mutations in the PTP response to 
Ca2+ (31), providing additional genetic evidence that supports 
the involvement of mutations in the H+-ATP synthase in PTP 
functioning during carcinogenesis. However, it should be noted 
that the two mutations in MT-ATP6 impact the PTP response 
only when the function of the outer mitochondrial membrane 
porin complex is perturbed (i.e., OM45-GFP background) (31). 
In fact, permeability transition has been documented in rho0 
cells that lack mtDNA (32), highlighting the relevance of the 
genetic background of the cancer cell for the desensitization of 
the PTP.

Regardless of oncogenic mutations on the H+-ATP synthase, 
it has been documented that the relative expression of the cata-
lytic subunit of the complex (β-F1-ATPase) is downregulated 
in most prevalent human carcinomas when compared with the 
corresponding normal tissues (33, 34) [for review, see Ref. (2)]. 
The relative expression of β-F1-ATPase in the tissue provides 
a “bioenergetic signature” of the carcinoma that informs of the 
overall capacity of mitochondria. The bioenergetic signature 
[also known as the bioenergetic cellular (BEC) index (2)], is 
assessed as the protein ratio between β-F1-ATPase and GAPDH 
and has been shown to be significantly reduced in colon, lung, 
breast, gastric, and renal carcinomas (2, 33). Interestingly, the 
quantification of these two proteins in carcinomas derived 
from different tissues (lung, esophagus, and breast) show 
similar quantities irrespective of the large differences found 
in their content in normal tissues (35). These findings sup-
port that during oncogenic transformation the tissue-specific 
differences in energy metabolism are abolished to converge 
on a similar phenotype to support tumor growth (35). In 
addition, the BEC index is a biomarker for cancer prognosis 
and response to therapy. In fact, a higher BEC index predicts 
a better overall survival and/or disease-free survival in acute 
myeloid leukemia patients and in colon, lung, breast, and ovar-
ian cancer patients (36–42). These findings thus support that an 
impaired bioenergetic function of mitochondria favors recur-
rence and progression of the disease. Moreover, the BEC index 
also provides a tool for predicting the therapeutic response to 
various chemotherapeutic strategies aimed at combating tumor 
progression (43–46).

From a mechanistic view point the control of β-F1-ATPase 
expression is essentially exerted at post-transcriptional levels 
(47). In this regard, the translation of β-F1-ATPase mRNA 
(β-mRNA) both during development and in oncogenesis requires 
the specific activity of a cis element in the 3′ untranslated region 
of the mRNA that tightly controls its translation by RNA binding 
proteins (48–53) and miRNAs (54).
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THe DiveRSe ROLe OF inHiBiTORY 
FACTOR 1 (iF1) in HUMAn CARCinOMAS

Besides the lower BEC index found in tumors, some prevalent 
human carcinomas also upregulate the expression of the ATPase 
IF1, which is the physiological inhibitor of the H+-ATP synthase 
(55, 56). Classically, IF1 was thought to function only to prevent 
mitochondrial ATP consumption by the reverse activity of the 
H+-ATP synthase (ATP hydrolase), which happens when mito-
chondria become de-energized such as in ischemia or in hypoxia 
(57, 58). However, more recent findings indicate that IF1 can bind 
to the H+-ATP synthase under normal phosphorylating condi-
tions, hence inhibiting also the forward ATP synthetic activity of 
the enzyme (59). It should be noted that when arguing about the 
inhibition exerted by IF1 on the H+-ATP synthase it is important 
to take into consideration the tissue content of IF1 and the molar 
ratio that exists between IF1 and the H+-ATP synthase because 
the tissue availability of the inhibitor affects, among other fac-
tors, its interaction with the enzyme by the mass–action ratio. 
Unfortunately, the information of the tissue content of these two 
proteins in human and mouse tissues is presently missing.

In addition, it should be stressed that IF1 binding to the 
H+-ATP synthase, and hence its activity as an inhibitor of the 
enzyme, is subjected to a stringent posttranslational regulation 
of the protein by phosphorylation (59). In this regard, we have 
shown that IF1 is phosphorylated in S39 by a mitochondrial 
cAMP-dependent protein kinase that renders IF1 unable to bind 
to the H+-ATP synthase and hence inactive as an inhibitor of the 
enzyme (59). Regulation of IF1 phosphorylation depends on the 
cellular metabolic state to allow the fine tuning of ATP produc-
tion to the cellular metabolic demand (56, 59). In this regard, 
we should stress that IF1 is found dephosphorylated, and hence 
active as an inhibitor of the enzyme in colon, lung, and breast 
carcinomas as well as in hypoxic cells and in cells progressing 
through the S/G2/M phases of the cell cycle (59).

In addition, IF1 is sharply upregulated in colon, lung, breast, 
and ovarian carcinomas, which are tissues that under normal 
physiological conditions are essentially devoid of the inhibitory 
protein (60–62). Not surprisingly, IF1 is an independent prognos-
tic marker of disease progression for patients bearing these car-
cinomas. In non-small cell lung cancer (63), bladder carcinomas 
(64), and gliomas (65), a high expression level of IF1 in the tumor 
predicts a worse patient prognosis. On the contrary, in colon and 
breast cancer patients, a high level of IF1 expression predicts a 
better outcome (60, 66), especially in the bad prognosis group of 
triple-negative breast cancer patients (67). In the case of breast 
cancer, lymph node metastases show a lower expression level of 
IF1 when compared with the primary tumors (68). This finding 
suggested that breast cancer cells expressing low levels of IF1 may 
have a higher metastatic potential, which is in full agreement 
with our recent finding that low IF1 expression in triple-negative 
breast cancer cells confers a more invasive phenotype (67).

By contrast, human tissues that express high levels of IF1 under 
basal physiological conditions such as endometrium, kidney, liver, 
and stomach do not experience a relevant increase in IF1 expres-
sion by oncogenesis (60, 62). Nevertheless, in hepatocarcinomas 
(69) and in gastric carcinomas (70), a higher tumor content of IF1 

predicts a worse prognosis for the patients. However, it should be 
mentioned that a higher IF1-mRNA expression level is correlated 
with a better prognosis in patients bearing the intestinal subtype 
of gastric cancer (66). This apparent discrepancy might arise from 
the histological type of gastric carcinomas analyzed in both stud-
ies and/or because the expression of IF1 in human carcinomas is 
primarily exerted at posttranscriptional levels (60). Overall, these 
findings support that IF1 plays a relevant role in cancer origin and 
progression. However, it remains to be elucidated the differential 
role played by IF1 in favoring or repressing cancer progression 
in different types of carcinomas, strongly emphasizing the need 
for specific studies in cellular, xenograft, and genetically modified 
mouse models in which to address these issues (67, 71).

THe iMPACT OF iF1-MeDiATeD 
inHiBiTiOn OF THe H+-ATP  
SYnTHASe in CAnCeR

The role of the H+-ATP synthase in cancer and in signaling has 
been studied by developing cellular and mouse models with 
regulated expression of IF1. The overexpression of IF1 both 
in cultured cells (55, 60, 61, 67) and in different tissues in vivo 
(71–73) is sufficient to promote metabolic reprogramming to 
an enhanced aerobic glycolysis (Figure  2). Upregulation of 
glycolysis results from the limitation of cellular ATP availability 
as a result of the inhibition of the H+-ATP synthase, supporting 
that the rate of ATP production by OXPHOS defines the rate of 
glucose consumption by aerobic glycolysis (74, 75). Likewise, 
this metabolic situation triggers the activation of the energy sen-
sor AMPK (71–73) (Figure 2). Conversely, the silencing of IF1 
in cells that express high levels of the protein has the opposite 
metabolic effect (55, 60, 61).

The inhibition of the H+-ATP synthase by IF1 also reduces 
the backflow of protons into the mitochondrial matrix, trigger-
ing mitochondrial hyperpolarization and a mild increase in the 
production of mitochondrial ROS (mtROS) (Figure  2), both 
in vitro and in vivo (55, 60, 61, 67, 72, 73). In cells and tissues 
overexpressing IF1 mtROS trigger the carbonylation of some cel-
lular proteins and signal the activation of the canonical nuclear 
factor kappa B (NFκB) pathway (71–73) (Figure  2). In colon 
cancer cells, NFκB induces a nuclear transcriptional program that 
favors cellular proliferation, invasion, and evasion of cell death 
(61). These results are in line with other findings reporting that 
mtROS are necessary for proliferation and tumorigenesis and 
that ROS scavenging with mitochondrial-targeted antioxidants 
reduces cancer cell growth and prosurvival pathways (14, 76, 77). 
A recent study also argues that IF1 overexpression in carcinomas 
might contribute to cancer progression by limiting the processing 
of the pro-fusion dynamin-related protein optic atrophy 1 and 
thus limiting cristae remodeling during apoptosis (78).

However, the phenotypic changes triggered by IF1 overexpres-
sion in colon cancer cells cannot be generalized to other cellular 
types. In fact, the transcriptional program triggered by IF1 
overexpression in triple-negative breast cancer cells supports just 
the opposite, a less proliferative and invasive phenotype (67). This 
phenotype for breast cancer cells was confirmed by functional 
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FiGURe 2 | Main metabolic and redox circuits regulated by the inhibition of the 
H+-ATP synthase by inhibitory factor 1 (IF1). Dephosphorylated IF1 (green rod) 
inhibits the H+-ATP synthase (structure) when bound to the enzyme, while IF1 
phosphorylation (yellow) prevents its binding and hence its inhibitory activity 
(59). The inhibition of a relevant pool of molecules of H+-ATP synthase by IF1 
reduces cellular ATP availability, promoting metabolic reprogramming to an 
enhanced glycolysis and the activation of AMPK (71–73). Moreover, IF1 
inhibition of the H+-ATP synthase triggers mitochondrial hyperpolarization 
because prevents H+ backflow through the enzyme enhancing the production 
of mitochondrial ROS (mtROS) that activate the canonical NFκB pathway (61, 
72, 73). Activation of NFκB triggers the induction of different tissue-specific 
mitohormetic programs in the nucleus of the cell. In colon cancer cells 
overexpressing IF1, these programs favor proliferation, invasion, and resistance 
to cell death (61). In transgenic mice overexpressing IF1 in neurons or liver, 
promote the activation of survival pathways and antioxidant defenses (71, 72). 
In transgenic mice overexpressing IF1 in the intestine, the activated programs 
modulate the immune response of the tissue, favoring the development of an 
anti-inflammatory phenotype (73). Abbreviations: p-IF1, phosphorylated IF1; 
AMPK, AMP-activated protein kinase; NFκB, nuclear factor kappa B. The 
structure of the H+-ATP synthase was obtained from PDB.
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analysis illustrating that IF1 overexpression promotes cell adhe-
sion and maintenance of the extracellular matrix hampering epi-
thelial to mesenchymal transition (67). Accordingly, the results 
may explain why breast cancer patients with high IF1 expression 
in the carcinoma have a better prognosis (60, 67).

In the mouse model overexpressing IF1-H49K (a constitutively 
active mutant of IF1) in the liver, we have shown that downregula-
tion of OXPHOS triggers the induction of AMPK rendering a 
liver phenotype that is prone to cancer development (71). Indeed, 
transgenic mice when challenged with the carcinogen diethylni-
trosamine develop more and bigger tumors than control mice 
because there is more extensive proliferation and diminished 
apoptosis of liver cells (71). Remarkably, IF1 overexpression in 
human hepatocarcinomas also triggers the activation of NFκB 
(Figure  2), which drives the promotion of angiogenesis and 
epithelial to mesenchymal transition (69). Not surprisingly, the 
expression of IF1 in liver cancer predicts a bad overall prognosis 
and the recurrence of the disease in these patients (69).

Mechanistically, although dimers of H+-ATP synthase are 
critical components of the PTP (19), and the overexpression 
of IF1 in the liver in vivo favors the formation of dimers of the 
enzyme (71), we have observed that cell death protection is not 

related to differential opening and regulation of the PTP (71). 
Actually, we support that the cell death protection afforded by 
IF1 overexpression in the liver is related to mitohormetic signal-
ing through the induction of an antioxidant response guided 
by Nrf2 [nuclear factor (erythroid-derived 2)-like 2] (Figure 2) 
(71) because the metabolically preconditioned hepatocytes 
are more resistant to acetaminophen induced toxicity (71). 
Interestingly, Nrf2 upregulation is also a strategy deployed by 
cancer cells to detoxify the higher ROS levels that are produced 
in these cells (79).

iF1-MeDiATeD inHiBiTiOn OF THe  
H+-ATP SYnTHASe MODULATeS 
MeTABOLiC AnD ReDOX CiRCUiTS

Besides the liver, overexpression of IF1-H49K in neurons in vivo 
also reprograms energy metabolism to an enhanced glycolysis and 
affords metabolic preconditioning (72). In fact, mice overexpress-
ing IF1-H49K in forebrain neurons are partially protected from 
excitotoxic damage induced by striatal administration of qui-
nolinic acid because preconditioning partially protects neurons 
from death, reducing the lesion area in the brain and improving 
motor performance of the transgenic mice (72). Preconditioning 
in neurons also involves AMPK activation and mtROS-mediated 
signaling to implement a Bcl-xL-mediated protection of neurons 
from apoptosis (72) (Figure 2). Other findings also support the 
neuroprotective role of IF1 in ischemia reoxygenation by pro-
moting autophagy and maintaining mitochondrial bioenergetics 
(80), although the contribution of IF1 to promotion of autophagy 
in neurons remains to be studied in the in vivo model.

Interestingly, the signaling pathways triggered by the IF1-
mediated inhibition of the H+-ATP synthase are not limited to 
the cells overexpressing IF1 but also implicate non-cell autono-
mous processes. The transgenic mice overexpressing IF1 in 
enterocytes also show metabolic reprogramming to an enhanced 
glycolysis and activation of mtROS–NFκB signaling pathway (73) 
(Figure 2). Transgenic mice are partially protected from intestinal 
inflammation after the administration of the inflammatory agent 
dextran sodium sulfate (DSS), due to increased recruitment of 
regulatory T cells and macrophages that are mainly polarized to 
the M2 phenotype (73). These findings are consistent with the 
anti-inflammatory phenotype afforded by the overexpression 
of IF1 as revealed by the higher levels of anti-inflammatory 
cytokines present in plasma and intestine of the transgenic mice 
(73). Colonocytes of control mice induce the oncogenic Akt/
mTOR/p70S6K and pro-inflammatory STAT3 pathways upon 
administration of DSS, something that is not observed in IF1-
transgenic mice (73). Preconditioning and protection against 
stress in colon of IF1-transgenic mice clearly responds to the 
basal activation of the NFκB pathway due to mtROS production 
(73) (Figure 2), because protection from intestinal inflammation 
is blunted when an mtROS scavenger or an inhibitor of NFκB are 
administered (73).

Overall, transgenic mice overexpressing IF1 in liver, brain, 
or intestine reveal that by partial inhibition of OXPHOS and 
the production of mtROS the tissues acquire an advantageous 
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phenotype against different forms of oxidative stress and 
inflammation (71–73) (Figure  2), stressing the role of the 
H+-ATP synthase as a therapeutic target in diverse human 
pathologies.

LOnGeviTY AnD THe inHiBiTiOn OF THe 
H+-ATP SYnTHASe

Besides IF1, the H+-ATP synthase can be inhibited by some 
mitochondrial metabolites produced in the TCA cycle, such 
as α-ketoglutarate (α-KG) (81). Therefore, partial inhibition 
of the enzyme by α-KG also reduces ATP availability and TOR 
signaling, promoting autophagy in Caenorhabditis elegans 
(81). In addition, the oncometabolite (R)-2-hydroxyglutarate 
(2-HG), which is structurally similar to α-KG, also inhibits the 
H+-ATP synthase both in C. elegans and in mammalian cell lines 
(82). 2-HG is highly accumulated in some gliomas and acute 
myeloid leukemias that harbor mutations in the genes encod-
ing the cytosolic and mitochondrial isocitrate dehydrogenases 
(IDH1 and IDH2, respectively). These mutations result in 
neomorphic enzymes with higher affinity for α-KG that catalyze 
its conversion into 2-HG (83, 84). Interestingly, the inhibition 
of the H+-ATP synthase by 2-HG or α-KG in glioblastoma cells 
triggers cell growth arrest and cell death under conditions of 
limited glucose (82). These results are consistent with previ-
ous findings that indicate that brain cancer patients with IDH 
mutations have a longer median overall survival than patients 
without mutations (83, 85). The suppression of cell growth may 
be ascribed to reduced ATP levels and mTOR signaling in the 
tumors (82).

Interestingly, both α-KG and 2-HG, by inhibiting the H+-ATP 
synthase, also extend lifespan in C. elegans (81, 82), and α-KG 
might play a role in longevity induced by dietary restriction 
(81). Other interventions targeting the H+-ATP synthase have 
also been shown to extend lifespan in several model organisms, 
as recently reviewed (62). For instance, silencing of subunits of 
the H+-ATP synthase in C. elegans and Drosophila melanogaster 
promotes longevity (86, 87). No contribution to longevity has 
been reported so far in mammals for the modulation of the  
H+-ATP synthase. However, recent findings indicate that the 
specific inhibition of the enzyme by the small molecule J147 
prevents the age-associated drift of the hippocampal transcrip-
tome and plasma metabolome in mice and extends lifespan in D. 
melanogaster, providing an additional link between the activity of 
the H+-ATP synthase, aging and age-associated pathologies such 
as dementia (88).

Overall, these findings support the notion that the H+-ATP 
synthase is also a conserved hub in intracellular signaling that 
plays a key role in signaling mitohormesis contributing to cell fate 
decisions and longevity.

COnCLUDinG ReMARKS

Reprogramming cellular metabolism is a hallmark of cancer 
that is necessary to fulfill the metabolic demands imposed 
by the oncogenic process. In this context, the mitochondrial  
H+-ATP synthase is a main hub in rewiring energy metabolism 
and in retrograde signaling to the nucleus programs required for 
cancer progression. In this regard, most prevalent carcinomas 
show reduced expression of the catalytic subunit of the H+-ATP 
synthase (β-F1-ATPase) relative to the glycolytic GAPDH, what 
provides a protein signature of energy metabolism of clinical rel-
evance in oncogenesis. Moreover, some prevalent carcinomas also 
show an increased expression of IF1, the physiological inhibitor of 
the enzyme. As revealed in different in vitro and in vivo systems, 
IF1 overexpression is sufficient to rewire energy metabolism to an 
enhanced glycolysis and to trigger an mtROS signal that promotes 
nuclear reprogramming. IF1-mediated reprogramming is mainly 
geared by the activation of AMPK and NFκB pathways resulting 
in the induction of tissue-specific programs aimed at prevent-
ing cell death, oxidative damage or inflammation. The precise 
molecular events that lead to the upregulation of IF1 in cancer and 
its role in cancer progression in different carcinomas remain to be 
established. The H+-ATP synthase, engine of OXPHOS, is also a 
crucial hub in mitohormetic signaling to modulate cytoprotec-
tive defenses that contribute to longevity in several organisms. 
Therefore, deciphering the metabolic and redox circuits controlled 
by the H+-ATP synthase and IF1 are of utmost importance to 
understand how they contribute to oncogenesis and thus provid-
ing new targets for cancer and age-associated diseases.
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