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In mammals, numerous organ systems are equipped with adhesion G protein-coupled 
receptors (aGPCRs) to shape cellular processes including migration, adhesion, polarity 
and guidance. All of these cell biological aspects are closely associated with tumor cell 
biology. Consistently, aberrant expression or malfunction of aGPCRs has been associ-
ated with dysplasia and tumorigenesis. Mounting evidence indicates that cancer cells 
comprise viscoelastic properties that are different from that of their non-tumorigenic 
counterparts, a feature that is believed to contribute to the increased motility and inva-
siveness of metastatic cancer cells. This is particularly interesting in light of the recent 
identification of the mechanosensitive facility of aGPCRs. aGPCRs are signified by large 
extracellular domains (ECDs) with adhesive properties, which promote the engagement 
with insoluble ligands. This configuration may enable reliable force transmission to the 
ECDs and may constitute a molecular switch, vital for mechano-dependent aGPCR 
signaling. The investigation of aGPCR function in mechanosensation is still in its infancy 
and has been largely restricted to physiological contexts. It remains to be elucidated if 
and how aGPCR function affects the mechanoregulation of tumor cells, how this may 
shape the mechanical signature and ultimately determines the pathological features of 
a cancer cell. This article aims to view known aGPCR functions from a biomechanical 
perspective and to delineate how this might impinge on the mechanobiology of cancer 
cells.

Keywords: adhesion G protein-coupled receptors, mechanobiology, cancer, cytoskeleton, extracellular matrix

iNtrODUctiON

Cancer is an ongoing threat to human health. In 2012, worldwide 14 Mio people were diagnosed 
with a form of malignant cancer (1) and the International Agency for Research on Cancer predicts 
an increase in cancer cases up to terrifying 20 Mio by 2030 (2).

Each cell in our body has the capacity to morph into a tumor cell if its genome accumulates a 
critical load of lesions to disturb the delicate balance between proliferation and apoptosis. Cancer 
scientists have long been aware of genetic and epigenetic changes as well as alterations in the percep-
tion and integration of biochemical signals as the source of tumorigenesis and metastasis. However, 
more recently it has been recognized that cell growth, invasion and metastasis are intricately linked 
to the constituent cells’ facility to detect, integrate and respond to intrinsic and extrinsic mechanical 
cues (3). Since 2009 the National Cancer Institute has been supporting 12 leading institutions in 
the US to establish Physical Science—Oncology Centers and to build a collaborative network to 

https://www.frontiersin.org/Oncology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2018.00059&domain=pdf&date_stamp=2018-03-13
https://www.frontiersin.org/oncology/archive
https://www.frontiersin.org/Oncology/editorialboard
https://www.frontiersin.org/Oncology/editorialboard
https://doi.org/10.3389/fonc.2018.00059
https://www.frontiersin.org/Oncology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:nicole.scholz@medizin.uni-leipzig.de
https://doi.org/10.3389/fonc.2018.00059
https://www.frontiersin.org/Journal/10.3389/fonc.2018.00059/full
https://www.frontiersin.org/Journal/10.3389/fonc.2018.00059/full
https://www.frontiersin.org/Journal/10.3389/fonc.2018.00059/full
https://loop.frontiersin.org/people/473411


2

Scholz Cancer Cell Mechanics and Adhesion GPCRs

Frontiers in Oncology | www.frontiersin.org March 2018 | Volume 8 | Article 59

interrogate how the micromechanical interior and exterior of 
a tumor cell shapes its biochemical properties and vice  versa. 
Thus, the realization that every cancer cell is subject to similar 
physical constraints may bring forth an exciting era of cancer 
research and has the potential to revolutionize the development 
of therapeutics.

Adhesion G protein-coupled receptors (aGPCR) comprise the 
second largest group within the superfamily of G protein-coupled 
receptors (GPCRs) and are expressed in most organ systems. 
aGPCRs are known to modulate pivotal cellular functions includ-
ing migration, adhesion, polarity and guidance (4). Consistently, 
members from all aGPCR subfamilies have been reported in the 
context of dysplasia and tumorigenesis in one way or another 
(5–8). While for some receptors it is mere evidence of faulty 
expression or changes in their activity (e.g., VLGR1/ADGRV, 
LPHN/ADGRL), for others more detailed knowledge about 
the molecular mechanisms that make cells or tissues go awry 
have emerged [e.g., CD97/ADGRE5 (9–11), GPR116/ADGRF5  
(12, 13), GPR133/ADGRD1 (14, 15), GPR56/ADGRG1 (16–19), 
and BAI1/ADRGB1 (20–22)].

A more recent development in aGPCR biology is the finding 
that these receptors possess mechanoceptive features (23–27), 
which contrasts the common view of GPCRs as chemosensors. 
Although most of the data that underpin this finding have been 
collected in physiological settings, it is conceivable that many of 
the seemingly unrelated pathophysiological phenotypes caused 
by aGPCR malfunction may be the result of defective mecha-
nosensation. Thus, aGPCRs may constitute a connecting element 
between neoplastic, malignant, or metastatic properties and the 
mechanical phenotype of a given cell (Figure 1). This article aims 
to connect the current knowledge of aGPCR biology and cancer 
physics and will discuss potential intersections.

MecHANicAL siGNAtUre AND 
MALiGNANcY

En route from healthy over malignant to a metastatic state a cell 
undergoes an arduous ‘force journey’ signified by a mechanical 
reciprocity between cell contractility and extracellular matrix 
(ECM) rigidity. In other words, the biophysical signature of a 
cell and its ECM generates a lively biomechanical ‘conversation’ 
in which cellular contractile forces that impinge on the ECM 
counterbalance the elastic resistance of the ECM toward this 
mechanical stimulus (39).

To detect, integrate and react to mechanical inputs nature 
has invented an interconnected hierarchy of mechanical systems 
build from force sensors, adhesive molecules, focal adhesions 
as well as cytoskeletal and filamentous elements. Together these 
components comprise the molecular backbone of this delicate 
force balance between cells and their ECM, crucial for numerous 
cellular properties as well as the development and maintenance 
of tissues.

Dysplasia often leads to the generation of aberrant force 
values, which throw the system off balance leading to changes 
in the cytoskeletal and filamentous cellular architecture (40). An 
intriguing example of this phenomenon is the exchange from 

keratin-based to vimentin-based cytoskeleton in mammary tis-
sue, which constitutes an indicator for epithelial-to-mesenchymal 
transition (EMT) (41–43). As malignancies progress cell and 
ECM feature specific changes common in many cancer types 
(Figures  1A,B): (i) The ECM exhibits increased stiffness (28).  
In breast malignancies, for example, this seems to be due to an 
integrin-dependent increase in collagen cross-linking and tissue 
fibrosis (44, 45). (ii) The ECM is remodeled due to the release 
of proteolytic enzymes (e.g. matrix metalloproteases) from 
protrusive cell processes (46, 47). (iii) Tumor cells show reduced 
adhesiveness to adjacent tumor and non-tumor cells, caused by 
loss in cell–cell contact integrity (48–51). (iv) Tumor cells often 
display increased compliance/deformability and contractility 
(52–55). This way metastatic cells are structurally fine-tuned to 
break through basal laminae, squeeze through tissues, and form 
secondary tumors at distant sites. Finally, elevation in ECM rigid-
ity and cell contractility is attended by an increase in malignancy 
and metastatic potential (28, 56). Importantly, these cellular and 
extracellular anomalies manifest in many cancer types and appear 
as a prerequisite for cells to succumb to mechanical insults associ-
ated with dysplasia and the metastatic cascade.

MOLecULAr cOMPONeNts AND 
MecHANicAL PHeNOtYPe

According to the National Cancer Institute more than 30 tumor 
markers are currently used to diagnose and help manage dif-
ferent cancer types (https://www.cancer.gov/about-cancer/
diagnosis-staging/diagnosis/tumor-markers-fact-sheet, 
accessed December 10, 2017). In light of the progress in 
genomic profiling technologies and tailor-made molecular 
targeting tumor markers will take an increasingly important 
role. However, to date we understand surprisingly little about 
the biological rationale behind their misexpression let  alone 
the cellular signaling routes they employ and interactions they 
engage in to control tumor growth, invasion and metastasis. To 
this end it will be particularly interesting to decipher molecu-
lar players responsible for the mechanical metamorphosis 
of tumors. Several molecules have been documented in this 
context including constituents of focal adhesion complexes 
(FA), cytoskeletal and filamentous components as well as cell 
adhesion molecules (CAMs). Here, I will focus on FA protein 
complexes as mechanosensing entities and particularly integrin 
receptors, as they constitute bona fide mechanotransducers 
with intricate ties to the evolution of the malignant phenotype.

FAs comprise integrin-based macromolecular assemblies that 
physically link the cell’s exterior substrate and interior cytoskel-
eton. Integrins nucleate a plethora of molecules at the intracellu-
lar interface to build highly dynamic biochemical signaling hubs 
key to several cellular aspects including cell shape, proliferation, 
survival, differentiation, and motility (57–59). The composition 
and maintenance of FAs relies on the local force profile generated 
by myosin-driven contraction of the cytoskeleton (‘inside-out’) 
or by perturbations of the ECM (‘outside-in’) (60–62). The core 
of cellular FA mechanotransduction are integrins (63, 64). They 
act as direct and indirect mechanotransducers by reacting to 
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FiGUre 1 | Putative roles of adhesion G protein-coupled receptors (aGPCRs) in cancer. (A) Schematic illustration of a healthy cell without structural abnormalities  
and proper aGPCR function aligned with (B) a malignant cell signified by increased contractility, compliance, and extracellular matrix rigidity (28). These changes 
could intersect with aGPCR dysfunction and/or altered expression. Several aGPCRs have been shown to signal through RhoA (18, 29), which indirectly stimulates 
myosin-light chain phosphorylation (yellow) to promote acto-myosin contractility (F-actin and myosin in red and dark gray, respectively) (30). (c–e) Show different 
cellular properties previously associated with aGPCR function and malignancies; left panel: intact aGPCR function. Right panel: cellular deficits related to 
compromised aGPCR function/expression. (c) Schemes of differentiation hierarchy. Adult stem cells (indicated in red) renew themselves and produce progenitor 
cells (indicated in green), which go through several rounds of division before they differentiate into specialized cells (31). Compromised aGPCRs may promote a  
shift from differentiation to proliferation, which may cause progenitor cell expansion and benign or malignant tumorigenesis (right). (D) Cell and tissue polarity is 
fundamental for oriented cell division and tissue formation, processes that have been associated with aGPCR function (32–34). (e) aGPCR malfunction often  
results in phenotypes linked to defective cell migration (35–38). Defective cell-cell and cell-matrix adhesion of tumor cells may be causally associated with aGPCR 
dysfunction and catalyzes tumor cell migration and invasion.
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mechanical force either with conformational changes or with 
aggregation to build a platform for force-transfer to the cytoskel-
eton, respectively. Application of external forces or changes in 
ECM stiffness stimulate integrins to activate RhoGTPase and 
Rho-associated kinase, which modulates myosin-light-chain 
phosphorylation (30). This way cell contractility increases further 
escalating ECM stiffness through aberrant integrin-signaling, 

collagen deposition and cross-linking (45). This deadly, self-
sustaining positive feedback loop is intricately intertwined 
with Erk-dependent mitogenic signaling, which controls cell 
proliferation and the development of mammary cancer (44, 45). 
Moreover, due to their ability to regulate expression and activ-
ity of metalloproteases integrins play their part in invasion and 
metastasis (65, 66).
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Among the canonical signaling routes triggered by integrins, 
the activation of the focal adhesion kinase (FAK) was shown to 
play a major role in several cancer types. FAK shapes the structure 
and function of FAs, e.g., through α-actinin-dependent changes 
in F-actin crosslinking and/or RhoGTPase-driven modulation 
of actomyosin contractility (67–69). Interestingly, a recent com-
putational study advocates a novel mechanoenzymatic mode in 
which FAK localizes to PIP2 enriched FA-membranes to directly 
sense membrane perturbations that in turn induce specific con-
formational changes nourishing Ras-mediated delivery to the 
nucleus (70, 71).

Integrins have been in the limelight of mechanotransduction 
in cancer. However, nature has equipped cells with different 
membrane receptors to comply with cell-specific demands and 
to ensure reliable mechanotransduction. Hence, it is more likely 
than not that cancer cells utilize additional sophisticated bona 
fide force sensors.

ADHesiON-GPcrs: 
MecHANOtrANsDUctiON AND 
MALiGNANcY

The aGPCR family counts 33 mammalian homologs serving 
functions in a multitude of developmental and physiological 
phenomena (4, 72). aGPCRs possess a modular architecture 
composed of an extracellular domain (ECD), a seven-trans-
membrane-spanning (7TM) domain and a intracellular domain 
(72). Their ECDs are exceptional in size and complexity gener-
ally imparted by the presence of various adhesive structural 
folds, which promote interactions with ECM constituents and 
receptors of adjacent cells (72). The ECDs of most aGPCRs 
contain a GPCR autoproteolysis-inducing (GAIN) domain (73), 
which usually includes a canonical GPCR proteolysis site (GPS;  
H/R−2–L/M/I−1 ↓ T/S/C+1) that catalyzes self-cleavage of the 
receptor (74–77). Once the resulting N- and C-terminal frag-
ments (NTF and CTF) are delivered to the cell surface they 
reunite through a non-covalent bond to build heterodimeric 
receptor molecules (73). A seminal discovery with respect to 
aGPCR signaling was the identification of a short amino acid 
sequence C-terminal of the GPS motif as a cryptic tethered ligand 
(Stachel sequence) with agonistic capacity (78, 79). However, 
how the Stachel is freed from the envelop of the GAIN domain 
pocket it resides in, and whether receptor cleavage is involved 
is matter of ongoing debate (79, 80). Thus, while the functional 
relevance of GAIN/GPS-mediated cleavage remains in large part 
controversial, the GAIN domain in juxtaposition to the 7TM has 
become the defining aGPCR signature (72).

Another unifying property of aGPCRs may be their mecha-
nosensitivity (23–27, 81). For example, GPR56/ADGRG1 was 
suggested to control muscle fiber size through its stimulation 
in response to mechanical preload (23). In Drosophila, LPHN/
CIRL/ADGRL tunes the mechanosensitive profile of sensory 
neurons through cAMP-dependent modulation of ionotropic 
receptors (25, 80). EMR2/ADGRE2 was the first aGPCR, 
for which a mechano-dependent malfunction was directly 
linked to disease. Vibratory uticaria causes hives and systemic 

manifestations in patients when challenged with cutaneous 
vibration. The underlying cause is a single point mutation in the 
GAIN domain of EMR2, which might destabilize the NTF-CTF 
heterodimer to enhance receptor activity and induce histamine 
release from mast cells (27).

Physical anchorage constitutes a logical prerequisite for 
mechanosensing as it enables measurement of movements rela-
tive to the sensor-bearing structure to convey force information. 
Thus, attachment and size-dependent tensility of NTFs may be 
critical for mechanosensing through aGPCRs. NTF-size and 
domain layout vary across the receptor family. Moreover, untypi-
cal for canonical GPCRs, aGPCRs are vividly spliced producing 
a palette of differentially sized NTFs (74, 82, 83), which adds an 
additional level of structural flexibility and functional complexity. 
While the underlying reasons for this variability are unclear it is 
tempting to speculate that aGPCR-NTFs are built to sense chemi-
cal or mechanical signals from the ECM, bridge intercellular gaps 
or even read out the dimension of these gaps. The NTF size of 
each receptor may thus be tuned to meet the specific geometric 
demands of its expressing tissue enabling reliable and precise 
distance sensing and mechanotransduction. This notion is in 
line with the set-point of neuronal mechanosensitivity conferred 
by Drosophila CIRL, which inversely scales with the length of its 
NTF as shown by artificial elongation experiments (80). aGPCR 
function in diverse biological processes such as the establish-
ment of cell and tissue polarity (32–34), synaptogenesis (84–86), 
and myelination of peripheral nerves (24) favors a palette of 
alternative aGPCR variants generated through transcriptional 
modifications.

The newfound mechanoceptive facility of aGPCRs in com-
bination with cellular functions and implications in cancer is 
particularly daunting in light of the perilous force journey cells 
go on as they transform, turn malignant and potentially become 
metastatic (Figures 1C–E).

GPR56 presents one of the most well-studied aGPCRs with 
respect to cancer progression. In melanoma cells, GPR56 curtails 
cell growth and metastasis indicative of its suppressive function 
in tumorigenesis (16). While this phenotype was associated 
with PKCα/VEGF signaling-based defects in angiogenesis (17), 
other cellular routes, e.g., Gα12/13/RhoA seem to supplement the 
GPR56-dependent signaling profile in melanoma cells (18). Rho-
dependent signaling plays roles in several steps of cancer progres-
sion (30), most of which can be traced back to its ability to control 
contractility, stress fiber formation and FA reinforcement (67); 
properties that confer cell migration through a heterogeneous 
stromal environment. This is in agreement with GPR56’s location 
at the leading edge of membrane filopodia and its colocalization 
with α-actinin in human glioma cells (87).

Recent work revealed that mesenchymal differentiation and 
radioresistance, defining features of glioblastoma, are repressed 
by GPR56 (19). The authors propose a model in which GPR56 
obstructs nuclear factor kappa alpha (NF-κα) to inhibit mesenchy-
mal differentiation. During differentiation, however, NF-κα levels 
are potentiated due to tumor (TNFα)-mediated activation and 
relief of GPR56 suppression. Atomic force microscopy of human 
colon cancer cells (HCT116) uncovered that TNFα-induced 
EMT is indeed associated with cytoskeletal rearrangements 
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and changes in cell elasticity (88). Contrasting the situation in 
melanoma and glioblastoma, a recent in  vivo study uncovered 
GPR56 as a novel marker for leukemic subpopulations signified 
by high repopulation capabilities typical for acute myloid leuke-
mia (89). Interaction of leukemic stem cells and bone marrow 
niches is the leading cause of repopulation capacity and acute 
myloid leukemia-relapse. One hypothesis suggests that adhesive 
molecules [e.g., integrins (90), aGPCR (89)] retain leukemic stem 
cells in the niche, sheltering them from chemotherapy.

Brain angiogenesis inhibitor-1 (BAI1/ADGRB1), another 
cancer-associated aGPCR, is enriched in the brain and has been 
associated with tumor angiogenesis (8). In this process tumors 
induce vessel formation essential for oxygen and nutrient supply 
(91). Separation of BAI1’s NTF at the GPS results in the release of 
a fragment, vasculostatin-120, which interferes with angiogenesis 
through the inhibition of endothelial cell proliferation (92) and 
microvascular endothelial cell migration (21). Soluble BAI1 was 
also shown to ablate angiogenesis and glioma growth in  vivo 
(20, 93–95). The BAI1-NTF is composed of one Arg-Gly-Asp 
integrin-binding motif (RGD) and five thrombospondin type 
1 repeats. Interestingly, another functionally active fragment, 
vasculostatin-40, breaks away from the BAI1-NTF to mediate 
antiangiogenic effects in vitro and in vivo (94, 96). Thus, BAI1 
N-termini negatively regulate vessel formation through a cell 
non-autonomous signaling mode. In contrast, ELTD1/ADGRL4 
possesses proangiogenic capacities and is believed to modulate 
vascular sprouting (97). In glioblastoma, for example, ELTD1 
levels are elevated and have been shown to modulate glioma 
growth (97–99). Interestingly, loss of Eltd1 in mice augments 
cardiac hypertrophy in response to pressure preload (100), 
which might indicate mechano-dependence of ELTD1 function 
in angiogenesis.

The Ingber lab established an intriguing model describing the 
mechanical control of angiogenesis (101). This model is based 
on the notion that local thinning of the ECM increases its com-
pliance and causes local cell distortion generated by tractional 
forces of surrounding cells. Subsequently, integrin-dependent 
force transfer across the cell membrane alters the biochemical 
machinery to drive coordinated cell growth, motility and ulti-
mately capillary patterning (102–106). This mechanical force 
concept applies to tumor angiogenesis as well, only here the ECM 
stiffens to shift the force balance. Strikingly, the anti-angiogenic 
potential of BAI1 seems to depend on the interaction of its soluble 
NTF with surface receptors (integrins and CD36) (92, 107). This 
begs the question whether BAI1 interacts with integrins to shape 
angiogenesis mechano-dependently.

BAI1 is downregulated in many forms of cancer (8), which 
may be due at least in part to gene silencing and somatic muta-
tions (5, 95, 108). However, is it possible that cancer formation 
induces aberrant BAI1 expression after protein processing and 
trafficking? Could ECM stiffness break off the NTF on tumor cells 
to induce constitutive signaling and/or receptor internalization? 
BAI1 is known to direct cytoskeletal changes through direct and 
indirect signaling paths with PDZ-binding molecules as well as 
Rho and Rac molecules, respectively (109, 110). Hence, force-
dependent misregulation of BAI1 could intersect with alterations 
in the cellular mechanical signature.

Here GPR56, BAI1, and ELTD1 serve to illustrate the putative 
role of aGPCRs in cancer cell mechanics. However, various aGPCRs 
have been associated with cancer development and progression 
including GPR133/ADGRD1, which is required for glioblastoma 
growth (14); GPR116/ADGRF5, which furthers breast cancer 
metastasis (12); and CD97/ADGRE5 seems to enhance tumor cell 
invasion in several human malignancies (111–114).

iNteGriNs AND aGPcrs

The force-sensing capabilities of tumor cells can be in large part 
traced back to integrins. Interestingly, several aGPCRs have been 
shown to interact with integrins; often by NTF shedding and 
cell non-autonomous signaling at ectopic sites. For example, 
soluble CD97/ADGRE5 was shown to interact with endothelial 
α5β1 and αvβ3 integrins to promote angiogenesis in vivo (9). The 
NTF of GPR124/ADGRA2 is released from cultured endothelial 
cells during angiogenesis and engages with ECM glycosamino-
glycans. Subsequently, the NTF is truncated in a second cleavage 
event exposing a RGD motif to promote endothelial cell survival 
by interconnecting integrin αvβ3 and glycosaminoglycans (115). 
However, GPR124 was shown to modulate Wnt signaling to 
shape developmental CNS angiogenesis in  vivo RGD motif-
independently (35, 116, 117). In contrast, neuronal GPR56 and 
integrin α3β1 interact to regulate cell migration and cortical 
development in a cell autonomous manner (118). Collectively, 
the available data suggests a model in which aGPCRs engage 
in a cis or transcellular conversation with integrins. Moreover, 
aGPCRs may use RGD motifs as an anchor to target soluble 
aGPCR-NTFs to distant sites (9, 115, 119).

As aGPCRs function as sensors and probably transducers of 
mechanical information it seems plausible that they perform 
next to or in conjunction with integrins to shape the biophysi-
cal signature of tumor cells. Several properties of aGPCR are in 
line with this notion: (1) aGPCR interact with ECM molecules 
and are involved in the coordination of cytoskeletal architecture 
indirectly through G-protein, Rho and Rac dependent signaling 
cascades and directly, e.g., via PDZ proteins (120). Thus, similar 
to integrins aGPCRs may connect extracellular ECM and intra-
cellular cytoskeleton. (2) aGPCR promote bidirectional signaling 
(119). (3) aGPCRs have the capacity to dimerize or oligomerize 
(121, 122). Thus, it is enticing to speculate that aGPCRs constitute 
novel mechanotransducers that shape the biomechanical profile 
of cells in health and disease.

cONcLUsiON

Adhesion G protein-coupled receptors shape a number of cellular 
aspects intricately tied to tumorigenesis (Figures 1C–E), which is 
why they might hold tremendous potential as molecular targets 
for the development of novel therapeutic strategies to control can-
cer cell plasticity and malignancy. However, aGPCR research is 
still in its infancy and we are far from understanding their general 
roles in cancer and mechanobiology. Thus, it will be interesting to 
monitor putative aGPCR-dependent changes in the cytoskeleton 
during transformation and beyond using super-resolution and live 
imaging methodologies. Moreover, a complementary approach 

https://www.frontiersin.org/Oncology/
http://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


6

Scholz Cancer Cell Mechanics and Adhesion GPCRs

Frontiers in Oncology | www.frontiersin.org March 2018 | Volume 8 | Article 59

employing atomic force microscopy and subcellular laser abla-
tion will help to analyze viscoelastic changes of malignant and 
metastatic cells with respect to loss or dysfunction of aGPCRs. 
Finally, this knowledge might contribute to a more comprehen-
sive understanding of aGPCRs’ roles as mechanical force sensors 
in physiological and pathophysiological settings.
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