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Altered surface glycosylation is a key feature of cancers, including gynecologic malig-
nancies. Hypersialylation, the overexpression of sialic acid, is known to promote tumor 
progression and to dampen antitumor responses by mechanisms that also involve sialic 
acid binding immunoglobulin-like lectins (Siglecs), inhibitory immune receptors. Here, we 
discuss the expression patterns of Siglecs and sialyltransferases (STs) in gynecologic 
cancers, including breast, ovarian, and uterine malignancies, based on evidence from 
The Cancer Genome Atlas. The balance between sialosides generated by specific STs 
within the tumor microenvironment and Siglecs on leukocytes may play a decisive role for 
antitumor immunity. An interdisciplinary effort is required to decipher the characteristics 
and biological impact of the altered tumor sialome in gynecologic cancers and to exploit 
this knowledge to the clinical benefit of patients.
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Breast cancer and other gynecologic malignancies, involving the uterus and ovaries, are widely 
diagnosed tumor entities and, besides lung cancer, constitute the major cause of cancer-related death 
in women worldwide (1, 2). Although the development and implementation of novel strategies in the 
treatment of these diseases have positively influenced patient prognosis, novel and more personalized 
treatment approaches for the heterogeneous forms of gynecologic malignancies are urgently required 
(3–5). In the past decade, based on scientific evidence, immunotherapies rose to prominence as 
strong contenders in the fight against cancer in women (3, 6, 7). Different immunotherapeutic strate-
gies are currently under evaluation, whereby off-target immunostimulatory effects of conventional 
chemotherapeutics may be synergistically embraced in combinatorial immune (chemo) therapeutic 
regimens (8). However, tumor-intrinsic and -extrinsic resistance factors account for heterogeneous 
treatment responses (9). The critical importance to decipher these immunosuppressive mechanisms 
is also illustrated by the unprecedented success of immune checkpoint blockade using antibodies to 
target immune regulatory checkpoints, such as the inhibitory receptors, CTLA-4 and PD-1 (10, 11). 
The elucidation of mechanisms that influence the host immune system, in particularly reference to 
specific gynecological cancers, may lead to novel diagnostic biomarkers and therapeutic strategies 
for these particular tumors.

Glycosylation changes are common in malignancies (12, 13), and several carbohydrate tumor 
markers are diagnostically exploited as biomarkers, such as the CA 125 antigen that is elevated 
in serum of patients with ovarian cancer (14). Distinct patterns of tumor surface glycosylation, 
in particular, hypersialylation, and the overexpression of sialic acids (15, 16), have been linked 
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FiGure 2 | Tissue RNA expression of sialic acid binding immunoglobulin-like lectins (Siglecs) in gynecologic cancers. RNA tissue expression of Siglecs in breast 
carcinoma, ovarian serous cystadenocarcinoma, uterine corpus endometrial carcinoma, uterine carcinosarcoma, and colonic adenocarcinoma, computed by a 
dendrogram clustering algorithm in R version 3.4.2. The results shown here are in whole or part based upon data generated by the The Cancer Genome Atlas 
Research Network: http://cancergenome.nih.gov/.

FiGure 1 | Tissue RNA expression of sialyltransferases (STs) in gynecologic cancers. RNA tissue expression of known human STs in breast carcinoma  
(BRCA; n = 1,094), ovarian serous cystadenocarcinoma (n = 305), uterine corpus endometrial carcinoma (n = 545), uterine carcinosarcoma (n = 57), and colon 
adenocarcinoma (COAD; n = 455), ranked upon expression in BRCA. Data are expressed as box-and-whisker diagrams (median, lower, and upper quartiles; 
horizontal lines define minimum and maximum). The results shown here are in whole or part based upon data generated by the The Cancer Genome Atlas Research 
Network: http://cancergenome.nih.gov/. Figures were created in R version 3.4.2. **p < 0.01, ***p < 0.001, one-way ANOVA followed by Bonferroni’s post-test.
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to immune escape and tumor progression (12). It has been 
suggested that sialic acid containing glycans (sialoglycans) 
may act as “self-associated molecular patterns (SAMPs)” (17) 
and that hypersialylation of tumors promotes escape from 
host immune responses by demonstrating “super-self ” (18). 
The recognition of sialoglycan SAMPs by inhibitory receptors 
on the surface of immune cells, such as sialic acid binding 
immunoglobulin-like lectins (Siglecs) (19–21), may then lead 
to the downregulation of immune responses. Members of the 
Siglec family are heterogenously expressed in immune cells in 
a cell type- and differentiation-dependent manner, whereby 
different members recognize structurally distinct sialoglycans 
(19–21). As a further mechanism, hypersialylation might 

“mask” glycan ligands of other immunomodulatory receptors, 
if sialic acids are covalently linked by sialyltransferases (STs) 
to respective binding sites (12). For instance, the NKG2D-
activating receptor on natural killer (NK) cells was shown 
to be involved in interactions with desialylated ligands on 
tumor cells (22). Interestingly, it appears that glycan epitopes 
with terminal sialic acids are less immunogenic and may 
escape humoral IgG responses (23). Cancer hypersialyla-
tion often involves the increased generation of sialoglycan 
ligands of selectins, such as sialyl-Lewis X and its structural 
isomer sialyl-Lewis A, which promotes metastatic spread by 
heterotypic interactions between cancer cells, leukocytes, and 
endothelial cells (12, 24, 25). In this context, high expression 
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of sialyl-Lewis X in estrogen receptor (ER)-positive breast 
cancers was reported to correlate with metastasis to the bone, 
where sialyl-Lewis X receptor E-selectin is constitutively 
expressed (26). Interestingly, contrarily to this report, sialyl-
Lewis X expression was shown to negatively correlate with 
progression in a breast cancer animal model (27). Many other 
mechanisms have been reported that contribute to immune 
escape and progression of hypersialylated tumors (12, 15, 28).

Hypersialylation in cancer has been linked to the enhanced 
expression and activity of STs (29, 30), which catalyze the covalent 
attachment of sialic acids via different glycosidic linkages (α2–3, 
α2–6, or α2–8) to subterminal carbohydrate moieties. Notably, 
high α2,3-sialyltransferase type I (ST3Gal I) expression is associ-
ated with advanced stage epithelial ovarian cancer and has been 
linked to ovarian cancer cell migration and peritoneal dissemina-
tion via an epidermal growth factor receptor-dependent mecha-
nism (31). Figure 1 provides an overview on the expression of the 
20 known human STs in gynecological cancers, including breast 
carcinoma (BRCA), ovarian serous cystadenocarcinoma (OV), 
uterine corpus endometrial carcinoma, and uterine carcinosar-
coma (UCS), as well as non-gynecologic colonic adenocarcinoma 
(COAD) based on data from The Cancer Genome Atlas (TCGA) 
project. Broad, yet differential expression profiles of STs are found 
at tissue RNA levels across these tumor entities. In BRCA, ST3Gal 
I (mentioned above) exhibits highest RNA levels on average, fol-
lowed by ST6Gal I, ST6GalNAc VI, ST6GalNAc II, and ST3Gal 
IV. Expression levels of these STs are similar in other tumors 
with the exception of ST6GalNAc II, which were lower in UCS 
and COAD. In BRCA, particularly low RNA levels are found for 
ST6GalNAc I, as opposed ST8Sia VI levels are higher. Compared 
to COAD, most gynecological tumors express at higher levels 
of ST6GalNAc II, ST8Sia II, and ST8Sia V, but lower levels of 
ST6GalNAc I.

Although the exact expression of ST patterns and their 
consequences remain to be explored, the TCGA data suggest 
that common patterns of ST expression occur in gynecological 
tumors that may lead to universal tumor-associated carbohy-
drate antigens, e.g., sialyl-Tn antigen (14). On the other hand, 
ST expression differences may contribute to divergent tumor 
behavior, including immune escape or dissimilar responses to 
immunotherapeutic interventions. Depending on ST specific-
ity and activity, responses of specific leukocyte subsets may be 
downregulated upon interaction with a hypersialylated tumor 
microenvironment, that harbors the cognate sialoside ligands, 
including specifically sialylated glycoproteins (e.g., mucins) or 

glycolipids (gangliosides) (12, 19, 24). A number of studies have 
shown that sialylated tumor cells exploit Siglec receptors to escape 
immune responses using the sialic acid–Siglec axis, including 
Siglec-7 or -9 on NK cells (32, 33), or Siglec-9 on myeloid cells (34, 
35). The moderate (e.g., Siglec-7 or -9) or even high (e.g., Siglec-2 
or -10) RNA expression in gynecological cancers as revealed 
by TCGA data (Figure  2), indicates the presence of leukocyte 
subsets that are potentially inhibited by tumor hypersialylation, 
as a consequence of increased ST expression and activity. Sialic 
acid–Siglec interactions may thus have important implications in 
terms of immune escape and for immunotherapeutic strategies in 
gynecological tumors.

Although the knowledge concerning the dysregulation of 
the sialome and altered biosynthesis pathways is growing (16), 
the role of sialic acids in tumor development and immunity 
remains poorly understood. Yet, a better understanding of the 
impact of glycosylation changes in gynecological cancer has a 
high potential for the identification of diagnostic biomarkers 
and therapeutic targets. Glycan-based therapeutics may include 
specific sialyltransferase inhibitors (36), sialic acid mimetics (37), 
glycan-coated nanoparticles (19), glycan-modifying enzymes, 
as well as antibodies to glycans or their receptors (lectins) (12). 
The potential gain for patients with gynecologic cancers is high, 
but so are the challenges. The latter not only demand increased 
interdisciplinary efforts between clinicians and scientists, but also 
the improved training of glycoscientists (38) and the enhanced 
awareness of the biological implications of altered glycosylation 
on tumor biology and immunity.
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