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Advancements in the early detection of cancer coupled with improved surgery, radiother-
apy, and adjuvant therapy led to substantial increase in patient survival. Nevertheless, 
cancer metastasis is the leading cause of death in several cancer patients. The majority 
of these deaths are associated with metastatic relapse kinetics after a variable period 
of clinical remission. Most of the cancer recurrences are thought to be associated with 
the reactivation of dormant disseminated tumor cells (DTCs). In this review, we have 
summarized the cellular and molecular mechanisms related to DTCs and the role of 
microenvironmental niche. These mechanisms regulate the dormant state and help in 
the reactivation, which leads to metastatic outgrowth. Identification of novel therapeutic 
targets to eliminate these dormant tumor cells will be highly useful in controlling the 
metastatic relapse-related death with several cancers.

Keywords: cancer metastasis, dormancy, reactivation, tumor microenvironment, epithelial to mesenchymal 
transition

iNTRODUCTiON

Metastasis is a continuous biological process consists of an orderly sequence of basic steps including 
local invasion, intravasation, extravasation, and colonization. These classical events of metastasis help 
in understanding the complex array of biological properties that are necessary for the progression of 
primary malignancy to overt metastasis (1, 2). It involves dissemination of malignant cells from the 
primary tumor to the distant sites and their proliferation at metastatic sites, which leads to failure 
of vital organs (1, 2). The kinetics of the metastasis have been highly explored in the past decade. 
Despite significant research efforts and discoveries made in recent years, the precise reasons for 
tumor relapse remain largely unknown. There has been significant progress in basic cancer research 
and clinical oncology; however, metastasis remains to be a key challenge in cancer therapy. Systemic 
studies on understanding the cellular and molecular mechanisms involved in metastasis might be 
useful in developing novel diagnostic and therapeutic strategies for metastasis prevention. However, 
biological, clonal and genetic heterogeneity within or between tumors are the biggest challenges in 
metastasis research (1, 2). The differential progression of certain cancer subtypes under the distinct 
selective conditions exists in various tissues leads to metastatic speciation. Disseminated cancer 
cells might exhibit slow growth in order to adapt to the host microenvironment for the metastatic 
expansion (3–7). These processes are mirrored by several cancer relapse kinetics in a tissue-specific 
manner and by the manifestation of distinct organ tropism (3–7). Metastasis might be developed 
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FiGURe 1 | An overview of disseminated tumor cells (DTCs) in dormancy and clinical metastasis relapse. During the metastasis, the disseminated primary tumor 
cells developed the secondary tumor in the distant organ sites immediately or at a later stage. The tumor microenvironment or the intrinsic factors decide the fate of 
the DTCs either to develop clinical metastasis or to maintain the dormant state. Over the years, these dormant tumor cells escape from dormancy state and develop 
the clinical metastasis.
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without clinical symptoms after a long period of postsurgery 
(8). During this period, circulating tumor cells (CTCs) or dis-
seminated tumor cells (DTCs) stay in the dormant state through 
inhibition of cell proliferation and activation of cell survival 
pathways (9, 10). The dormant tumor cells remain at low numbers 
after primary tumor resection. These cells are undetectable for 
long period and may be the reason for continued asymptomatic 
residual disease progression and treatment resistance (11–14). 
However, by understanding more about the biology of dormant 
cancer cells, the potential treatment strategies can be developed 
to combat the asymptomatic residual disease. The therapies tar-
geting the mechanism of tissue-specific metastasis might open up 
new clinical avenues for the management of various cancer pro-
gression (15). However, to determine whether dormant solitary 
cells or micrometastases are valid targets for therapy, the cellular 
and molecular biology of tumor dormancy and reactivation need 
to be explored. This review emphasizes on the cancer dormancy, 
metastatic reactivation and the molecular mechanisms underly-
ing these phenomena.

TUMOR AND MeTASTATiC DORMANCY

Tumor dormancy is a clinical process that eventually associates 
with local recurrences or cancer metastases. During this process, 
the residual disease might be present even after the treatment 
of primary tumors either in the forms of CTCs, DTCs, and/or 
micrometastases which have the capability of evading the treat-
ment and survive in a quiescent state. Traditional chemotherapies 
are most effective on proliferative cells, however, ineffective 

toward the dormant cells (16). The dormancy nature of the tumor 
may be reflected by cellular or tumor mass dormancy. In cellular 
dormancy, cells halt in the G0 phase of the cell cycle and under 
favorable environmental conditions, they get reactivated by 
escaping from G0 cell cycle arrest (17). Moreover, during tumor 
mass dormancy tumor kept constant at a limited size owing to a 
balance between cell proliferation and cell death. Additionally, 
angiogenesis and immune response play an important role in 
maintaining the tumor mass dormancy (18). Dormant cells 
remain asymptomatic for months, years or even decades and 
eventually they undergo clinically detectable overt metastatic 
relapse as shown in Figure 1 (19). Interestingly, dormant cancer 
cells have also been observed in the primary tumors that undergo 
epithelial to mesenchymal transition (EMT) to develop migra-
tory and invasive phenotypes (20). In primary tumor dormancy 
development, somatic mutations play a critical role to withstand 
apoptosis, senescence, and evade the immune system and trigger 
neoangiogenesis. In addition, cells undergoing metastatic dor-
mancy are also governed by extracellular matrix (ECM) niches 
that induce positive signals such as Wnt and Notch and attenuate 
negative signals like bone morphogenetic protein (BMP) (21). 
On the contrary, tumor cells at premetastatic sites may undergo 
dormancy due to delayed adaptation and complex interaction 
with the local microenvironment (Figure 2).

Several signaling pathways such as RAS-MEK-ERK/MAPK 
and PI3K-Akt play a crucial role during the process of cancer 
dormancy (17). Additionally, stress signals, including oxidative 
response and activation of unfolded protein response (UPR) 
also have a major contribution to metastatic dormancy and 
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FiGURe 2 | Role of epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET) in invasion-metastasis cascade. Cancer cells undergo 
EMT to acquire stemness and invasion potential leading to cancer cell dissemination. In the target organ, disseminated cancer cells encounter inhibitory signals 
resulted in the arrest in cell cycle thereby leading to dormancy. Cancer cells undergo MET in order to acquire epithelial features such as proliferation to form 
metastatic outgrowth in the target organs.
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reactivation (21). In addition to various signaling pathways, DNA 
repair mechanism, and genomic instability also contribute to 
cancer dormancy (22). It is reported that primary tumor micro-
environment may generate a dormant subpopulation, which is 
capable of evading therapy and responsible for metastatic relapse. 
It has been shown that metabolic pathway plays a crucial role in 
dormancy. Studies have demonstrated that altered lipid metabo-
lism coupled with accumulation of reactive oxygen species helps 
in metastatic recurrence (23).

MeTASTATiC NiCHe iN TUMOR 
DORMANCY AND ReACTivATiON

Several reports suggest that cancer cells undergo a protracted 
period of dormancy by the inhibitory molecular cues derived 
from primary tumors or restrains caused by target organ micro-
environment (24–27). Bidirectional interaction of metastatic 
tumor cells with microenvironmental niches are imperative for 
the reactivation of dormant metastatic cells as well as the induc-
tion of mesenchymal to epithelial transition (MET) to sculpt the 
formation of macrometastases. Premetastatic niche provides a 
favorable microenvironment during metastasis development. 
Metastatic niche formation includes inflammation, immuno-
suppression, angiogenesis/vascular permeability, organotropism, 
lym pha n giogenesis, and cellular reprogramming (28). Further, 
attachment of tumor cells to native basement membrane facili-
tates their survival, functional differentiation and growth arrest. 
This suggests that basement membrane is able to contribute to 
dormancy properties of DTCs. The DTCs often home to the 
distant organs where the primary basement membrane is mostly 
vascular in nature such as bone marrow, lung, liver, and brain 

(29, 30). Studies have shown a close association between DTCs 
and vascular basement membrane by using the mouse models 
of breast tumor dissemination (31). Ghajar et  al. have shown 
that endothelial-derived thrombospondin-1 (TSP-1) induces 
the quiescence in breast cancer cells and this suppressive cue 
lost during neovasculature. The time-lapse analysis showed 
that sprouting vessels permit and accelerate breast cancer cell 
outgrowth (31). Further, they have shown that recreation of the 
organotypic microvascular niche of lung and bone marrow pro-
motes dormancy and quiescence (31). It has also been shown that 
attachment with microvasculature in the perivascular niche is 
necessary for DTCs survival in mouse brain (32). These data sup-
port that endothelial cells help in dormancy induction whereas 
neovascularization in perivascular niche supports reactivation of 
dormant cells that leads to metastatic outgrowth.

A recent report suggests that a subset of macrophages (TAMs), 
known as metastasis-associated macrophages (MAMs), are 
enriched in metastatic breast cancer as compared to primary 
tumors. Flt1-regulated signaling in these MAMs upregulates 
inflammatory gene signature which is imperative for cancer cell 
survival during metastatic seeding (33). In addition to TAMs, 
circulating VEGFR1+ and bone marrow-derived CD11b+Gr1+ 
myeloid cells are involved in premetastatic niche formation 
(34–36). Myeloid cells expressed versican, an ECM proteogly-
can, plays a key role in inducing proliferation of cancer cells to 
form metastatic outgrowth in the lung (35). CYP4A-induced 
TAMs promote premetastatic niche formation and metastasis 
in the lung by recruitment of VEGFR1+ myeloid cells (36). 
Moreover, induction of TGF-β in myeloid cells by natural killer 
T cell-derived interleukin (IL)-3 suppresses immune responses 
and controls tumor recurrence (37). Other stromal cells such 
as fibroblasts and endothelial cells present at premetastatic 
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niche also play an important role in this phenomenon. Cancer-
associated fibroblasts show activated phenotype and are integral 
components of premetastatic niche. Studies show that breast can-
cer metastasis-associated fibroblasts secrete higher level of IL-6 
that promotes malignant growth (38). Furthermore, systemic 
factors derived from primary tumors induce the fibronectin 
synthesis by fibroblasts to form premetastatic niche by recruiting 
a fibronectin-binding integrin α4β1+ hematopoietic progenitor 
cells. These hematopoietic progenitor cells remodel the local 
microenvironment by producing MMP-9 and other factors and 
stimulating angiogenesis (34, 39, 40). Hence, the metastatic niche 
plays a pivotal role in the survival, maintenance, and reactivation 
of DTCs.

MeT AND MeTASTATiC ReACTivATiON

Epithelial to mesenchymal transition-driven mesenchymal features  
in cancer cells enable them to invade and metastasize to the 
dis tant organs. Several studies suggest that EMT-inducing tran-
scription factors such as Twist and Snail show inhibitory effects 
on cancer cell proliferation, however, these factors induce migra-
tory potential by downregulating the cadherin junctions (41).  
A reverse phenomenon of EMT known as MET helps in the tumor 
relapse or dormancy reactivation through the restoration of 
epithelial features. Interestingly, during MET tumor cells actively 
proliferate and regain adhesive junctions to communicate with 
the surrounding niche of the metastatic sites (Figure  2) (42). 
Recent reports have shown that blockade of the TGFβ/Smad2 
pathway by versican promotes MET phenotype (43). Induction of 
MET in breast cancer cells is associated with increased metastatic 
colonization. Tsai et  al. have found that attenuation of Twist1 
expression promotes the metastatic outgrowth by inducing MET 
and proliferation of cancer cells (44). Additionally, Prrx1 another 
EMT transcription factor confers the migratory and invasive 
properties of cancer cells. Various studies showed that loss of 
Prrx1 contributes to metastatic colonization by stimulating MET 
phenotype. Moreover, downregulation of Prrx1 is associated with 
metastatic disease and poor survival of patients (45). Several stud-
ies showed that accumulation of genetic and epigenetic changes 
in tumor cells facilitated them to revert dormancy and undergo 
metastatic reactivation. Posttranslational modification of histones 
is extensively studied epigenetic change which has been observed 
in transcriptional activation of various EMT/MET-associated 
genes. The recent report suggests that H3K27me3-demethylase 
KDM6A expression toggles during EMT and MET processes. 
KDM6A catalytically removes di- and tri-methyl groups from 
H3K27me3 suppressive mark of the H3K4me3/H3K27me3 
bivalent promoters; to promote the expression of target genes 
associated with differentiation, proliferation and cellular adhe-
sion (46). Collectively, these studies suggest that the stromal cell 
signaling and MET contribute to metastatic reactivation.

MeCHANiSMS OF CeLLULAR 
DORMANCY

Metastatic dormancy is a result of growth arrest either in a single 
DTC termed as cellular dormancy or in micrometastatic lesions 

called as tumor mass dormancy. Cellular dormancy marked by 
a quiescent state in DTCs is associated with the decline in Ki67 
expression, a proliferation marker or G0/G1 cell cycle arrest. 
There are various cellular and molecular mechanisms through 
which DTCs undergo dormancy which is discussed below.

Stress-induced Signaling and UPR  
in Cellular Dormancy
Mitogen, stress signal, and other factors present in the premeta-
static niche may be responsible for cell cycle arrest and dormancy. 
Crosstalk between mitogen and stress-induced signaling pathways 
are crucial for cellular dormancy. Studies have shown that a set of 
genes selectively affects the growth at the secondary site including 
MKK4, MKK6, and Nm23-H1. Interestingly, MKK4 and MKK6 
are upstream activators of p38 while, Nm23-H1 indirectly down-
regulates ERK1/2 by inhibiting EDG2 LPA receptor, a strong 
activator of ERK1/2 (47). Hence, ERK/p38 signaling ratio seems 
to have a crucial role in cancer cell dormancy and reactivation 
(Figure  3). Several studies showed that the enhanced levels of 
p38 MAPK over ERK1/2 upon downregulation of uPAR induces 
dormancy in squamous cell carcinoma (48, 49). Researchers 
have demonstrated that Minibrain-related kinase/dual specificity 
tyrosine phosphorylation-regulated kinase 1B (Mirk/DYRK1B) 
blocks cyclin D1 and CDK4 which further regulates the survival 
signals and cell cycle arrest in pancreatic and ovarian cancer cells 
(50–52). Likewise, MAPKK4 has been shown to exert dormancy 
by the upregulation of JNK pathway in prostate and ovarian 
cancer cells (53, 54).

Several reports have shown that the upregulation of various 
UPR-associated genes like Grp78, Grp94, PDI, heat shock protein 
47 (HSP47), and cyclophilin B in dormant cells play a crucial 
role in metastatic dormancy (55–58). Ranganathan et al. showed 
that stress-induced p38 activation leads to upregulation of the 
endoplasmic reticulum (ER) chaperone BiP. Further, this factor 
increases the activation of the ER stress-activated PERK signaling 
that results in higher survival and therapy resistance in dormant 
cells (56). Additionally, p38 kinase-mediated activation UPR also 
induces the expression of the ER stress-regulated transcription 
factor ATF6 and promotes mTOR-mediated survival of the 
dormant cells (59). Moreover, the mechanistic analysis in DTCs 
derived from bone marrow of breast cancer patient revealed 
that the expression of Grp78, a UPR protein, upregulated in low 
oxygen and glucose conditions and promotes higher proliferation 
and sustained survival (58).

Microenvironmental factors like BMPs and growth arrest-
specific 6 (GAS6) derived from mesenchymal cells and osteo-
clasts, respectively, can curb proliferation and induce dormancy 
in cancer cells (Figure  3). By using the prostate cancer bone 
metastasis model, Kobayashi et al. have demonstrated that BMP7 
promotes dormancy. BMP7 induces the expression of metastasis 
suppressor gene N-myc, leading to the activation of p38 MAPK, 
p21, and cell cycle arrest (60). Moreover, Shiozawa et al. reported 
that the activation of the GAS6 receptor in prostate cancer cells in 
the bone marrow environment plays a critical role in establishing 
metastatic tumor cell dormancy (61). The recent study has dem-
onstrated that latency competent cancer cells from early-stage 
human lung and breast carcinoma cells can self-imposed in a 
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FiGURe 3 | Mechanisms of tumor dormancy. Solitary cell dormancy (cellular dormancy, left) is caused by cell cycle arrest and induction of survival mediated by 
various signaling cascades including downregulation of PI3K-Akt, ERK, and Wnt signaling and upregulation of p38 MAPK signaling. Tumor mass dormancy (right) is 
a result of the balance between proliferation and cell death due to less blood supply and immune surveillance.
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dormant stage by downregulating Wnt signaling and inducing 
Sox-dependent stem-like state (62). Altogether, these results 
suggest that stress signaling helps in the single cell dormancy by 
arresting proliferation and enhancing survival of DTCs in the 
premetastatic niche.

Hypoxia and Dormancy
In the tumor microenvironment, hypoxia plays a critical role 
during tumor development and metastasis. Fluegan et  al. have 
explored the influence of hypoxia on the fate of DTCs. They report 
that hypoxia enhances the expression of key dormancy genes like 
NR2F1, DEC2, p27 in head and neck squamous cell carcinoma 
(HNSCC) and primary breast tumor. Posthypoxic solitary DTCs 
in patient-derived xenografts and transgenic mice show NR2F1hi/
DEC2hi/p27hi/TGFβ2hi population with dormant phenotype. 
NR2F1 and HIF1α involved in the regulation of p27 expression 
in posthypoxic dormant DTCs. Moreover, hormone receptor-
dependent breast cancer cells exhibit higher affinity toward 
NR2F1-dependent dormancy (63). Harper et al. have delineated 
the molecular mechanism by which HER2 aberrantly activates a 
program for early dissemination and generation of DTCs. These 
early DTCs exhibit p-p38lop-Atf2loTwist1hiE-cadlo expression pat-
tern and an EMT-like dissemination program without complete 
loss of epithelial feature which was recovered after inhibition of 
HER2 and Wnt signaling (Figure 3). Interestingly, the dormancy 
feature in these early DTCs was p38-independent and even after 

being Twist1hiE-cadlo and dormant, they were able to initiate 
metastasis (64). These data indicate that the development of 
dormancy feature is governed by several intrinsic and extrinsic 
programs and by contextual cues.

miRNAs in Cellular Dormancy
miRNAs play an important role in the various biological pro-
cess. It has been shown that miRNAs may affect the hallmarks 
of cancer, including sustained proliferation, blocking growth 
inhibition signals, resisting cell death, inducing invasion, 
metastasis, and angiogenesis (65). Ono et  al. have described 
the role of miRNA derived from bone marrow mesenchymal 
stem cells in the induction of dormancy in metastatic breast 
cancer cells isolated from bone marrow of the mice. This study 
showed that higher expression of miR-23b in metastatic breast 
cancer cells leads to dormant phenotype by downregulation 
of MARCKS gene, associated with cell cycle progression and 
motility (66). The data also showed a consensus set of 19 miRs 
with the potential role in governing the phenotypic switch of 
human dormant breast carcinoma, glioblastoma, osteosarcoma, 
and liposarcoma to outgrowth. They have shown that loss of 
dormancy-associated miRs (DmiRs, 16/19) reactivate the fast 
growth of the dormant tumors. However, reestablishment of a 
single DmiR (miR-580, 588, or 190) results in the phenotypic 
switch of fast-growing angiogenic tumor toward prolonged 
dormancy (67).
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Autophagy and Dormancy
Autophagy is an extremely conserved self-degradation process, 
which has an important role in cancer stem cells (CSCs) regula-
tion and tumor cell survival. Several reports suggest that DTCs 
possess CSCs properties, which prompted researchers to explore 
the potential role of autophagy in cancer cell dormancy and stress 
response. Various groups have shown that autophagy helps in 
the survival of DTCs for protracted periods (68, 69). Autophagy 
supports DTCs survival by sustaining amino acid levels, ATP 
production and blocking energetic catastrophe (69–71). Further, 
induction of autophagy has linked to dormancy. Liang et al. have 
shown that the activation of LKB1-AMPK leads to induction of 
ULK1, which initiates autophagy. Further, this pathway activates 
p27kip1-dependent growth arrest (G1 arrest) and downregula-
tion of this signaling induces apoptotic cell death (72). They have 
proposed a novel mechanism which links autophagy stimulation, 
growth arrest and apoptosis. In recent finding, Lu et  al. have 
shown the role of tumor suppressor protein, aplasia Ras homolog 
member I (ARH1) which partly induces autophagy by inhibiting 
PI3K/Akt pathway. This study shows that reexpression of ARH1 
in SKOv3 ovarian cancer xenograft results in tumor regression 
likely due to autophagy. However, the xenograft exhibited pro-
longed growth arrest indicating the onset of dormancy which 
was reversed after subsequent knockdown of ARH1 (73). These 
studies link the onset of autophagy with growth arrest/quiescence 
program and survival which proposing a key role of autophagy 
in dormancy.

MeCHANiSMS OF TUMOR  
MASS DORMANCY

In contrast to single cell dormancy, tumor mass dormancy is gov-
erned by a balance between the rate of proliferation and apoptosis 
in micrometastatic lesions. The tumor mass dormancy is induced 
by slow proliferation, restrained blood supply and active immune 
response. Recent studies reveal that the frequency of osteolytic 
bone metastasis depends on metastatic niche environment rather 
than the number of cancer cells (74, 75). Moreover, stromal fac-
tors such as TGFβ and BMPs have potential role in the regula-
tion of tumor initiation, proliferation and maintenance of the 
quiescent state. Bragado et al. have suggested that TGFβ2 induces 
slow cycling and quiescence in cells by suppressing CDK4 and 
inducing p27 in HNSCC (76). Interestingly, it has been shown in 
multiple myeloma that a small population of Ki67+ cells coexists 
with dormant cells, proposing that for the reactivation defined 
niches are essential (77, 78). Unfortunately, the mechanisms 
behind long-term metastatic dormancy are highly unexplored. 
However, sustenance of tumor mass dormancy relies on the cel-
lular mechanisms that induce slow cycling.

Micrometastatic lesions require the higher blood supply to 
grow beyond 1–2  mm, which leads to the induction of vessel 
formation by secretion of angiogenic factors like VEGF (79). 
Therefore, the antiangiogenic signaling mechanisms could be an 
interesting factor, which maintains the tumor mass dormancy  
(31, 80). These studies show that upregulation of TSP-1, an angio-
genic inhibitor induces poor vascularization and dormancy in breast 

cancer, glioblastoma, osteosarcoma, and liposarcoma under in vivo  
conditions (81). Chaperons like HSP27 also regulate the angio-
genesis and dormancy. Ablation of HSP27 in breast cancer pro mpts 
the long-term in vivo dormancy while its upregulation results in 
dormancy exit and enhanced vascular density (80).

Clearance of tumor cells by immune system contributes to 
another mechanism of tumor mass dormancy. Cancer cells 
coevolve in a microenvironment where the immune system 
is suppressed. However, DTCs do not have such support and 
eventually, most of these cells die due to the natural immune 
response. It has also been reported that immune system regu-
lates the number of DTCs as well as the size of micrometastatic 
lesions (82). Additionally, the presence of DTCs in bone marrow 
of breast cancer patients showed the correlation with the higher 
immune cell subpopulations including NK  cells, macrophages 
and T lymphocytes. All these cell types are known to be involved 
in rejection of primary tumors and metastasis, which leads to 
tumor dormancy (83).

MeCHANiSMS OF MeTASTATiC 
ReACTivATiON

Dormant cancer cells may be subjected to reactivation to initiate 
metastasis in response to specific signals from their specialized 
niche, which maintains the balance between the self-renewal 
and production of differentiated progeny (84–88). Cancer cells 
start preconditioning the host microenvironment even before 
seeding by secreting various soluble factors (39, 89). Heparanase, 
osteopontin, and lysyl oxidase facilitate the invasion, survival, 
and proliferation of metastatic breast cancer cells (90–92). After 
extravasation, DTCs may encounter different niches including 
perivascular niche. It has been shown that attachment of DTCs on 
the abluminal surface of mature blood vessels promotes dormancy 
through endothelium-derived TSP-1, while neovascularization 
creates a local microenvironment favoring metastatic reactivation. 
After neovascular sprouting, vessel homeostasis gets disrupted 
and endothelial cells start secreting tumor-promoting signals and 
growth factors like ECM proteins, periostin and active TGFβ that 
leads to micrometastatic outgrowth (31). It has been reported that 
ECM protein tenascin C activates Notch and Wnt signaling lead-
ing to enhanced metastatic outgrowth (93, 94). TGFβ helps in the 
production of periostin from stromal fibroblasts and endothelial 
cells in the neovascular area that supports metastatic outgrowth 
(31, 95). Further, Gao et al. have reported that Coco a secreted 
antagonist of TGFβ ligand reactivates solitary breast cancer 
cells at organ-specific metastatic sites by shielding metastasis-
initiating cells from inhibitory signals provided by lung-derived 
BMP proteins. A large group of patients expressing Coco showed 
predicted relapse to lung but not to brain and bone due to the 
absence of bioactive BMP (96). Hence, the metastasis-initiating 
cells may promote the permissive niche comprising of matrix 
proteins which are involved in activation of specific signaling 
pathways such as Wnt and Notch that in turn activate their self-
renewal. Recent report suggests that the TAM family of receptor 
tyrosine kinases TYRO3, AXL, and MERTK have a potential role 
in dormancy regulation in prostate cancer. MERTK stimulates 
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FiGURe 4 | Therapeutic implications of dormant tumor cells. The possible target sites to eliminate the dormant tumor cells (DTCs) in order to regulate metastatic 
relapse. Though the direct evidence to target the dormant cells yet needs to identify extensively. Moreover, the dormant cells can be targeted at several checkpoints 
including epigenetic regulators (DNMT1, EZH2), immune cells (NK cells/CTL) activation, evading growth suppression, vascular niche, quiescent cancer stem cells, 
survival signaling, and the microenvironment signals (bone morphogenetic protein 4/7, CXCL12, TRAIL, growth arrest-specific 6, TGFβ-2, BME, and 
thrombospondin 1) that help in the maintenance of the dormant state.
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the reactivation of dormant prostate cancer cells through MAP 
kinase-dependent mechanism, which involves p27, pluripotency 
transcription factors, and histone methylation (97).

THeRAPeUTiC iMPLiCATiONS OF 
DORMANCY AND ReACTivATiON

Recent achievements in cancer therapy and increased overall 
survival motivate the researchers to look for new diagnostics for 
the patients at high risk of late metastasis and therapeutic system 
targeting DTCs. The limitation of current conventional and adju-
vant therapies to prevent relapse, is they basically target growing 
tumor cells rather than DTCs. The systemic nature of the meta-
static disease along with the heterogeneity of metastatic tumors, 
complex inter-connected pathways and the resistance against 
therapy makes its pharmacological management very difficult. 
Hence, there is a need to focus on preventing metastasis (98, 99). 
Bone-modifying drugs have been used clinically for management 
of bone metastasis-related morbidity. However, when they used 
in the preventive adjuvant setting against cancer, inconclusive 
results were observed (98–100). A detailed understanding of 
the mechanism of metastatic dormancy and colonization along 
with innovative therapeutics must be developed to solve this 
medical dilemma. For this, therapeutic agents that can inhibit 
metastasis by targeting metastatic cell-autonomous functions and 
mechanisms responsible for dormancy and their survival would 
serve as a new opportunity to prevent minimal residual disease 
(Figure 4). Since DTCs are highly dependent on signaling, hence 
targeting these pathways may be helpful in enhancing the effi-
cacy of adjuvant therapy and managing the metastatic relapse. 

Based on existing reports, targeting Src, Akt, or Tor by using 
their inhibitors alone or in combination with chemotherapy can 
be a potential approach for the treatment of minimal residual 
disease. Studies under in vivo preclinical and 3D in vitro model 
of dormancy demonstrated that targeting the Src family kinase 
and MEK1/2 using their specific inhibitors resulted in apoptosis 
in a large fraction of the dormant cells and delayed metastatic 
outgrowth in breast cancer (101). Inhibition of Src kinase family 
signaling or Src knockdown leads to the nuclear localization of 
cyclin-dependent kinase inhibitor p27 resulting in prevention  
of metastatic outgrowth; however, it did not affect the survival of 
the dormant cells. MEK1/2 inhibitors that block the downstream 
ERK1/2 signaling suppresses DTCs survival. Several studies have 
shown that the various phenotypic and functional similarities 
are shared between metastasis-initiating cells and CSCs. Hence, 
CSCs targeted therapies may be effective in the treatment of 
metastatic disease. Moreover, stem cell signaling pathways also 
induce resistance to chemotherapy. Thus, combination therapy 
targeting stem cell pathways like Notch and Wnt along with 
canonical oncogenic pathway or reactivating BMP signaling 
may be effective in metastatic disease therapy. It has been shown 
that autophagy promotes the survival of the dormant cancer 
cells. Interestingly, inhibition of autophagy reduces clonogenic 
survival of lung, cervical, and breast cancer cell (102). Therefore, 
autophagy can also be considered as a therapeutic target in cancer 
metastasis.

Immunotherapy is being explored extensively for cancer 
management. Saudemont et  al. have shown NK  cells-based 
immune therapy targets dormant cells. Their study demonstrated 
that NK cells activated by CXCL10 can kill dormant tumor cells 
which are able to resist CTL-mediated lysis (103). As discussed 
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earlier, secretory molecules and cytokines in microenvironment 
also play a key role in the regulation of dormancy (Figure 4). 
Osteopontin, an ECM protein has been reported in the progres-
sion of various cancers (91, 104, 105). Boyerinas et al. have shown 
that stromal osteopontin helps in anchoring leukemia cells in 
bone marrow premetastatic niche and support dormancy by 
inducing cell cycle arrest. Neutralizing the osteopontin resulted 
in the proliferation of dormant cells and enable them sensitive 
to chemotherapy (106). Hence, the better understanding of the 
mechanism governing dormancy and reactivation and the role 
of metastatic niche may help in the identification of new poten-
tial therapeutic targets for the treatment of minimal residual 
disease.

FUTURe DiReCTiON

Tumor dormancy and reactivation has become an interesting 
point as a key element of tumor evolution and metastatic relapse. 
Although metastasis-initiating cells undergo dormancy and 
ultimately get reactivated under the influence of microenviron-
ment signals, various key questions are still unanswered. It will be 
interesting to explore the phenotypic and functional similarities 
between DTCs and CSCs, the role of MET, microenvironmental 
niches and genetic and epigenetic changes in metastasis-initiating 
cells in metastatic reactivation. Current approaches and models 
to investigate the molecular basis of metastasis have been very 
successful. Nevertheless, new approaches need to be discovered 
in order to gain an in-depth understanding of tumor dormancy 

and reactivation. Lineage-tracing studies utilizing newly devel-
oped reporter systems can provide critical understanding in this 
area by using the transgenic mouse models which mimic the 
natural conditions. Moreover, recently invented genetic screen-
ing strategy can be useful in quick identification of mediators 
involved in dormancy and reactivation. Future studies need to be 
conducted to assess the efficacy of screening the shRNA libraries 
for the recognition of regulators of dormancy and their potential 
use in various tumor types and clinical samples.

Advance strategies for characterization of various aspects of 
CTCs and better access to samples of metastases will be required 
to complete this goal. With the current progress in the field of 
metastasis, these questions will be addressed rapidly by designing 
and implementing the improved strategies for cancer treatment.
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