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Ataxia-telangiectasia mutated kinase (ATM) plays a central role in the DNA damage 
response (DDR) and mutations in its gene lead to the development of a rare autosomic 
genetic disorder, ataxia telangiectasia (A-T) characterized by neurodegeneration, 
premature aging, defects in the immune response, and higher incidence of lymphoma 
development. The ability of ATM to control genome stability several pointed to ATM as 
tumor suppressor gene. Growing evidence clearly support a significant role of ATM, 
in addition to its master ability to control the DDR, as principle modulator of oxidative 
stress response and mitochondrial homeostasis, as well as in the regulation of auto-
phagy, hypoxia, and cancer stem cell survival. Consistently, A-T is strongly characterized 
by aberrant oxidative stress, significant inability to remove damaged organelles such 
as mitochondria. These findings raise the question whether ATM may contribute to a 
more general hijack of signaling networks in cancer, therefore, playing a dual role in 
this context. Indeed, an unexpected tumorigenic role for ATM, in particular, tumor con-
texts has been demonstrated. Genetic inactivation of Beclin-1, an autophagy regulator, 
significantly reverses mitochondrial abnormalities and tumor development in ATM-null 
mice, independently of DDR. Furthermore, ATM sustains cancer stem cells survival by 
promoting the autophagic flux and ATM kinase activity is enhanced in HER2-dependent 
tumors. This mini-review aims to shed new light on the complexity of these new mole-
cular circuits through which ATM may modulate cancer progression and to highlight a 
novel role of ATM in the control of proteostasis.
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inTRODUCTiOn

Redox Homeostasis
Reactive oxygen species (ROS) are physiologically by-products of cellular metabolism and play a 
central role in many physiological and pathological processes including inflammation and chronic 
diseases such as atherosclerosis and cancer, underscoring the importance of investigating cellular 
pathways involved in redox homeostasis (1, 2).
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Main sources of ROS are enzymes and organelles such as mito-
chondria (3). About 2–4% of oxygen consumed by mitochondrial 
oxidative phosphorylation is partially reduced and flows through 
membranes to activate signaling pathways that have then to be 
promptly turned off. Intracellular enzymatic and non-enzymatic 
antioxidant defense is responsible for redox homeostasis, 
preventing ROS accumulation (4). Together with ROS, reactive 
nitrogen species (RNS) are harmful molecules mostly generated 
by spontaneous reaction between ROS and nitric oxide signaling 
molecule (5).

Reactive oxygen species and RNS damage proteins as well as 
cellular organelles; therefore, several systems evolved to regulate 
and preserve a functional cellular protein pool, to ensure the 
quality and functionality of cellular organelles, and to finally 
guarantee the maintenance of proteostasis (3, 6). The autophagy-
lysosomal machinery (7), the ubiquitin–proteasomal system (8), 
and molecular chaperones, including heat shock proteins (HSPs) 
(9, 10), cooperate to this aim and, indeed, they are all finely 
regulated by oxidative stress, which augments their functionality 
in order to support proteostasis and organelle quality control in 
challenging conditions (6).

Ataxia-Telangiectasia Mutated Kinase 
(ATM) and Oxidative Stress Response
Ataxia-telangiectasia mutated kinase is a serine/threonine pro-
tein kinase, and it is a well-characterized tumor suppressor gene, 
which plays a central role in the nucleus in the DNA damage 
response (DDR). In humans, loss of function in ATM results in 
ataxia telangiectasia (A-T), a pleiotropic disease whose hallmarks 
include neurodegeneration, cancer-proneness, premature aging, 
radio-sensitivity, metabolic, and immune dysfunctions (11). 
For many years, the defect in DNA-damage response has been 
considered the solely responsible for A-T phenotype.

Increasing numbers of reports have described elevated read-
outs of oxidative stress in plasma of A-T patients, in cultured 
A-T fibroblasts and lymphocytes, and in tissues and cultured 
cells from Atm-deficient mice (12, 13). Notably, the response of 
A-T fibroblasts to induced oxidative stress was found defective 
[reviewed in Ref. (14)].

Consistently with the loss of redox homeostasis, mitochondria, 
are severely compromised in A-T appearing swollen and with 
disrupted cristae structure; as a consequence, A-T cells display 
mitochondrial ROS overproduction and decreased ATP levels 
(15). Interestingly, some of the pathological phenotypes identi-
fied in A-T, including insulin resistance, premature aging, and 
neurodegeneration cannot be easily connected to the well-known 
role of ATM in DDR, while conversely, they could be linked to 
the interplay between ATM and ROS (16, 17). More importantly, 
the administration of antioxidants to Atm−/− mice ameliorates the  
disease progression and delayed cancer development (thymic 
lymphomas), by reducing ROS and restoring mitochondrial 
membrane potential (18).

These observations were at first puzzling and, more recently, 
they could be linked to a role of ATM in regulating cellular 
oxidative stress signaling. In particular, ATM is activated in 
the cytosol by ROS through the formation of ATM dimers 

via disulfide bonds (16, 19). Downstream to oxidative stress-
dependent activation, ATM regulates a number of processes to 
promote restoration of redox homeostasis including adjustment 
of glutathione levels and activation of pentose phosphate pathway 
(20), regulation of mitochondrial mass, function and turnover 
(15, 21, 22), removal of peroxisomes via autophagy (23). More 
recently, ATM activation in response to oxidative stress has been 
shown to be involved in the control of proteostasis, preventing 
protein aggregation through a still unknown mechanism (24).

ATM AnD AUTOPHAGY

The autophagy system is a finely regulated catabolic process res-
ponsible for the selective removal of cytoplasmic components 
(i.e., proteins, aggregates, or whole organelles) properly targe ted 
by posttranslational modifications (ubiquitination). Basal auto phagy 
physiologically occurs to ensure proteins turnover, maintain-
ing intracellular homeostasis. Moreover, the autophagy system 
is activated by oxidative stress triggered by endogenous and 
exogenous stressors including nutrient starvation, hypoxia, and 
mitochondria and peroxisome dysfunction (25).

Ataxia-telangiectasia mutated kinase is activated in the cytosol 
by all the conditions listed above (16, 26); moreover, it has a role 
in autophagy induction (22, 27). It has been clearly demonstrated 
that ATM sustains autophagic pathway by inhibiting the nega-
tive regulator mTOR complex 1 (mTORC1). At the molecular 
level, ATM activation upon oxidative and/or nitrosative stress is 
responsible for the activation of LKB1/AMPK/TSC2 signaling 
axis, culminating with mTORC1 inhibition and relieving its 
repression on ULK1, which is the key protein responsible for 
the nucleation and formation of the autophagosome membrane, 
further activated by AMPK-mediated phosphorylation. This 
signaling pathway starting from ATM culminates in autophagy 
flux induction (22, 27).

The same pathway is also activated by ATM upon ROS induc-
tion under hypoxia (28). In this context, ATM promotes HIF1a 
stabilization by direct phosphorylation on Ser696, culminating 
on mTORC1 inhibition (28). Consistently, under hypoxic condi-
tions, ATM-deficient cells fail to activate HIF1a and to inhibit 
mTORC1, further supporting the requirement for ATM in this 
pathway (28). Evidence for a role of ATM in the modulation of 
HIF-1a basal expression has also been provided (29, 30).

Finally, a recent work suggested that ATM regulates autophagy 
also by sustaining the levels and activity of ATG4C protease in 
cancer cells grown as mammospheres (31), characterized by low 
ROS levels (32). Interestingly, ATG4 proteases are the only ATG 
members that act as oxidative stress sensors (33). It has been 
demonstrated that oxidative signal leads to inactivation of ATG4s 
by oxidation of essential cystein residues on these proteins, at the 
site of autophagosome formation, thereby promoting lipidation 
of ATG8, an essential step in the process of autophagy (33). 
These data suggest that the ATM–ATG4C axis may represent 
a new molecular link that connects ROS, ATM, and autophagy 
signaling (31).

Overall, these publications suggest a role of ATM in the cyto-
sol in regulating autophagosome formation upon exogenous and 
endogenous oxidative stress.
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ATM in SeLeCTive AUTOPHAGY: 
MiTOPHAGY AnD PeXOPHAGY

The main source of intracellular ROS are metabolically active 
organelles, such as mitochondria and peroxisomes (34, 35). Not 
surprisingly, ATM localizes to both these compartments to sense 
ROS increase and to activate pro-survival or pro-death intracellu-
lar pathways, depending on the intensity of the stimuli (15, 23, 36).  
The role of ATM in preserving mitochondrial functionality is well 
documented since many years. In vivo, loss of ATM results in 
mitochondria abnormalities causing ROS overproduction, strong 
decrease in ATP levels, and ultrastructural alterations. Moreover, 
the selective removal of damaged mitochondria, process known 
as mitophagy, is strongly impaired causing the accumulation of 
dysfunctional organelles (15). More recently, these evidences 
have been recapitulated also in neuroblastoma cells: ATM deple-
tion results in a similar mitochondrial phenotype and mitophagy 
alteration, partially rescued by NAD+ cofactor replenishment 
(37). Taken together, these papers demonstrate the relation 
between ATM and mitochondria.

Although the molecular mechanism responsible for ATM 
function in the control of mitochondrial homeostasis deserves 
further investigation, it has been demonstrated that ATM activa-
tion upon mitochondrial stress or ROS increase protects cells 
from damage; indeed, ATM-mediated modulation of the well-
characterized PINK1–Parkin pathway promotes the elimination 
via mitophagy of altered mitochondria (38).

Very recently, ATM localization to peroxisomes and its role 
in peroxisomes selective removal, named pexophagy, has been 
described. As for mitochondria, ATM localizes to peroxisomes 
probably to sense ROS increase and prevent damage. ATM 
localization in peroxisomes outer membrane is mediated by its 
interaction with PEX5, a peroxisome import receptor. Upon 
peroxisomal ROS increase, ATM-mediated PEX5 phosphory-
lation targets PEX5 for mono-ubiquitination and recognition 
by autophagic-adaptor protein (such as p62), incorporating 
dysfunctional organelles into autophagic vescicles (23). Very 
interestingly, pexophagy defects observed in ATM-deficient cells 
are rescued by reconstitution of ATM expression, confirming the 
direct role of ATM in this response (23).

The removal of damaged organelles described, so far, is also 
sustained by ATM-dependent induction of general autophagy, 
as ATM inhibits the autophagy negative regulator mTORC1, 
sustaining ULK1 pro-autophagic protein activation as described 
above (22).

Taken all together, these evidences highlight a relevant role of 
ATM in the cytosol: ATM ensures a prompt reply to ROS increase 
by activating autophagy, mitophagy, and pexophagy in order to 
preserve proteostasis and cellular homeostasis.

ROS-DePenDenT ATM ACTivATiOn  
AnD CAnCeR

Elevated rates of ROS have been detected in almost all cancers, 
where they promote many aspects of tumor development and 
progression (39, 40). In cancer cells, high levels of ROS can result 

from increased metabolic activity, mitochondrial dysfunction, 
peroxisome activity, increased cellular receptor signaling, onco-
gene activity, increased activity of oxidases, cyclooxygenases, 
lipoxygenases, and thymidine phosphorylase, or through cross-
talk with infiltrating immune cells (41). Moreover, ROS deregula-
tion in low oxygen tension or hypoxia condition is a common 
feature of all solid tumors, it is strongly associated with tumor 
development, malignant progression, metastatic outgrowth, and  
resistance to therapy and it is considered an independent prog-
nostic indicator for poor patient prognosis in various tumor 
types (42). It has been largely demonstrated that ROS increase 
leads to proteome oxidation and instability, and alteration of the 
proteostasis control machine (9). More interestingly, in order 
to survive under stress conditions (i.e., ROS increase/hypoxia 
condition/starvation), many cancer cells adapt their proteostasis 
network and become uniquely dependent on it, an example of 
non-oncogene addiction (43). Individual nodes of the proteosta-
sis network, such as Hsp90 and other HSP chaperones involved 
in the protein quality control networks, are currently exploited as 
drug targets in cancer and entered in clinical trials (44, 45).

The identification of new cytoplasmic signaling mediated by 
ATM in response to oxidative stress (46) and the finding that 
ATM can regulate networks that ensure proteins and organelles 
quality open the question whether these networks may contribute 
to A-T pathogenesis and to cancer progression (16).

It has been hypothesized for a long time that higher cancer 
predisposition of A-T patients depends exclusively on defects in 
ATM-dependent-DDR, which leads to genomic instability (11). 
Unexpectedly, allelic loss of the autophagy regulator Beclin-1, 
significantly delayed tumor development in ATM-null mice. 
This effect was not associated to the rescue of DNA damage 
signaling but rather to a significant reversal of the mitochondrial 
abnormalities (15). Accordingly, it has been also demonstrated 
that Rapamycin (mTOR inhibitor) and antioxidant treatments 
rescue ATM-dependent lymphomagenesis, suggesting that the 
dysregulation of mTORC1 and ROS contribute to A-T pathology 
(22). Moreover, suppression of ATM may significantly contribute 
to the activation of mTORC1 observed in hypoxic tumors and can 
promote tumor cell survival through autophagy regulation (28). 
Importantly, autophagy is a dichotomous phenomenon, involved 
in cell growth as well as in cell death, depending on its magnitude 
and on the cell context (47). Autophagy, as DNA damage, has 
been proposed to play a tumor-suppressive role in the early stages 
of tumorigenesis and, indeed, it is upregulated by several tumor 
suppressor genes; however, above a certain threshold, autophagy 
can also induce cell death and, if triggered appropriately, can be 
used as a means of killing cancer cells (48). Paradoxically, it was 
recently published that autophagy promotes the stem-like pheno-
type in breast cancer, suggesting a controversial role in cancer of 
autophagy (49). Interestingly, it has been reported that ATG4A 
and Beclin1 autophagic genes are upregulated in breast cancer 
stem cells (BCSCs) and are essential genes involved in BCSCs for-
mation and maintenance (50, 51). Overall, these papers support 
the idea that BCSCs utilize autophagy for survival and growth, 
suggesting that, in this context, autophagy promotes tumor pro-
gression and tumor relapse acting as a tumor-promoting signa-
ling. Interestingly, it was recently demonstrated that ATM kinase 
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could have a pro-survival role in BCSCs through regulation of 
ATG4C gene and autophagy (31).

Finally, the expression of HSP90, a central player in the 
control of proteostasis, increases under stress conditions (as 
ROS accumulation upon oxidative stress) and, it is exploited 
by cancer cells to support the stability and the aberrant activ-
ity of oncoproteins overexpressed or mutated in malignancy 
including HER2, BCR-ABL, and EGFR (45, 52). According to 
this observation, HSP90 is one of the most actively pursued 
cancer drug targets and several different HSP90 inhibitors 
entered in clinical trials so far (52). Growing evidences support 
the idea that ATM could regulate HSP90 activity. ATM kinase 
can directly phosphorylate HSP90 (53, 54) although the sig-
nificance of these posttranslational modifications is still largely 
unknown. More interestingly, we recently demonstrated that 
ATM activity sustains HSP90 interaction with its client protein 
HER2, promoting its stabilization and, therefore, sustaining 
HER2-dependent tumorigenicity (55, 56). These data suggest 
a new connection between ATM kinase and HSP90 chaperone: 
ATM may contribute to the control of protein quality and 
stability and could also modulate tumor progression via the 
regulation of this heat shock protein.

COnCLUSiOn

In conclusion, although the canonical role of ATM in the man-
agement of DNA damage defines ATM as a tumor suppressor 

gene, the identification of several novel functions of ATM, mostly 
related to its activation in response to oxidative stress and to its 
ability to modulate the cellular response to this insult, support 
multiple roles of ATM in cancer (Figure  1). ATM-dependent 
regulation of autophagy, mitophagy, pexophagy, and proteostasis 
suggest the idea that the effect of ATM expression and activity 
in cancer may be the result of its multiple functions in several 
signaling pathways and may, therefore, be strictly dependent on 
the specific cellular context. More studies are urgently needed to 
ascertain the molecular mechanisms through which this panel of 
cytosolic functions of ATM could modulate cancer development 
and therapy.
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FiGURe 1 | Dual role of ataxia-telangiectasia mutated kinase (ATM) in cancer. In the nucleus, DBSs activate ATM kinase, which ensures genomic stability, acting as 
a tumor suppressor factor. In the cytosol, ATM acts as a stress sensor, being activated upon oxidative stress to maintain intracellular redox homeostasis. Here, ATM 
is responsible for protein quality control and regulates several pathways such as autophagy and organelles selective removal (mitophagy and pexophagy). All these 
pathways may promote or prevent tumor growth depending on the specific context; the molecular mechanisms underlying the dual function of ATM still deserve 
further elucidation.
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