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Brain metastases (BM) are common in non-small cell lung cancer patients including in 
molecularly selected populations, such as EGFR-mutant and ALK-rearranged tumors. 
They are associated with a reduced quality of life, and are commonly the first site of 
progression for patients receiving tyrosine kinase inhibitors (TKIs). In this review, we sum-
marize incidence of BM and intracranial efficacy with TKI agents according to oncogene 
driver mutations, focusing on important clinical issues, notably optimal first-line treatment 
in oncogene-addicted lung tumors with upfront BM (local therapies followed by TKI vs. 
TKI monotherapy). We also discuss the potential role of newly emerging late-generation 
TKIs as new standard treatment in oncogene-addicted lung cancer tumors compared 
with sequential strategies.
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iNTRODUCTiON

Lung cancer is the leading cause of cancer-related deaths worldwide (1). Because of the lack of screen-
ing programs in most countries, more than half of non-small cell lung cancer (NSCLC) patients 
are diagnosed at an advanced stage1. The brain is a common metastatic site in this population, with 
30% of patients developing brain metastases (BM) during the course of their disease, with the brain 
being the only site of metastatic disease in 51% of these cases. Median delay between diagnosis of 
the primary tumor and development of BM is 11 months. Up to half of cases, patients present with 
synchronous diagnosis of BM at the time of diagnosis of the primary lung tumor (2). Ironically, the 
lifetime incidence of BM is increasing due to prolonged survival seen in NSCLC patients thanks 
to new systemic therapies and improved neuro-imaging techniques (3). Unfortunately, prognosis 
associated with BM remains poor with reports of median overall survival (OS) between 3 and 
14.8 months (4), and compared to other metastatic sites, BM are responsible for a major decrease in 
quality of life (5).

The discovery of targetable genomic alterations in approximately 30% of advanced NSCLC 
tumors, mainly adenocarcinomas, has altered the therapeutic landscape and outcome of many of 
these subgroups of NSCLC patients (6, 7). In the recent era of personalized treatment targeting 
these alterations, prognosis of NSCLC patients with BM has improved significantly achieving 
a median OS of nearly 4 years (8). The question whether BM harbor distinct genetic alterations 
beyond those observed in primary tumors has not been definitively addressed. Recent data with 

1 Available from: www.seer.cancer.gov (Accessed: March 23, 2018).
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whole-exome sequencing in 86 patient-matched BM (includ-
ing 38 NSCLC patients) reported 53% of cases with potentially 
clinically informative alterations in BM that were not detected in 
the matched primary-tumor sample (9). However, these findings 
have a number of technical limitations and are yet to be supported 
by clinical evidence. On the other hand, response rates (RR) to 
targeted therapies in molecularly defined NSCLC patients are 
typically similar in central nervous system (CNS) and extra-CNS 
disease, arguing for fewer molecular discordances between the 
primary tumor and CNS metastases, at least for actionable muta-
tions. This is an important issue to resolve for determining the 
best treatment strategies for managing BM.

One important consideration, when interpreting CNS 
efficacy with tyrosine kinase inhibitors (TKIs) in molecularly 
selected NSCLC patients, is the inherent limitation of the 
standard RECIST criteria for the measurement of baseline CNS 
disease and response (10). This assessment does not account 
for potential pseudo-progression correlating with radionecrosis 
and non-viable tumors in patients who have received brain 
radiotherapy (11). New imaging tests might offer better charac-
terization of CNS progression vs. pseudo-progression (12). While 
the systemic efficacy of TKI in oncogene-addicted NSCLC has 
been well established, their intracranial efficacy is today less well 
validated for a number of reasons. Brain imaging during follow-
up is often optional in clinical trials, MRI is not commonly used 
compared to the less sensitive CT scan, and patients with BM are 
often excluded from NSCLC trials, and when they are accepted, 
BM is not a stratification criteria. The CNS is shielded by the 
blood–brain barrier (BBB) and is considered a “pharmacological 
sanctuary.” The key molecular properties that influence the BBB 
are the P-glycoprotein (P-gp) or breast cancer resistance protein 
substrate nature of the TKIs, their molecular weight, polar surface 
area and lipophilicity index (LogP) (13). These factors may explain 
why only 2% of small-molecule drugs are able to effectively cross 
the BBB (14), likely explaining why the CNS is a frequent site of 
failure after clinical benefit with some TKIs.

In this review, we summarize the incidence of BM in onco-
gene-addicted NSCLC patients and CNS efficacy for personalized 
treatment in these different sub-populations. We also evaluate 
new challenges such as the value of upfront personalized treat-
ment vs. radiotherapy in oncogene-addicted NSCLC patients 
with BM at baseline, and administration of more potent drugs 
upfront vs. sequential treatment.

eGFR-MUTANT NSCLC PATieNTS

Within the lung cancer population, activated epidermal growth 
factor receptor (EGFR) mutations occur in 10% of Caucasians and 
50% of Asians (15). There are several classes of activating somatic 
EGFR mutations, with in-frame deletions in exon 19 (ELREA, 
Del19) and single-point mutations in exon 21 (L858R) being the 
most common. These mutations predict sensitivity to first- and 
second-generation EGFR TKIs, such as erlotinib, gefitinib, or 
afatinib. RRs and progression-free survival (PFS) with EGFR 
TKIs have proven superior to standard first-line platinum doublet 
chemotherapy, making them the current upfront standard of care 
(16). Recently, osimertinib a third-generation EGFR TKI, showed 

a significant improvement in PFS compared with standard of care 
(erlotinib or gefitinib) as first-line treatment, making it a new 
treatment option in the first-line setting (17).

incidence of BM in eGFR-Mutant NSCLC
The baseline incidence of BM in EGFR-mutant NSCLC is similar to 
that of other oncogenic driver mutations, ranging from 23 to 32% 
(18–20). The cumulative incidence increases over time (19, 21), 
with a 2-year actuarial risk of CNS progression of approximately 
15–20% when patients received standard of care EGFR TKIs  
(21, 22). BM development on EGFR TKI treatment is significantly 
more common among patients with baseline BM (2-year cumu-
lative incidence of 47% among patients with pre-existing BM 
compared to 11% among those with no prior BM; p = 0.003) and 
correlates with a worse outcome (21, 23, 24). Literature reporting 
the risk of cumulative incidence of brain progression according to 
EGFR mutation subtype is contradictory, some studies reporting 
higher cumulative risk among Del19-mutant tumors (21), and 
others among L858R-mutant tumors (22, 24).

Although, it has been suggested that EGFR mutations appear 
early during multistep carcinogenesis and may even be associated 
with an increased propensity for metastatic cell to spread into 
the brain (25), the lifetime risk is confounded by this molecular 
subgroup’s longer survival. However, some reports suggest that 
the incidence of BM is higher in EGFR-mutant patients compared 
to EGFR-wild type (31.4 vs. 19.7%, odds ratio 1.86, 95% CI: 
1.39–2.49; p < 0.001) (18), but it could be explained by inability 
of first-generation EGFR TKIs to cross BBB, reported in up to 
60% of patients (26, 27). The high incidence and significant rate 
of CNS failure highlights the need for additional strategies to 
prevent CNS progression.

Treatment with eGFR TKis
First- and second-generation EGFR TKI brain penetration poten-
tial, measured by the unbound brain-to-plasma ratio, termed 
Kp,uu, is very low (28), indicating that penetration into the brain is 
diffusion-limited or low passive BBB permeability (13). However, 
the importance of the BBB for intracranial tumors is debated. 
Retrospective observational and phase II studies have reported 
activity with erlotinib and gefitinib in EGFR-mutant patients 
with BM (29–34). Two studies with erlotinib showed intracranial 
RRs of 58 and 82% and intracranial PFS of 10.1 and 11.7 months  
(29, 30). Gefitinib achieved an intracranial RR of 88% and intrac-
ranial PFS of 14.5 months, with a time to salvage brain radiation 
from diagnosis of 17.9 months (32) (Table 1).

In vivo studies in NSCLC mice showed that afatinib penetrated 
the BBB and cerebrospinal fluid (CSF) levels correlated with 
plasma levels (35). In a compassionate-use program including 31 
patients, afatinib demonstrated a 35% CNS response in molecu-
larly non-selected patients who had previously failed TKI therapy, 
with a median time to treatment failure of 3.6 months (36). In a 
combined dataset post hoc analysis in 81 EGFR-mutant NSCLC 
patients with BM (30% had received brain radiotherapy) in the 
first-line LUX-Lung 3 and LUX-Lung 6 phase III clinical trials, 
afatinib significantly improved PFS (8.2 vs. 5.4 months, hazard 
ratio (HR) 0.50, p  =  0.0297) and RR (21 vs. 5%, p  =  0.0027), 
although without a significant difference in OS (22.4 vs. 
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TABLe 1 | Efficacy of EGFR tyrosine kinase inhibitors (TKIs) in EGFR-mutant 
non-small cell lung cancer (NSCLC) patients and brain metastases (BM).

Drug Trial N icRR 
(%)

icDOR 
(months)

icPFS 
(months)

Erlotinib Retrospective (29) 17 82 NA 11.7
Ph II (30) 8 58.4 NA 10.1

Gefitinib Ph II (32) 41 88 NA 14.5
Retrospective (34) 14 43 7.7 9.1

Afatinib Pooled analysis (37) 81 21a NA 8.2a

Icotinibb Ph III (38) 85 65 NA 10.0
AZD3759 Ph I (28) 18 83 NA NA
Osimertinib AURA + AURA2 

(49, 50)
128 54c NR 1 year: 56%

AURA3 (51) 116 70d 8.9d 11.7
FLAURA (17) 128 66 NA NR

icDOR, intracranial duration of response; icRR, intracranial response rate; icPFS, 
intracranial progression-free survival; NA, not available; NR, not reached.
aSystemic RR and progression-free survival (PFS).
bPatients should have at least 3 metastatic brain lesions.
cIn 50 evaluable patients.
dIn 30 evaluable patients with osimertinib.
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25.0 months; HR 1.14, p = 0.64) compared with platinum-based 
chemotherapy (37). The magnitude of the PFS benefit was sug-
gested being increased, for patients who had received prior whole 
brabin radiotherapy (WBRT, n = 24; 13.8 vs. 4.7 months; HR 0.37, 
p = 0.07). Evaluation of intracranial response was not assessed 
as a separate endpoint in these trials (37), however, these results 
suggest that asymptomatic BM are not a limitation for upfront 
treatment with an EGFR TKI (Table 1).

Icotinib, another EGFR TKI only available in Asia, gave an 
intracranial RR of 65% and median PFS of 10 months in treatment-
naïve EGFR-mutant patients with at least three BM (38). AZD3759 
is a novel reversible EGFR TKI, only active against sensitizing 
EGFR mutations, which was designed to effectively cross the BBB 
and achieves high drug-free exposure in the brain. In a phase I 
trial, it achieved an intracranial RR of 83% among 18 EGFR TKI 
treatment-naïve patients with evaluable BM (28) (Table 1).

The substitution of threonine to methionine at amino acid 
position 790 (T790M) in exon 20 of the EGFR gene reduces first-
generation EGFR TKI binding by enhancing the ATP binding 
affinity of the kinase domain of the EGFR-mutant receptor (39). 
It accounts for acquired resistance in approximately 50–60% of 
patients (40, 41). Knowledge of acquired resistance mechanisms 
to EGFR TKIs was one of the triggers behind the development 
of third-generation EGFR-TKIs, such as osimertinib, which are 
active against exon19 and 21 mutations as well as the T790M 
mutations. Osimertinib was the first such agent to receive FDA 
and EMA approval (in November 2015 and February 2016, 
respectively) for metastatic EGFR-mutant and acquired EGFR 
T790M-mutant NSCLC patients progressing on or after EGFR 
TKI therapy2,3.

2 Available from: http://www.fda.gov/MedicalDevices/ProductsandMedical-
Procedures/InVitroDiagnostics/ucm301431.htm (Accessed: March 23, 2018).
3 Available from: http://www.ema.europa.eu/docs/en_GB/document_library/
EPAR_-_Product_Information/human/004124/WC500202022.pdf (Accessed: March 
23, 2018).

The rate of acquired T790M mutations is discordant between 
intracranial and extracranial metastases. In a study of 78 EGFR-
mutant patients who had undergone re-biopsy after TKI failure, 
only 17% of CNS lesions were T790M mutated compared to 41% 
of systemic lesions (42), suggesting that the selection pressure is 
lower intracranially owing to the lower EGFR TKI concentrations 
in CSF compared to serum concentrations (42, 43). Preclinical 
data demonstrated greater penetration and brain exposure with 
osimertinib than with gefitinib, rociletinib, or afatinib (44).

Central nervous system activity of osimertinib was reported in 
pretreated T790M-positive NSCLC patients in the AURA study 
phase II extension component (45), the phase II AURA2 trial (46), 
and was recently confirmed in the phase III AURA3 trial (47)  
and the first-line FLAURA trial (17). In the pooled analysis of 
the two phase II trials (N = 411), osimertinib demonstrated an 
overall RR of 66% and median PFS of 11  months (48). In the 
pre-specified subgroup analysis of CNS response in this pooled 
analysis among 128 patients with CNS metastases at baseline, 
50 were evaluable for CNS response. CNS response and DCR 
were 54 and 92%, respectively, and CNS response was observed 
regardless of prior radiotherapy. Median CNS duration of 
response (DOR) was not reached and at 9 months 75% of patients 
were estimated to remain in response. Median CNS PFS was not 
reached (49), with 1-year PFS of 56% (50). In the AURA3 trial, 
osimertinib demonstrated significantly greater efficacy in RR 
(71 vs. 31%) and PFS (10.1 vs. 4.4, HR 0.30, 95% CI: 0.23–0.41, 
p  <  0.001) than platinum-pemetrexed chemotherapy, in 419 
T790M-positive NSCLC patients who had progressed on first-
line EGFR TKIs (47). Among 116 patients from the AURA3 trial 
with BM (measurable or not), PFS was longer with osimertinib 
compared to chemotherapy (11.7 vs. 5.6 months, HR 0.32; 95% 
CI: 0.15–0.69) and cumulative incidence of CNS progression at 
6 months was lower with osimertinib compared to chemotherapy 
(11.5 vs. 28.2%) (51). Among 46 patients with evaluable BM, the 
intracranial RR was 70% with osimertinib compared with 31% 
with chemotherapy, with a median DOR of 8.9 vs. 5.7 months, 
respectively (51) (Table 1). It has been proposed that BM may 
not develop secondary resistance mutations to EGFR TKIs 
that develop during extracranial progression, due to reduced 
drug penetration of the BBB (52). However, CNS efficacy with 
osimertinib reported in AURA3 trial, appears to contradict this 
theory. In the CNS full analysis set (N = 128) from FLAURA trial, 
osimertinib reported improved CNS RR (66 vs. 43%) and longer 
CNS PFS (NR vs. 13.9  months, HR 0.48, 95% CI: 0.26–0.86, 
p  =  0.04) and reduced the risk of CNS progression compared 
with the standard of care. Among evaluable CNS evaluable 
patients (N  =  41), osimertinib improved the CNS RR (91 vs. 
68%) with similar DOR compared with the standard of care (15.4 
vs. 18.7 months) (53).

In light of the reduced CSF concentrations of EGFR TKIs, 
various studies have examined administration of high doses 
in an attempt to achieve therapeutic levels (54–57). “Pulsatile” 
erlotinib at 1,500 mg given weekly resulted in an intracranial RR 
of 67% with a median time to CNS progression of 2.7 months 
in nine patients (55). In a phase I trial, pulse and daily low-dose 
erlotinib prevented progression of untreated or new CNS metas-
tases, without improving extracranial outcome compared with 
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standard-dose (58). However, the limited number of patients, the 
short follow-up period and the fact that half of the patients with 
baseline BM had already been treated are confounding factors 
that prevent any conclusions being reached regarding efficacy in 
the CNS with this strategy.

Combined eGFR TKis and Antiangiogenics
Activity and an acceptable safety profile of bevacizumab, an 
anti-VEGF monoclonal antibody, have been reported in NSCLC 
patients with asymptomatic and untreated BM (59). Moreover, in 
a preclinical model of lung adenocarcinoma, bevacizumab pre-
vented BM formation (60). In a phase II trial in 154 Asian EGFR-
mutant NSCLC patients, the addition of bevacizumab to erlotinib 
as first-line treatment significantly improved PFS compared to 
erlotinib alone (16.0 vs. 9.7 months, HR 0.54; 95% CI: 0.36–0.79, 
p = 0.0015) (61), leading to EMA approval of the combination in 
this population in April 2016. Two ongoing phase III trials evalu-
ating erlotinib combined with ramucirumab (NCT02411448) or 
bevacizumab (BEVERLY study, NCT02633189) compared with 
erlotinib, will hopefully further validate this strategy.

In the single arm phase II BELIEF trial in 109 Caucasian EGFR-
mutant NSCLC patients, combined erlotinib and bevacizumab 
gave median PFS and OS of 13.2 and 28.2 months, respectively. 
However, the primary endpoint was only met in baseline T790M-
positive tumors with a median PFS of 16  months, whereas in 
T790M-negative tumors, median PFS was 10.5 months (62). In 
the subgroup of patients with pretreated BM (N = 21), median 
PFS was 8.8 months. The efficacy of this combination in the BM 
population does not appear to be superior to standard EGFR TKI 
therapy (37), however only 21 patients with BM were included 
in the BELIEF trial. Results from the ongoing randomized phase 
II BRILLANT trial (NCT0265536), testing bevacizumab plus 
erlotinib vs. erlotinib in BM EGFR-mutant patients, should 
reveal the efficacy of this combination in this population. Also the 
combination of osimertinib and bevacizumab in EGFR-mutant 
NSCLC patients and BM is currently assessed in a phase II trial 
(NCT02971501).

ALK-ReARRANGeD NSCLC PATieNTS

Anaplastic lymphoma kinase (ALK) rearrangements result from 
inversions or translocations on chromosome 2 and are present 
in ~5% of NSCLC tumors, with no apparent differences in 
incidence according to race. Crizotinib was the first treatment to 
be approved in this population achieving a median PFS of 10.9 
vs. 7.0 months with platinum-pemetrexed chemotherapy in the 
front-line setting in the phase III PROFILE 1014 study (63). In 
the subsequent phase III ASCEND-4 trial in ALK-positive (by 
central immunohistochemistry) NSCLC patients, upfront ceri-
tinib, a second-generation ALK TKI, gave a median PFS of 16.6 
vs. 8.8  months with platinum-pemetrexed chemotherapy (64). 
Based on these results, the FDA approved ceritinib as first-line 
treatment in ALK-positive NSCLC patients in May 2017. More 
recently, the phase III ALEX trial demonstrated a significant 
improvement in PFS with alectinib (a second-generation ALK 
TKI) compared with crizotinib (25.7 vs. 10.4 months, HR: 0.50, 
95%CI: 0.36–0.70, p < 0.001) by independent review, and with 

a better toxicity profile, as first-line treatment in ALK-positive 
NSCLC patients (65). The EMA and FDA approved alectinib as 
first-line treatment in 12 October 2017 and in 6 November 2017, 
respectively. Treatment strategies in this population are provided 
below and in Figure 1.

incidence of BM in ALK-Positive NSCLC
In ALK-positive NSCLC patients, CNS metastases affect from 
24 to 42% of patients (19, 65–68) with risk increasing over time, 
reaching 58% at 3  years (19). In this population, median OS 
after development of BM was 49.5  months, with no survival 
differences detected according the number of BM (single vs. 
more than one BM) (69), confirming the prolonged survival of 
ALK-positive NSCLC patients with BM. However, the CNS is 
a common site of progression with crizotinib; in patients with 
known BM (treated or untreated), the CNS was a site of new 
lesions or non-target progression in 70% of cases of progres-
sion during crizotinib treatment. In patients without BM at the 
time of crizotinib initiation, 20% subsequently experienced 
CNS progression (68, 70). It remains controversial whether 
this increased risk was an expression of the natural ALK-
rearranged disease course independent of the therapy received, 
or if, as in EGFR-mutant NSCLC patients, it is related to low 
CSF penetrance of ALK TKIs. Crizotinib is a substrate for the 
ATP-binding cassette (ABC) drug efflux transporters, P-gp 
and ABC subfamily G member 2, and has been associated with 
poor accumulation of the drug in the brain, a CSF-to-plasma 
ratio of 0.0026 reported in a case study (71). In support of this, 
ABCB1−/− and ABCG2−/− mice had a 25- to 70-fold higher 
brain concentration following oral administration of crizotinib 
compared to wild type (71).

Nonetheless clinical evidence for crizotinib CNS efficacy 
has been reported. A pooled retrospective analysis of crizotinib 
efficacy in ALK-positive NSCLC patients with BM from the 
PROFILE 1005 phase II and PROFILE 1007 phase III trials has 
been reported (68). At baseline, 31% of patients (275 of 888) had 
asymptomatic BM. Analytic subgroups were stratified according 
to prior brain radiotherapy (60%) or not. The intracranial disease 
control rate (DCR) at 12 weeks was similar in these two groups 
at 62 and 56%, respectively. Of note, previously treated patients 
demonstrated higher CNS objective RR with crizotinib (33 vs. 
18%, respectively), as well as prolongation of the median time 
to intracranial progression (13.2 vs. 7.0  months, respectively; 
Table  2) (68). Intracranial efficacy of crizotinib in treatment-
naïve ALK-positive patients was studied in the PROFILE 1014 
trial (70). Of 343 patients, 79 (23%) had treated BM at baseline. 
Compared to chemotherapy, crizotinib demonstrated longer 
PFS (9.0 vs. 4.0 months; HR 0.40, 95% CI: 0.23–0.69, p < 0.001) 
and a better RR (77% vs. 28%, p <  0.01). Crizotinib achieved 
a 12-week intracranial DCR of 85% and median intracranial 
time to progression of 15.7 months in patients with treated BM 
(Table 2). CNS progression as the only site of progression on 
crizotinib was reported in 38% of patients with treated BM at 
baseline and 19% without (70). In the randomized phase III 
ALEX trial, crizotinib was used as the standard of care in the 
control arm and brain MRIs were mandatory at baseline and dur-
ing follow-up (65). Among the 22 patients with measurable BM 
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FiGURe 1 | Systematic treatment stratergies in ALK-positive non-small cell lung cancer (NSCLC) patients. TKI, other ALK tyrosine kinase inhibitor;  
CT, chemotherapy.
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at baseline, crizotinib achieved an intracranial RR of 50% and 
a median duration of intracranial response of 5.5 months. For 
the seven patients previously treated with brain radiotherapy, 
crizotinib gave an intracranial RR of 71% and median DOR of 
17.3  months (72). Despite these data suggesting intracranial 
efficacy with crizotinib, especially among previously-treated BM 
patients, recent data showed that the cumulative incidence rate 
of CNS progression at 12 months was consistently higher with 
crizotinib compared with alectinib (32 vs. 4.6% respectively in 
patients without BM at baseline; HR 0.14, 95% CI: 0.06–0.33, 
p < 0.0001) (65, 72), suggesting that the risk of BM progression 
may correlate more closely with ALK TKI subtype and not the 
natural ALK-rearranged disease course.

Treatment with Novel ALK TKis
Ceritinib
Ceritinib is a second-generation ALK inhibitor that is 20 times 
as potent as crizotinib. It is effective in ALK-positive patients 
upfront and patients who progress while on crizotinib, including 
patients with BM (73). In the phase III ASCEND-4 trial, among 
121 ALK-positive TKI-naïve NSCLC patients with BM, first-line 
treatment with ceritinib improved PFS (10.7 vs. 6.7  months, 
HR 0.70) compared to chemotherapy. Intracranial RR in 22 
patients with measurable BM at baseline was 73%, with a median 
duration of intracranial response of 16.6 months (64). The CNS 
efficacy of ceritinib in crizotinib-pretreated and ALK-naïve 

patients was tested in the phase I ASCEND-1 trial (73), as well 
as the phase II ASCEND-2 (74), and ASCEND-3 (75) trials 
(Table 2). In the phase III, ASCEND-5 trial in previously treated 
(chemotherapy and crizotinib) ALK-positive NSCLC patients, 
ceritinib compared with chemotherapy significantly improved 
PFS across all patient subgroups, including in 133 patients with 
BM at baseline (56% previously treated with brain radiotherapy), 
from 1.5 months to 4.4 months (HR 0.54, 95% CI: 0.36–0.80). 
Among the 17 patients with measurable BM, ceritinib gave a 35% 
intracranial RR and median duration of intracranial response of 
6.9  months (76). Nonetheless, despite these second-generation 
more potent ALK TKIs, BM remained the main site of progres-
sion among patients with BM at baseline (76). Based on ceritinib 
efficacy, an international prospective phase II open-label study is 
ongoing (ASCEND-7, NCT02336451) specifically evaluating the 
anti-tumor activity of ceritinib in ALK-positive NSCLC patients 
with BM or leptomeningeal disease (previously treated with 
radiotherapy or not).

Gastrointestinal toxicity by ceritinib may reduce treatment 
compliance. The ASCEND-8 (NCT02299505) aimed to evaluate 
whether administering ceritinib, 450 or 600 mg, with a low-fat 
meal may enhance gastrointestinal tolerability vs. 750 mg fasted 
while maintaining similar exposure in 267 treatment-naive ALK-
positive NSCLC (neurologically stable BM were stable). The study 
demonstrated similar efficacy in terms of ORR and DCR with less 
frequent dose reductions/interruptions and higher relative dose 
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TABLe 2 | Efficacy of ALK tyrosine kinase inhibitor (TKIs) in patients with baseline brain metastases (BM).

Drug Trial (reference) Brain M1 Measurable 
Brain M1

icRR (%) icTTP 
(months)

s/ic PFS 
(months)

icDOR 
(monthss)

Crizotinib PROFILE 1005 + 1007 pooled. ALK-naïve (previous CT) (68) 275 22/18b 18/33b 7.0/13.2 NA 26.4,/NRb

PROFILE 1014. Ph III ALK-naïve (70) 79 79 85c 15.7 sPFS: 9 NA

Ceritinib ASCEND 5. Ph III Crizotinib + CT resistant (76) 133 17 35 NA sPFS: 4.4 6.9
72.7 16.6

ASCEND 4. Ph III ALK-naïve (64) 121 22 62 NA sPFS: 10.7 NA
ASCEND 3. Ph II ALK TKI-naïvea (75) 49 13 39.4 NA sPFS: 10.8 9.2
ASCEND 2. Ph II Crizotinib-resistant (74) 100 33 63 NA sPFS: 5.4 8.2,
ASCEND 1. Ph I Naïve and pretreated (73) 94 36 61d NA NA 11.1d

Alectinib Pooled analysis of ph II. Crizotinib resistant (85) 136 50 64 9.2 NA 10.8
ALUR ph II. Crizotinib and CT resistant (86, 87) 76 40 54 NA sPFS: 9.6 17.3
ALEX. Ph III. ALK TKI-naïve (65, 72) 122 21 81 NA sPFS: 25.7

Lorlatinib Ph I in ALK-positive (11% crizotinib-naïve) (90) 41 19 42 NA sPFS: 9.6 12.4
Ph I in ROS1-positive (90) 12 5 60 NA sPFS: 7.0 12.0
Ph II in ALK/ROS1-positive (91)
ALK TKI treatment-naïve 8 8 75 NA NR NA
Prior crizotinib only and crizotinib ± 1-2 CT 37 37 68 NA NR NA
No-crizotinib TKI ± CT 12 12 42 NA sPFS: 5.5 NA
2-3 ALK TKI ± CT 83 83 48 NA sPFS: 6.9 NA
ROS1-positive any prior line 25 25 56 NA sPFS:9.6 NA

Brigatinib Ph I ALK-naïve and crizotinib resistant (93) 46 15 53 NA icPFS: 15.6 18.9
ALTA. Ph II in crizotinib-resistant (94, 95) 153 18 67e NA icPFS: 18.4e NRe

icRR, intracranial response rate; icTTP, intracranial time to progression; s/icPFS, systemic/intracranial progression-free survival (PFS); icDOR, intracranial duration of response; CT, 
chemotherapy; NA, not available; NR, not reached.
aALK TKI naïve and chemotherapy-naïve or up to three lines of chemotherapy with progression during or after the last chemotherapy regimen.
bData reported for previously untreated BM/previously treated BM.
c12-week intracranial disease control rate.
dResults expressed as ALK inhibitor-naïve patients, ALK inhibitor-pretreated patients.
ePatients receiving 180 mg/day.
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intensity. Ceritinib administered at 450 mg fed dose demonstrated 
an ORR of 78% and a median PFS of 17.6 months, suggesting this 
dose as a potential new treatment regimen. However, fed doses of 
ceritinib in patients with BM were not reported to provide a clear 
recommendation in this subset (77, 78).

Alectinib
Alectinib is a potent ALK TKI, active against several ALK 
mutations that confer resistance to crizotinib (79). It is able to 
penetrate the CNS and activity is expected based on animal models 
showing high brain-to-plasma ratios (0.63–0.94) and activity 
in intracranial tumor implantation models. Unlike crizotinib 
and ceritinib, preclinical studies suggest that alectinib is not a 
substrate of P-gp, a key drug efflux pump typically expressed in 
the BBB, and that it has greater CNS activity than other ALK 
TKIs (80). In the clinic, alectinib gave an intracranial RR of 52% 
in 21 crizotinib-resistant patients with baseline BM treated in a 
phase I trial (81). Alectinib was approved by the FDA in 2015 for 
ALK-positive crizotinib-resistant NSCLC patients based on two 
phase II clinical trials demonstrating a systemic objective RR of 
50–52% (82, 83). A pooled analysis evaluating systemic efficacy 
of alectinib in both phase II trials enrolling 225 ALK-positive cri-
zotinib-resistant NSCLC patients has been performed. Alectinib 
gave a systemic RR of 51%, and median PFS and OS of 8.3 and 
26 months, respectively (84), with 11% of patients having CNS 
as the only site of progression (85). Intracranial efficacy of alec-
tinib in this population was assessed in 136 crizotinib-resistant 

patients with BM (37% with measurable disease and 70% previ-
ously treated). Intracranial RR in the whole population was 43% 
(36% in previously irradiated vs. 59% in patients without prior 
radiation) with a median DOR of 11.1 months. For patients with 
measurable disease (N = 50), the intracranial RR was 64%, with 
complete response in 22%, and median intracranial DOR was 
10.8 months (85). The phase III ALUR trial comparing alectinib 
with chemotherapy in 107 previously treated (chemotherapy and 
crizotinib) ALK-positive NSCLC patients, reported improved 
outcome with alectinib (PFS 9.6 vs. 1.4 months, HR 0.15; 95% CI: 
0.08–0.29; p < 0.001) (86). Among 76 patients with baseline BM, 
alectinib achieved an intracranial RR of 36% reaching to 54% 
among the 40 patients with measurable BM (87). These results 
endorse preclinical data showing promising CNS efficacy profile 
with alectinib.

In the phase III ALEX trial, 303 previously untreated ALK-
positive (by immunohistochemistry) NSCLC patients were rand-
omized to receive either alectinib (600 mg twice daily) or crizotinib 
(250 mg twice daily). Crossover was not allowed. As mentioned 
previously, PFS was significantly longer with alectinib than with 
crizotinib and delayed the onset of BM (65). In the ALEX trial, 
122 out of 303 (40%) patients had asymptomatic BM at baseline. 
Alectinib achieved an intracranial RR of 59% with a systemic PFS 
similar to that reported in the whole population (HR 0.40, 95% 
CI: 0.25–0.64, p < 0.0001) (65), with a median PFS of 14 months 
among patients with BM at baseline who had not received previ-
ous radiotherapy (72). Among the 21 patients with measurable 
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BM, alectinib gave an intracranial RR of 81% and median DOR 
of 17.3 months (65) (Table 2). Patients with previously-irradiated 
BM measurable lesions had higher intracranial RR (86 vs. 79%) 
and intracranial DOR (not reached vs. 17.3 months), compared 
with patients without prior radiotherapy (72). Similarly, the phase 
III J-ALEX trial in 207 Japanese ALK-positive NSCLC patients 
demonstrated the superiority of alectinib in terms of PFS over 
crizotinib (HR 0.34, 95% CI: 0.17–0.71, p < 0.0001), and delayed 
risk of CNS progression in patients with BM at baseline (HR 
0.16, 95% CI: 0.02–1.28) and those without (HR 0.41, 95% CI: 
0.17–1.01). Among 43 patients with BM at baseline, alectinib 
significantly improved systemic PFS over crizotinib as first-line 
treatment (HR 0.08; 95% CI: 0.01–0.61) (88).

Lorlatinib
Lorlatinib (PF06463922) is a selective, potent, brain-penetrant 
next-generation ALK and ROS1 TKI, active against most known 
resistance mutations (79, 89). Lorlatinib was tested in a phase I 
trial in 54 pretreated or treatment-naïve ALK- (N = 41) or ROS-1 
(N  =  12) positive NSCLC patients (11% treatment-naïve, 52% 
two or more previous TKIs, and 72% with BM). Patients reached 
a RR of 46% in the ALK-positive population irrespective of the 
number of prior ALK TKI therapies, and median PFS and DOR of 
9.6 and 12.4 months, respectively. Lorlatinib was highly active in 
the CNS, including intracranial responses in 8 of 19 (42%) ALK-
positive patients with baseline measurable BM, in over a half of 
whom two or more previous ALK TKIs had failed (90) (Table 2). 
The recommended dose for the phase II trial was 100 mg/day.

In the phase II trial (91), lorlatinib conferred a clinically 
meaningful benefit, including substantial intracranial efficacy 
ranging from 42 to 75% in patients with advanced ALK-positive 
disease who were treatment-naïve or who had received a range 
of prior ALK inhibitors and/or chemotherapies (Table 2). In the 
treatment-naïve cohort (N  =  30), lorlatinib achieved an RR of 
90%, neither PFS nor DOR were reached, while the intracranial 
RR was 75% among eight patients with BM at baseline. Among the 
111 heavily pretreated (two or three previous TKI with or without 
chemotherapy) patients, lorlatinib reached an overall RR of 39% 
with median PFS of 6.9 months, and 48% intracranial response 
among 48 patients with BM at baseline (91). Lorlatinib received 
breakthrough therapy designation in April 2017 for ALK-positive 
patients previously treated with at least one ALK TKI. Based on 
these results, the ongoing randomized phase III CROWN trial 
(NCT03052608) is assessing the efficacy of lorlatinib compared to 
crizotinib as first-line treatment in ALK-positive NSCLC patients. 
Asymptomatic and pretreated BM are not exclusion criteria.

Brigatinib
Brigatinib is another new ALK TKI (also active against ROS1, 
EGFR-T790M, IGFR, and FLT3 mutations) with a broader spec-
trum of preclinical activity than ceritinib and alectinib against 
known crizotinib-resistant ALK-mutants (79, 92). Brigatinib 
was granted break-through therapy designation by the FDA in 
October 2014 on the basis of its early phase I/II trial data (93). 
In the phase I trial, among 71 crizotinib-resistant ALK-positive 
NSCLC patients treated with brigatinib the confirmed RR was 
62% with a median PFS of 13.2  months. Among 46 patients 

with BM at baseline, the RR was 53% and 35% for those with 
measurable (n = 15) and non-measurable (n = 31) intracranial 
metastases, respectively. The median intracranial PFS and DOR 
in this population was 15.6 and 18.9 months, respectively. The 
recommended dose for the phase II study was determined to be 
180 mg/day with a 7-day lead-in at 90 mg to reduce the risk of 
pulmonary toxicity (93).

In the phase II trial, 222 crizotinib-refractory ALK-positive 
NSCLC patients were randomized to brigatinib 90 mg/day (arm A)  
or 180  mg/day with a 7-day lead-in at 90  mg (arm B) (94), and 
updated results were recently presented (95). By independent 
review, the RR was 51 and 55%, in arms A and B, respectively, and 
PFS was 9.2 and 16.7 months, respectively, while OS was not reached 
in arm A and was 27.6 months in arm B. This is the longest PFS in 
crizotinib-resistant tumors reported with new ALK TKIs. Based on 
these results, the FDA approved brigatinib in crizotinib-pretreated 
patients in 28 April 2017. Among the 154 patients with BM at 
baseline (69%), intracranial RR (by independent-review) in patients 
with measurable disease (N = 44) was 50 and 67% in arm A and B, 
respectively. For patients with active BM (N = 34) RRs were similar 
to those with baseline BM, 47 and 73% in arms A and B, respectively. 
Median intracranial PFS was 12.8 and 18.4 months in arms A and 
B, respectively (95). The intracranial efficacy of brigatinib com-
pares favorably with other second-generation ALK TKIs (74, 85) 
(Table 2). Brigatinib is currently being investigated in a randomized 
phase III ALTA-1L (NCT02737501) trial comparing brigatinib vs. 
crizotinib in ALK-positive TKI-naïve patients. Asymptomatic and 
pretreated BM are not exclusion criteria. This trial allows crossover 
from crizotinib to brigatinib and may help to elucidate whether a 
sequential strategy is better than upfront brigatinib.

Ensartinib
Efficacy of ensartinib (X-396) 225 mg/day in an expansion study 
has been reported. Forty of the 80 enrolled patients were evalu-
able for response, achieving 58% partial responses (88% in eight 
crizotinib-naïve patients, and 64% in 22 crizotinib-resistant) 
(96). Updated results among 15 TKI-naïve patients showed an 
80% RR and median PFS of 23.8  months (97). CNS responses 
[(60% partial responses) were observed in both crizotinib-naïve 
and crizotinib-resistant populations, with a median DOR of 
5.8 months (98)]. The ongoing phase III XALT3 (NCT02767804) 
will compare ensartinib with crizotinib as first-line treatment 
(previous chemotherapy allowed).

OTHeR MOLeCULAR ALTeRATiONS: 
ROS1, ReT, BRAF, AND NTRK

ROS1 Rearrangements
ROS1 rearrangement occurs in approximately 1 to 2% of NSCLC 
patients. Compared with ALK rearrangements, ROS1 rearrange-
ments are associated with lower rates of extrathoracic metastases, 
including fewer BM at initial metastatic diagnosis (19 vs. 39%, 
p = 0.033) (99), however ROS1 does increase the likelihood of 
BM (100).

In 50 ROS1-positive NSCLC patients, crizotinib achieved an 
RR of 72% and median PFS of 19.2 months (101). Based on these 
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results, the FDA and EMA approved crizotinib for treatment 
of ROS1-positive NSCLC patients in March and August 2016, 
respectively. Recently, a phase II trial in 32 Asian ROS1-positive 
NSCLC patients, ceritinib gave an RR of 62%, median PFS of 
9.3  months (19.3  months among 30 crizotinib-naïve patients), 
and median OS of 24 months. Among eight patients with BM, 
intracranial RR with ceritinib was 63% (102). In a phase I trial 
with lorlatinib, 12 ROS1-positive NSCLC patients achieved an 
intracranial RR of 50% (80% among five patients with target 
lesions) and median systemic PFS and DOR of 7 and 12 months, 
respectively (90) (Table 2).

In a phase II study in 47 ROS-positive NSCLC patients (28% 
TKI-naïve, 64% one previous TKI and 8% two or more previous 
TKIs) treated with lorlatinib, the RR was 36%, with a 45% DCR 
at 24 weeks, and median PFS and DOR of 9.6 and 13.8 months, 
respectively (91). Among the 25 patients with BM at baseline, 
intracranial RR was 56%.

Entrectinib is another ROS1 TKI (also active against ALK and 
NTRK) specifically designed to cross the BBB. In a phase I/II trial, 
entrectinib (600 mg QD) achieved a RR of 78% and median PFS 
of 29.6 months among 32 treatment-naïve ROS1-positive NSCLC 
patients. The intracranial RR was 83% among 11 patients with BM 
at baseline (103, 104). Pending questions are the best treatment 
sequential strategy and whether ROS1-positive NSCLC patients 
with BM should be treated upfront with entrectinib. Given the 
low ROS-1 incidence, it is difficult to perform a randomized trial 
comparing different treatment strategies.

ReT Rearrangements
In NSCLC, RET rearrangements occur in 1 to 2% of unselected 
cases and 16% of NSCLC tumors that lack other oncogenic 
drivers. They are more common in adenocarcinomas and in 
never or lighter-smokers (105, 106). RET-rearranged NSCLC 
patients benefit from pemetrexed-based chemotherapy to a 
comparable extent as ALK- and ROS1-rearranged patients 
(107). Multikinase inhibitors, such as cabozantinib (108) and 
vandetanib (109, 110) in phase II or retrospective studies (105), 
have limited efficacy, with RR between 18 and 53%, median PFS 
between 2.3 and 4.5 months (105, 108–110), and median OS of 
6.8 months (105). It has been speculated that the type of fusion 
partner may play a role in determining treatment response 
(109); however, this was not validated in the retrospective 
study (105).

Baseline BM incidence in RET-rearranged NSCLC is 27%, 
without differences in age, smoking status or fusion-partner type. 
Lifetime incidence of BM in RET-rearranged NSCLC patients is 
49%. In 37 patients treated with multikinase inhibitors with activ-
ity against RET, there were no significant differences in median 
PFS (2.1 vs. 2.1, p  =  041) or median OS (3.9 vs. 7.0  months, 
p = 0.10) in patients with BM (N = 10) vs. without (N = 27) (111). 
In the phase II trial with cabozantinib, baseline untreated BM 
were present in five patients. Cabozantinib achieved intracranial 
disease control in two patients with measurable disease (−34 
and −1%). Brain progression during TKI treatment may be less 
common than in other oncogenic alterations. Of 22 patients 
who discontinued cabozantinib, BM was the cause in only 
10% of cases (111). Similarly, intracranial responses have been 

reported with alectinib, one patient responding after escalating 
alectinib to 900  mg twice daily (112). The efficacy of alectinib  
(900–1200  mg/day) as first-line treatment in RET-positive 
NSCLC patients will be assessed in a multi-cohort phase II/III 
B-FAST trial (NCT03178552). Treated and asymptomatic BM 
will be allowed. LOXO-292, another RET TKI has reported toler-
ability and efficacy in RET-dependent cancers even in progressive 
BM after alectinib (113).

In a phase I trial, vandetanib and everolimus showed anti-
tumor activity in RET-positive NSCLC patients with BM (114, 
115). The short-term outcomes with multikinase inhibitors with 
activity against RET compared to EGFR/ALK TKIs in EGFR-
mutant/ALK-rearranged NSCLC, strongly suggest that there is a 
need for more selective and potent RET targeted agents as mono-
therapy or in combination in order to enhance activity (116).

BRAF-Mutants
The combination of the BRAF inhibitor dabrafenib with the 
MEK inhibitor trametinib was approved by the FDA and EMA 
based on clinical activity in 57 pretreated BRAF-V600E-mutated 
NSCLC patients (1–2% of lung adenocarcinoma patients) follow-
ing a phase II trial giving an RR of 67% and median PFS and OS 
of 8.6 and 18.2 months, respectively, however no data regarding 
CNS efficacy are available (117). Similar outcomes were recently 
replicated among 36 TKI-naïve BRAF (V600E)-mutant NSCLC 
patients (118). In melanoma BM patients, this combination has 
reported intracranial responses (119), making it highly probable 
that activity will be observed in NSCLC patients, although this 
needs to be validated.

NTRK Rearrangements
Fusions involving the genes NTRK1, NTRK2, and NTRK3 are 
oncogenic drivers. They encode the proteins TRKA, TRKB, and 
TRKC, respectively, and play roles in neuronal development, 
cell survival, and cellular proliferation (104). These fusion genes 
have been detected in a variety of tumors including lung in up 
to 3% of cases, using different assay (NGS or FISH-based) (120). 
Entrectinib has reported efficacy in NTRK-positive tumors, 
including NSCLC patients, with a median PFS of 15.6  months 
(104) and also intracranial activity (104, 120), confirming that 
entrectinib crosses the BBB. Larotrectinib (LOXO 101) is a pan-
TRK TKI. In a phase I clinical trial with 55 NTRK-positive solid 
tumors (five NSCLC patients), larotrectinib achieved an RR of 
78% across a wide range of ages and tumor types (121). CNS 
efficacy of this agent remains unknown.

UPFRONT TKis vs. UPFRONT 
RADiOTHeRAPY iN ONCOGeNe-
ADDiCTeD NSCLC

In oncogene-addicted NSCLC, TKIs have clearly demonstrated 
increased CNS efficacy, including with next-generation TKIs, 
which are more potent than first-generation TKIs. Most data 
have been generated in EGFR- or ALK-positive patients, although 
similar outcomes are expected with other druggable alterations. 
Nonetheless, alternative treatment options exist in this group such 
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as surgery, WBRT or stereotactic radiosurgery (SRS) (122), and 
the optimal treatment combination or sequence remains unclear.

Sequential Strategies
A systematic review and meta-analysis of 12 non-comparative 
studies in 363 EGFR-mutant NSCLC patients with BM, showed 
evidence that upfront radiotherapy (SRS or WBRT) improved 
survival outcomes (123). However, this study is based on published 
data and not on individual patient data limiting its validation. This 
study also reported that radiotherapy caused more neurological 
adverse events relative to EGFR TKIs alone. In a retrospective 
multi-institutional analysis in 351 EGFR-mutant TKI-naïve NSCLC 
patients with BM, median OS for three alternative strategies, SRS 
followed by an EGFR TKI (n = 100), WBRT followed by an EGFR 
TKI (n = 120), or an upfront EGFR TKI (n = 131), was 46, 30, and 
25 months, respectively (p < 0.001) (124). In a multivariate analysis, 
SRS and WBRT vs. EGFR TKI were associated with improved OS, 
but not with median time to intracranial progression, suggesting 
that an upfront EGFR TKI and deferred radiotherapy is associated 
with inferior OS. SRS followed by EGFR-TKI resulted in the long-
est OS and allowed patients to avoid the potential neurocognitive 
sequelae of WBRT. However, the retrospective setting meant that 
data for quality of life and chronic neurocognitive assessments, 
extracranial disease burden were unavailable, and randomized 
study design was not used, all of which can be considered as limita-
tions of this analysis. In addition, it is likely that there were a higher 
number of oligo-metastatic patients in the SRS arm, in whom there 
is not an urgent need for a TKI to control the extracranial disease, 
which would generate a major bias.

In a retrospective study (n  =  97), intracranial PFS was 
improved in patients who received upfront radiotherapy followed 
by icotinib compared to those receiving icotinib alone, although 
without OS improvement (125). However, the absence of rand-
omization makes it difficult to draw a conclusion. On the other 
hand, in a phase III trial, upfront icotinib (N = 85) compared with 
WBRT (30  Gy) plus chemotherapy (N  =  91) in EGFR-mutant 
patients with at least three BM significantly improved intracranial 
PFS (10.0 vs. 4.8 months; HR 0.56, 95% CI: 0.36–0.90; p = 0.014), 
intracranial RR (67.1 vs. 40.9%, p < 0.001), and systemic RR (55.0 
vs. 11.1%, p < 0.001), with a better toxicity profile. Median OS had 
no significant difference between the arms (18.0 vs. 20.5 months; 
HR 0.93, 95% CI: 0.60–1.44, p = 0.734) (38).

Any of these studies evaluated radiotherapy strategies 
compared to third-generation EGFR TKIs, so, a prospective 
randomized trial evaluating intracranial progression after SRS 
(to avoid the potential neurocognitive sequelae of WBRT) fol-
lowed by third-generation EGFR TKI vs. third-generation EGFR 
TKI followed by SRS is needed. The clinical question has also 
been raised as to whether SRS as consolidative treatment in brain 
residual disease after EGFR TKI response could improve intrac-
ranial PFS in this population or whether this radiotherapy should 
be only administered in cases of progression on an EGFR TKI.

Concomitant Strategies
In a recent meta-analysis, radiotherapy plus EGFR TKIs resulted 
in a superior RR and DCR, and markedly prolonged the CNS-
time to progression and OS of NSCLC patients with BM (126), 

although patients were not selected according to EGFR status. The 
role of combining an EGFR TKI with WBRT was investigated in a 
single arm phase II trial of 40 patients (17 EGFR-mutant) (127). 
Patients received erlotinib 150 mg/day for 1 week, followed by 
erlotinib with concurrent WBRT (2.5 Gy/day, 5 days per week, to 
35 Gy) and underwent formal cognitive testing before enrollment 
and at each follow-up visit. In the EGFR-mutant subset, patients 
had longer OS compared to wild-type EGFR (19.1 vs. 9.3 months, 
respectively). Erlotinib was well tolerated in combination with 
WBRT with no unexpected cases of neurotoxicity.

In a retrospective study in 133 EGFR-mutant patients with 
BM, radiotherapy (WBRT, SRS) and EGFR TKIs (erlotinib, 
gefitinib) improved median cranial PFS (16.0 vs. 11.5 moths, 
p = 0.017) and median OS (22 vs. 15 months, p = 0.015) com-
pared with EGFR TKIs alone (128). On the contrary, in another 
retrospective cohort of 230 EGFR-mutant BM NSCLC patients, 
the addition of WBRT to EGFR TKIs compared to EGFR TKIs 
alone did not result in significant differences in intracranial PFS 
(7.4 vs. 6.9, p  =  0.23) or systemic PFS (7.9 vs. 7.5, p  =  0.55), 
and combined treatment was associated with worse survival 
(26.4 vs. 21.6 months, p = 0.049) (129). These results should be 
interpreted with caution given the sample sizes, absence of evalu-
ation of side effects and non-randomized study design. While it 
can be argued that EGFR TKIs can be safely administered with 
concurrent WBRT (although for ALK-positive patients no data 
are available), high level evidence to support this is lacking, and 
concomitant strategies are not overtly recommended in either 
clinical guidelines (122) or in a recent systematic review (130). In 
cases of asymptomatic BM patients, given the unclear potential 
synergistic cognitive toxicities caused by combined therapies, 
WBRT or SRS should be delayed when other effective systemic 
therapies are available. A recent systematic literature review about 
results of combined irradiation and targeted therapies has been 
also recently published (131).

Continuing TKis with and without Local 
Therapy
Many strategies to treat CNS disease in ALK-positive NSCLC 
patients have been reported as case reports, such as high-dose 
crizotinib with a limited intracranial PFS of 1 month (132) and 
high-dose pemetrexed in combination with high-dose crizotinib 
with overall stable cerebral disease for 7  months. However, it 
remains unknown whether the response is attributable to one 
or both drugs given at high dose (133). In preclinical models, 
for enhancing CNS drug penetration, P-gp inhibitors such as 
elacridar, increased the intracranial concentration of crizotinib 
~70-fold (134).

In 120 ALK-positive NSCLC patients continuing crizotinib 
beyond initial progression (51% with brain progression), 
longer median survival was reported compared with patients 
who received other chemotherapy (16.4 vs. 5.4  months) (135), 
although this benefit could also be related to local therapies 
and more indolent disease in the crizotinib arm. Treating 
isolated CNS progression with local therapies (surgery and/or 
radiotherapy) while continuing crizotinib could be viewed as an 
acceptable option (136). In the PROFILE 1014 study, among 25 
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patients with intracranial progression on crizotinib, 19 received 
radiotherapy, while continued crizotinib achieved a median 
treatment time beyond progression of 5.1  months, which was 
longer than the 2.9  months achieved with crizotinib beyond 
progression among patients with extracranial progression (70). 
In a retrospective single-institution study, local therapy (either 
surgery or radiotherapy) for BM in EGFR-mutant (17 treated 
with erlotinib) or ALK-rearranged (38 treated with crizotinib) 
NSCLC patients and CNS progression allowed continuation of 
therapy for an additional 7.1 months (137).

Recent studies have reported that ALK-positive NSCLC 
patients with BM treated with SRS and/or WBRT and TKIs have 
prolonged survival (68, 69, 138). Given the extended OS for 
ALK-positive patients and frequent need for repeated courses of 
CNS radiotherapy, SRS is the preferred strategy for minimizing 
cerebral toxicity. Synergistic efficacy of crizotinib and radiotherapy 
could be explained by increased BBB permeability and decreased 
P-gp expression following irradiation (139). These results suggest 
intracranial interventions and TKIs beyond progression are of 
value in patients with asymptomatic and limited CNS progression 
on a TKI. This SRS strategy is being validated in an ongoing phase II 
clinical trial (NCT02314364) among oncogene-addicted (EGFR-, 
ALK-, ROS1-positive) NSCLC patients with up to four BM.

The promising CNS activity of the next-generation TKIs sug-
gests that switching targeted agents may be a reasonable alterna-
tive to local therapies. However, prospective data are needed to 
determine which strategy offers the best OS, intracranial control 
rate, quality of life and therapeutic ratio, taking into account the 
number of BM and whether patients are symptomatic at the time 
of progression.

Second- or Third-Generation TKis Upfront 
or Sequentially
In EGFR-mutant NSCLC patients, osimertinib has reported 
higher intracranial activity compared with chemotherapy (51) 
and first-generation EGFR TKIs (17), and longer delay of onset 
of BM (51). However, lack of stratification according the pres-
ence of BM, no reported survival benefit with osimertinib and 
no prospective validation of this efficacy, limit interpretation. 
Nonetheless, preclinical data strongly support the increased 
intracranial efficacy of osimertinib compared with other EGFR 
TKIs (44). The ongoing phase II APPLE trial (NCT02856893) 
assesses the optimal strategy for delivering osimertinib in EGFR-
mutant NSCLC patients and will prospectively validate the 
efficacy of osimertinib among those patients with BM at baseline 
(stratification criteria and brain MRI will be performed at base-
line) and also the time to radiological brain progression respect 
to with first-generation EGFR TKI (gefitinib) (140).

In ALK-positive NSCLC patients, based on this significant 
PFS improvement with alectinib and the delay of CNS progres-
sion compared with the current standard first-line crizotinib 
in ALK-positive NSCLC patients, alectinib has became a new 
standard treatment, and is approved by the EMA and FDA. 
However, it has not yet been demonstrated whether upfront treat-
ment with second-generation ALK TKIs impact OS compared 
with sequential treatment strategies (Figure 1). In ALK-positive 
NSCLC patients, 4-year OS was 57% with upfront crizotinib 

in the randomized phase III PROFILE 1014 trial (N  =  172), 
and was 70% with alectinib (300  mg twice daily) among 43 
Japanese patients included in a phase II trial (141). Although 
data are immature, no survival benefit has been reported with 
upfront alectinib compared with crizotinib in the ALEX trial 
(65). Also, in PROFILE 1014, patients who received crizotinib 
followed by another ALK-TKI had longer OS compared with 
those randomized to chemotherapy followed by no ALK-TKI or 
other treatment (who had the poorest OS), suggesting a potential 
benefit of sequential strategies (142).

In a multicentre retrospective study, OS in patients treated 
with crizotinib followed by alectinib tended to be longer than in 
patients treated with alectinib alone (143) and median OS up to 
50 months has been reported in patients who receive sequential 
strategies with upfront crizotinib (144, 145). A French nation-
wide retrospective cohort (CLINALK study) with 318 ALK-
positive NSCLC patients reported that patients who received 
next-generation ALK TKIs after crizotinib progression (ceritinib, 
alectinib, lorlatinib; N = 84) had improved OS, reaching a median 
of 89.6 months (146). Large-scale prospective studies are needed 
to confirm these preliminary observations.

Finally, each ALK TKI is associated with a distinct spectrum 
of ALK-resistant mutations, and the frequency of mutations 
increases significantly after treatment with second-generation 
ALK TKIs (20% with crizotinib vs. 53% with alectinib) (79). It 
is important to note that there are few new ALK TKIs that may 
overcome alectinib resistance, and efficacy is dependent on the 
acquired ALK mutation subtype upon progression on alectinib 
(79). Lack of a tissue biopsy for molecular profiling at progres-
sion and limited access to new ALK TKIs worldwide might limit 
access to subsequent therapies in alectinib-resistant diseases. 
Validation of liquid biopsies for dynamic markers of TKI efficacy 
(147) as well as predictive markers for personalized treatment 
at progression on ALK TKIs is also a challenge. On the other 
hand, the high CNS response and the delay in the onset of BM 
with alectinib, which could have a positive impact on patients’ 
quality of life, might justify first-line treatment with alectinib in 
this population.

CONCLUSiON

Brain metastases are common in NSCLC including in molecularly 
selected populations, and are associated with a reduced quality of 
life. A multidisciplinary approach is the optimal strategy in onco-
gene-addicted NSCLC patients with BM. Based on the available 
clinical data and long OS in patients with asymptomatic synchro-
nous BM at diagnosis, upfront treatment with TKIs alone should 
be considered with close CNS surveillance for early intervention 
in patients with an inadequate CNS response. This strategy may 
defer CNS radiotherapy and avoid long-term neurologic sequelae 
associated with local therapies. For patients with symptomatic BM, 
initial TKI therapy is an option, especially in EGFR-mutant and 
ALK-positive NSCLC patients treated with new EGFR and ALK 
TKIs based on their higher CNS efficacy. In other cases, sequential 
treatment initiated with local therapy followed by a TKI is appropri-
ate. For patients who experience CNS progression with controlled 
extracranial disease while on TKI treatment, local therapy 
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