
April 2018 | Volume 8 | Article 1061

Review
published: 12 April 2018

doi: 10.3389/fonc.2018.00106

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Karine A. Cohen-Solal,  

Rutgers University, United States

Reviewed by: 
Chakrabhavi Dhananjaya Mohan,  

University of Mysore, India  
Alessandro Rufini,  

University of Leicester,  
United Kingdom

*Correspondence:
Joseph A. Pinto 

jpinto@gecoperu.org

Specialty section: 
This article was submitted to  

Cancer Molecular Targets  
and Therapeutics,  

a section of the journal  
Frontiers in Oncology

Received: 22 November 2017
Accepted: 26 March 2018

Published: 12 April 2018

Citation: 
Tirado-Hurtado I, Fajardo W and 

Pinto JA (2018) DNA Damage 
Inducible Transcript 4 Gene:  

The Switch of the Metabolism as 
Potential Target in Cancer. 

Front. Oncol. 8:106. 
doi: 10.3389/fonc.2018.00106

DNA Damage inducible Transcript 4 
Gene: The Switch of the Metabolism 
as Potential Target in Cancer
Indira Tirado-Hurtado1, Williams Fajardo2 and Joseph A. Pinto1*

1Unidad de Investigación Básica y Traslacional, Oncosalud-AUNA, Lima, Peru, 2 Escuela de Medicina Humana, Universidad 
Privada San Juan Bautista, Lima, Peru

DNA damage inducible transcript 4 (DDIT4) gene is expressed under stress situations 
turning off the metabolic activity triggered by the mammalian target of rapamycin (mTOR). 
Several in vitro and in vivo works have demonstrated the ability of DDIT4 to generate resis-
tance to cancer therapy. The link between the metabolism suppression and aggressiveness 
features of cancer cells remains poorly understood since anti-mTOR agents who are part 
of the repertoire of drugs used for systemic treatment of cancer achieving variable results. 
Interestingly, the high DDIT4 expression is associated with worse outcomes compared 
to tumors with low DDIT4 expression, seen in a wide variety of solid and hematological 
tumors, which suggests the driver role of this gene and provide the basis to target it as 
part of a new therapeutic strategy. In this review, we highlight our current knowledge about 
the biology of DDIT4 and its role as a prognostic biomarker, encompassing the motives for 
the development of target drugs against DDIT4 as a better target than mTOR inhibitors.

Keywords: DNA damage inducible transcript 4, mammalian target of rapamycin, malignant tumors, biomarkers, 
targeted therapies

BACKGROUND

Cancer is a complex disease arising from the gradual accumulation of genetic changes resulting in 
the reprogramming of key cellular processes well described in “The Hallmarks of Cancer” written 
by Hanahan and Weinberg (1). Structural and functional alterations in driver genes and entire path-
ways to fulfill the nutritional requirements are responsible for this reprogramming, and although 
their mechanisms are not fully known, various drugs have been developed to target actionable 
mutations (2, 3).

One attractive therapeutic strategy is the inhibition of the mammalian target of rapamycin (mTOR), 
as well as various downstream and upstream signaling molecules (4). The mTOR pathway has evolved 
as nutrient sensing to promote cell proliferation under adequate nutritional and environmental condi-
tions (5). The activation of mTOR depends on the formation of two complexes called mTOR complex 
1 (mTORC1) and mTOR complex 2 (mTORC2) that are activated in distinct ways. mTORC1 controls 
the protein synthesis and cell survival through the phosphorylation of its substrates, 4EBP1, p70S6K 
and factor 4G. mTORC1 is inactivated by rapamycin but is activated by growth factors, nutrients, 
energy and stress signals, and essential signaling pathways (PI3K, MAPK, and AMPK). In contrast to 
mTORC1, mTORC2 is not inactivated by rapamycin and generally, it is not affected by nutrients and 
energy signals. mTORC2 regulates cytoskeleton organization and promotes cell survival through the 
phosphorylation of protein kinase B (Akt) and protein kinase C (6–8). The key role of mTOR in these 
processes explains its association in pathologies such as cancer (9, 10).

Several works and recent cancer genomic projects described high rates of mutations in genes 
involved in the mTOR pathway, including PI3K, PTEN, AKT, and S6K1, 4EBP1, and EIF4E. Based 
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FiGURe 1 |  DNA damage inducible transcript 4 (DDIT4) gene expression. DDIT4 is ubiquitously expressed in multiple human tissues (32).
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in this data, mTOR inhibitors (rapamycin and its analogs) have 
become attractive therapeutic agents tested in several clinical 
trials, as single agents or in combination with other types of 
systemic treatment (9). Unfortunately, some inhibitors of mTOR 
have shown lack of efficacy, including the rapamycin (11).

The DNA damage inducible transcript 4 (DDIT4) is induced 
by cellular stress conditions and regulates the mTOR activity (12), 
and also its abnormal expression has been linked to multiple 
diseases, including malignant tumors (13–18).

DDIT4 GeNe

This gene was simultaneously discovered and cloned in 2002 
by two independent research groups. Shoshani et  al. using a 
microarray hybridization technique to investigate the hypoxia-
dependent gene expression in rat glioma C6 cells reported 
a gene highly upregulated in response to hypoxia-inducible 
factor 1 (HIF-1) and regulating the generation of cellular reac-
tive oxygen species (ROS). This gene was designated RTP801 
(19). Concurrently, Ellisen et  al. identified a new p53 target 
induced by DNA damage and regulated by p63 during embryo-
genesis and epidermal differentiation. In this study, this gene 
was alternatively designated REDD1 (regulated in development 
and DNA damage response 1), which was also involved in the 
generation of ROS (20).

Contemporarily with these works, Wang et al. analyzed which 
genes are potentially involved in regulating glucocorticoid-
induced apoptosis in lymphoid cells. Through an oligonucleotide 
microarray analysis, they discovered a novel dexamethasone-
induced gene designated Dig2 whose expression is significantly 
induced in cell lines of murine T-cell lymphoma and in normal 
mouse thymocytes (21). The official name given by the HUGO 
Gene Nomenclature Committee was DDIT4.

DDIT4 is located on chromosome 10 (10q22.1) and has a length 
of 2.1 kb, containing three exons and two introns (19, 20). DDIT4 
has three splice variants (one it is the protein coding with 232 
amino acids and the others are retained introns), 95 orthologs, one 
paralog (DDIT4L, DNA damage inducible transcript 4 like) and is 
associated with one phenotype (22). Because of this, it is presumed 
that it was present in the common ancestor of animals (23).

DDIT4 is ubiquitously expressed at low levels in most adult tissues 
(Figure 1) (19). The DDIT4 expression is induced by multiple cel-
lular stresses, such as hypoxia (19, 24), ionizing radiation (IR) (20), 
methyl methane sulfonate (MMS) (25), heat shock (21), and energy 
depletion (12). Moreover, it is also upregulated by other chemical 
molecules, such as glucocorticoids (21, 26, 27), dopaminergic neu-
rotoxins (28), endoplasmic reticulum stress inducers (21, 29), DNA 
damage agent etoposide (21), and arsenite (30). Conversely, DDIT4 
expression decreases by testosterone, acute resistance exercise, 
refeeding/nutrient consumption, and suppressed mTORC1 (31).
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FiGURe 2 | Crystal structure of the human protein DNA damage inducible 
transcript 4 (PDB ID# 3LQ9). Both of their chains have antiparallel α-helices 
followed by four β-strands.
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DDiT4 PROTeiN

With an estimated half-life of approximately 5  min (33, 34), 
DDIT4 is a highly conserved protein composed of 232 amino 
acids, rich in leucine (17%) and contains conserved 9- or 
10-serine stretches at its N-terminal end. Its molecular weight is 
25 kDa, but it migrates around 35 kDa on Western blot because 
of its multiple lysine residues at the carboxyl terminus (19, 20). 
In addition, DDIT4 is mainly present in the cytoplasm and the 
nucleus (20, 30), but it has also been observed in membranes (35).

The crystal structure of DDIT4 (PDB ID# 3LQ9) shows that 
this protein has two chains (A and B), where each chain has 
antiparallel α-helices followed by four β-strands with two highly 
conserved residues (residues 138–141 and 218–225) that might 
be essential for the activity of the protein (Figure 2). Amino acids 
in position 85–193 and 207–225 correspond to linear segments 
required for its function, separated by a dispensable region. 
The extreme N-terminus has 84 amino acids residues poorly 
preserved among species and dispensable for the function of the 
protein. By contrast, the C-terminal region is highly conserved 
and essential for the correct function of DDIT4. Internal dele-
tions and NAAIRS (the sequence Asn–Ala–Ala–Ile–Arg–Ser) 
substitutions are poorly tolerated because this causes the protein 
to change to an unphysiological conformation (36).

ReGULATiON OF DDiT4

DDIT4 expression is upregulated by several transcription factors 
in response to different stressors (37). For example, under hypoxic 
conditions, HIF-1 increases the transcription of DDIT4 by binding 
to a hypoxia response element of the DDIT4 promoter causing 

downregulation of mTOR (19, 24). Telomere destabilization by 
DNA-damaging agents also increases DDIT4 expression through 
multiple pathways. In mouse embryo fibroblasts (MEFs), IR induces 
DDIT4 expression through p53 pathway in a dependent manner 
(20). Similarly, in HaCaT human keratinocytes, MMS induces 
DDIT4 expression through Elk-1 pathway and CCAAT/enhancer-
binding protein (C/EBP) but in a p53-independent manner (25). 
Another transcription factor is the nuclear factor of activated T-cells 
3, whose overexpression increases c-Myc (mTOR downstream tar-
get) and MUC2 expression (a marker of goblet cell differentiation) 
through the induction of DDIT4 expression; important process to 
the regulation of intestinal cell differentiation (38).

MicroRNAs, small and highly conserved non-coding RNA 
molecules, are also involved in tumorigenesis by regulating (at 
posttranscriptional level) specific oncogenes and tumor sup-
pressor genes (39–41), such as DDIT4. miR-221 overexpression 
contributes to liver tumorigenesis through the cyclin-dependent 
kinase inhibitor p27 (Kip1-CDKN1B) and/or DDIT4 downregu-
lation (42). miR-495, directly upregulated by the transcription 
factors E12/E47 in breast cancer stem cells promotes oncogenesis 
and hypoxia resistance via downregulation of E-cadherin and 
DDIT4 (43). miR-30c plays a key role in radiation-induced cell 
damage because, maybe in part, it downregulates DDIT4 expres-
sion in human hematopoietic and osteoblast cells after gamma-
irradiation (44). miR-630 has a bimodal role in the regulation of 
apoptosis in response to DNA damage; it promotes apoptosis by 
downregulation of cell cycle kinase 7 kinase, and on the other 
hand, it reduces apoptosis by downregulating apoptotic activa-
tors, such as DDIT4, PARP3, EP300, and p53 (45).

At posttranslational level, DDIT4 is quickly degraded by the 
ubiquitin-proteasome system to allow cells to restore mTOR sign-
aling once the stress conditions have been mitigated. One of the 
models reported by Katiyar et al. consists in the phosphorylation 
of DDIT4 by GSK3-β, which causes the recruitment of the Cullin 
4A (CUL4A)–DNA damage-binding protein 1–regulator of cul-
lins 1–β-transducin repeat containing protein (β-TRCP) E3 ligase 
complex, that results in DDIT4 ubiquitination and degradation 
by the proteasome (34). Amplification and overexpression of 
CUL4A have been observed in primary breast cancers (46) and 
others types of cancers such as hepatocellular carcinomas (47), 
so it could be considered as a potential predictive and prognostic 
indicator of some cancers. In addition, increased β-TRCP mRNA 
and protein expression have also been found in colorectal and 
pancreatic cancers (48, 49). By contrast, Tan and Hagen reported 
that there is an alternative E3 ligase (currently unknown) respon-
sible for both basal DDIT4 ubiquitination and ubiquitination that 
is induced upon mTORC1 inhibition (50). These processes sustain 
that the dysregulation of DDIT4 degradation could be a common 
event that elevates mTOR signaling during tumor development.

DDIT4 iNHiBiTS THe ACTiviTY OF mTOR 
VIA TUBeROUS SCLeROSiS COMPLeX 
(TSC1/TSC2 COMPLeX)

All the stressors mentioned above, via different transcription 
factors, elevate the DDIT4 expression to fulfill its main function, 
inhibit mTORC1 to regulate key cellular processes, such as cell 
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FiGURe 3 | Analysis in STRING-DB v.10.5 describes that DNA damage inducible transcript 4 (DDIT4) is involved in the regulation of at least three clusters of 
proteins, (i) mammalian target of rapamycin (mTOR) pathway proteins (in red), (ii) p53 pathway (in sky blue), and (iii) 14-3-3 proteins (in green).

4

Tirado-Hurtado et al. DDIT4 Gene

Frontiers in Oncology | www.frontiersin.org April 2018 | Volume 8 | Article 106

growing, proliferation, and survival (12, 24). This inhibitory 
effect was initially identified in Drosophila, where expression of 
Scylla (homologous protein of DDIT4 in Drosophila) suppress 
the phosphorylation of S6K (a known substrate of TOR) (51); 
a similar process that was later confirmed in mammalian cells 
(52). In addition, TSC1/TSC2 complex does not interact directly 
with mTORC1, but it functions as a GTPase, inactivating to Rheb, 
converting Rheb-GTP into Rheb-GDP, unable to activate the 
mTORC1 complex (53).

Gordon et al. proposed two models of the effect of DDIT4 in the 
mTOR pathway. One model proposes that DDIT4 competes with 
TSC2 to bind with the 14-3-3 proteins. DDIT4 expression increases 
causing the dissociation of the 14-3-3 proteins with TSC2, so TSC2 
is released to form a functional TSC1/TSC2 complex that inhibits 
mTORC1 activity (31, 35). However, functional and structural 
analysis has concluded that it is unlikely that DDIT4 interacts 
directly with 14-3-3 proteins, discarding this model (36). The other 
model proposes that phosphatase-2A recruit to Akt causing the 
reduction of Akt phosphorylation, which in turn causes the reduc-
tion of phosphorylation of TSC2 and its induction. The TSC1/TSC2 
complex is formed and subsequently represses mTORC1 activity. 

By contrast, TSC1/TSC2 complex positively regu lates mTORC2 
through association with rapamycin-insensitive companion of 
mTOR (31) (Figures 3 and 4).

DDiT4 AND AUTOPHAGY

Autophagy is a catabolic mechanism of cellular adaptation to 
nutrients deprivation in which cellular components are degraded 
to its elementary molecules and recycled to promote the cell 
survival (54). In addition, autophagy participates in the removal 
of old or damaged cellular organelles and has been associated 
with the survival of cancer cells (55). Autophagy is the opposite 
response to cell growth and proliferation induced by mTOR 
activity. Under favorable nutritional conditions, the complex 
mTORC1 represses autophagy by phosphorylation of the ULK 
protein complex turning it in an open structural conformation 
(inactive form). DDIT4-mediated mTOR repression produces 
the lack of phosphorylation of the ULK complex, turning the 
complex in a closed structural conformation (active form) acti-
vating the mechanism of autophagy and triggering the formation 
of the autophagosome (56).
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FiGURe 4 | DNA damage inducible transcript 4 (DDIT4) controls mammalian target of rapamycin (mTOR) by the activation of the TSC1/TSC2 complex. When the 
TSC1/TSC2 complex inactivates Rheb, it is unable to activate mTOR complex 1.
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ROLe OF DDIT4 iN CANCeR

Dysfunction of DDIT4 has been associated with multiple dis-
eases, such as neurodegenerative disorders (28, 57), ischemic 
proliferative retinopathy (58), preeclampsia (59), diabetes, and 
other degenerative pathologies, such as cancer (10). Results 
of in  vitro studies suggest that DDIT4 could have a context-
dependent contrasting role in cancer as oncogene or tumor 
suppressor (19, 60).

Hyperactivation of the PI3K-Akt-mTOR signaling is a com-
mon alteration in cancer. This pathway regulates cellular pro-
cesses involved in cell growth, proliferation, motility, survival, 
and apoptosis (61). In normal cells, PI3K-Akt-mTOR signaling 
is controlled by PTEN through PI3K dephosphorylation ensur-
ing a transient and controlled activation. On the other hand, 
PTEN inactivation causes a chronic activation of PI3K and its 
downstream effectors, such as Akt, promoting the cell cycle 
progression, survival, and decreased apoptosis (62).

To know which genes are involved in the growth of cancer 
cells via chronically activated PIK-3 (such as in PTEN−/− cells), 
Schwarzer et  al. compared PIK3 expression between cells that 
have active PIK-3 versus cells in which it is silenced. They 
found that DDIT4 mRNA was significantly downregulated in 
prostate cancer cells (PC-3) using LY294002 (2-morpholin-
4-yl-8-phenylchromen-4-one) or rapamycin, both inhibitors of 
PI3K, in combination with matrigel-based 3D culture system.  
By contrast, DDIT4 was overexpressed under hypoxic conditions 
in a HIF-1α dependent manner. They also verified their results 
with other methods, as, for example, inhibiting the function of 
DDIT4 employing antisense molecules or interference RNA, 

which indicates that DDIT4 is a transcriptional downstream 
target in the PI3K pathway and essential for invasive growth of 
PC-3 both in vitro and in vivo (13).

On the other hand, DDIT4 has a key role in RAS signaling 
to transform human ovarian epithelial cells. DDIT4 is overexpressed  
in RAS-transformed human ovarian epithelial cells lines T29 and 
T80 promoting cell proliferation and colony formation. DDIT4 
is overexpressed after activation of RAS oncogene, increasing 
levels of anti-apoptotic proteins and at the same time decreasing 
expression of pro-apoptotic proteins (60, 63).

Several works have described an involvement of DDIT4 in 
the breast cancer biology, while its expression seems to have 
different patterns among breast cancer subtypes. Koo and Jung 
characterized the expression of proteins involved in mTOR and 
hypoxia pathway with staining with immunohistochemistry 
where immunophenotypes of breast cancer were determined 
by the evaluation of estrogen and progesterone receptors 
and HER2 while breast papilloma samples were included as 
controls (64).

In this study, Glut-1 and HIF-1α had higher expression in 
triple-negative breast cancer (TNBC) and HER2 phenotypes 
than in the luminal A and B phenotypes. These findings could be 
explained by the greater hypoxia conditions present in TNBC and 
HER2 tumors. Likewise, Ki-67 expression in TNBC and HER2 
was higher than in other phenotypes or papilloma. Interestingly, 
downregulation of DDIT4 does not lead to a negative feedback 
to HIF-1 α, so the tumorigenesis mediated by HIF-1α is constant. 
Moreover, this study demonstrated that HIF-1α expression was 
associated with reduced disease-free survival (DFS) and reduced 
overall survival (OS), concordant with previous studies (65–67). 
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Concluding that TNBC and HER2 overexpression showed 
the highest cell proliferation and survival in a hypoxic tumor 
environment by activation of the mTOR pathway and HIF-1α 
stabilization via DDIT4 downregulation (64).

DDIT4 participate in an endogenous feedback circuit with 
p53. When cells and tissues of DDIT4−/− mice are exposed to IR 
and chemotherapy treatment, the genetic loss of DDIT4 confers 
an increase in DNA damage-induced apoptosis both in vitro and 
in  vivo, which is associated with elevated levels of p53 protein 
following DNA damage. It was proved that deregulation of p53 is 
not due to increased p53 stabilization or failed DNA repair but, 
instead, to increased p53 translation. Consistent with this, it was 
demonstrated that DDIT4 loss elevates the mTORC1 activity, 
which explains the increased p53 translation and damage sensi-
tivity in DDIT4−/− cells (68).

Under stress conditions mTORC1 is also inhibited by the 
activation of p53 both dependently and independently of 
Sertrin1/2, suggesting the existence of more than one pathway to 
inhibit mTORC1 (69–71). To test this, Cam et al. exposed MEFs 
and in vivo tumor models to drugs that induce DNA damage to 
analyze the upstream regulation of mTORC1 signaling. They 
found that inhibition of mTORC1 signaling to 4EBP1 requires 
the coordinated activity of both p53 and p63; by contrast, the 
inhibition of S6K1 and rpS6 phosphorylation is Akt-dependent. 
Concordant with this, the loss of p53 or p63 prevents the sup-
pression of mTORC1 signaling induced by the DNA damage, 
supporting that both are necessary for the inhibition of mTORC1. 
Suggesting that there are multiples mechanisms that suppress 
p53/p63 responses and at the same time suppress the ability of 
the cancer cell to control mTORC1 (72).

In response to DNA damage, DDIT4 phosphorylates down-
stream Akt through the TSC1/TSC2 complex to inhibit mTORC1 
signaling (73, 74). To investigate the clinical significance of this 
process, Wei et al. analyzed the DDIT4 and p-Akt expression in 
ovary cancer (primary ovarian cancer and borderline tumors) 
and normal fallopian tubes. Both DDIT4 and p-Akt expressions 
were significantly higher in patients with serous ovarian cancer 
and late FIGO stage; while only DDIT4 expression was signifi-
cantly higher in ascites formation and only p-Akt expression was 
significantly histological grade and chemoresistance. Features of 
patients with improved outcomes in terms of DFS and OS were 
low DDIT4 staining or absence of p-Akt. In this work, there was 
no association between KRAS mutations and DDIT4 intensity 
staining, suggesting that KRAS is not involved in the activation 
of DDIT4 (15).

In contrast to the study performed by Koo and Jung, where 
they reported that DDIT4 is downregulated in TNBC and HER2 
overexpression types (64), Pinto et al. found that DDIT4 is asso-
ciated with poor prognosis in TNBC resistant to neoadjuvant 
chemotherapy (17).

All these data presented previously show that DDIT4 has a 
key role in different types of cancer and its aggressiveness. A 
recent in  silico analysis of DDIT4 expression in several cancer 
types showed that the high expression of this gene was related to 
a bad outcome in diverse hematologic and solid tumors, such as 
acute myeloid leukemia, breast cancer, glioblastoma multiforme, 
melanoma, lung, and colon cancer. Furthermore, it was shown 
that response to rapamycin and others mTOR inhibitors were not 
influenced by DDIT4 expression (18).

CONCLUDiNG ReMARKS AND FUTURe 
PeRSPeCTiveS

The increasing evidence about the involvement of DDIT4 in key 
cellular mechanisms of tumor aggressiveness suggests its driver 
role in cancer and consequently, its potential not only as prog-
nostic biomarker but also as a therapeutic target. Since mTOR 
inhibitors have shown disappointing results in the treatment 
of cancer, where the main issues are the lack of a biomarker to 
select patients who will benefit from these drugs and the poor 
knowledge about mechanisms of resistance, a better therapeutic 
strategy would be DDIT4 inhibition. In contrast to mTOR expres-
sion, the high DDIT4 expression is related with a poor outcome. 
We hypothesize DDIT4 targeting could lead to cancer cells to 
avoid the metabolic suppression needed for cell survival under 
stress conditions (e.g., treatment with cytotoxic chemotherapy 
or radiotherapy). Combination of DDIT4 inhibitors with DNA-
damaging agents, such as cisplatin, will be interesting, especially 
in tumors with loss of function of TP53, because wild-type p53 
repress the expression of DDIT4 in a regulatory loop, potentiating 
the effects of DDIT4 inhibitors.
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