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The role of platelets in cancer progression has been well recognized in the field of cancer 
biology. Emerging studies are elaborating further the additional roles and added extent 
that platelets play in promoting tumorigenesis. Platelets release factors that support tumor 
growth and also form heterotypic aggregates with tumor cells, which can provide an 
immune-evasive advantage. Their most critical role may be the inhibition of immune cell 
function that can negatively impact the body’s ability in preventing tumor establishment 
and growth. This review summarizes the importance of platelets in tumor progression, 
therapeutic response, survival, and finally the notion of immunotherapy modulation being 
likely to benefit from the inclusion of platelet inhibitors.
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inTRODUCTiOn

Platelets arise from immune stem cell lineages in the bone marrow that are critically important in 
blood clotting and wound healing (1, 2). They are generated as cell fragments formed by membrane 
bound blebs at the surface of megakaryocytes. Platelets actively participate in the hemostasis, 
wounding, and immune processes required for normal functioning of the body (1, 2). In instances 
where the homeostasis is deregulated or dysfunctional, platelet functions can become aberrant. At 
times, even the thrombi formed for the resolution of the wounds may cause thromboembolic com-
plications (3). Cancer is one such disease that can disrupt the normal functioning and production of 
platelets which in part is contributed by the pro-carcinogenic inflammatory milieu. There has been 
a long-standing link between cancers, thromboembolism, and thrombocytosis (4–6). Abnormalities 
in the number of platelets are most commonly observed in several cancers: colorectal, ovarian, and 
breast being some of them. Colorectal cancer (CRC) is one such type that is frequently associated 
with thrombocytosis with significant correlations for worse overall survival and recurrence rates (5, 
7, 8). High platelet counts in these patients also correlated with tumor invasiveness, metastasis, and 
worse survival outcomes (9–13).

It appears that platelets not only increase in numbers and get activated with cancer progression 
but also return to their normal levels and functional state following cancer therapy. These features 
of platelets can be tested in a relatively inexpensive and non-invasive manner using routine blood 
profiles and may serve as prognostic and diagnostic biomarkers of cancer. As a patient’s disease 
progresses through the advanced stages of CRC, they can exhibit an increase in platelet activation 
with increased platelet factors and surface markers of activation (14–18). There are also reports 
showing that anticancer therapy could induce changes in the activation of platelets, their function, 
as well as their morphology (19). In the case of ovarian cancer, platelets were shown to increase the 
growth of cancer cells in vitro and in vivo animal models of cancer. Platelet alterations and thrombo-
genesis were seen in ovarian cancer patients (20–25). Mechanistically, IL6 production by an ovarian 
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there are many opportunities to engage in multiple aspects of 
tumor formation. In particular, it has long been known that plate-
lets provide the bulk of the serum factors that promote cell growth, 
which is routinely used in culturing cells (1, 57–59). Platelet release 
reactions factors not only provide growth factors but also metal-
loproteinases involved in tissue reorganization (60–62) and have 
found clinical use in platelet-rich plasma therapy (60, 63–66).

PLATeLeTS AnD CiRCULATinG TUMOR 
CeLLS (CTCs)

Once within the blood stream, tumor cells that enter the circula-
tion are known as CTCs. These cells can become clinically evident 
when an established tumor starts to shed off cells from its bulk, 
or by other means such as sloughing, or even by active entry 
(intravasation) of cancer cells into abnormal tumor blood vessels 
(67–71). These are immediately sensed by the large number of 
platelets in the circulation and perivascular microenvironment 
(72–76). The cross talk between platelets and tumor cells leads 
to the rewiring of platelets as they become tumor-educated  
platelets. This interaction can result in the formation of heterotypic 
aggregates along with the release of growth promoting factors and 
the entrapment of the tumor cells with platelet aggregates in the 
microvasculature (1, 2). Platelets also have an active cytoskeleton 
enabling their unrestricted movements (77–79). In addition, 
properties such as the lack of a nucleus, discoid shape, and small 
size are ideal for platelets to migrate into extravascular tissues 
easily supporting the invasion of CTCs and their metastasis (1, 
24, 80–84). There is also evidence of platelets shielding the CTCs 
and protecting them from immune surveillance and elimination 
(85). The selective survival advantages that tumor cells gain from 
interacting with platelets enables them to withstand or evade 
immune attacks, take advantage of enhanced access to platelet 
released-growth factors. These interactions also benefit from 
relatively easy passage of platelets that invade unencumbered by 
a cell nucleus as they migrate into surrounding tissues due to their 
small size and active cytoskeleton. Then once in the perivascular 
spaces, factors released by platelets stimulates tumor cells to 
home, extravasate, and metastasize. Accordingly, a high prob-
ability exists that targeting or suppressing these tumor cell and 
platelet interactions would yield beneficial results. As one might 
expect, inhibiting this interaction of tumor cells with platelets was 
shown to hinder tumor cell survival, growth, and metastasis in 
experimental cancer models and had significance in clinical trials 
(86–94).

TYROSine KinASe inHiBiTORS AnD THe 
PLATeLeT COnneCTiOn

The release of alpha granules leads to local increases in multiple 
growth factors and tyrosine kinase receptor activating molecules. 
Among the growth stimulating and vascular permeability regu-
lating molecules like platelet-derived growth factor (PDGF) that 
are inhibited by a number of tyrosine kinase receptor inhibitors 
and may be influenced by targeted therapy [(95, 96); Table  1]. 

tumor can stimulate thrombopoietin production in the liver that 
elevates platelet production in the bone marrow (24). Platelets 
from ovarian cancer patients may also carry pro-coagulatory 
signatures based on their lipid profiles (26). The role of platelets 
in reducing cell death and enabling metastasis was also shown 
by activating YAP1 signaling in ovarian cancer (27). Similarly, 
many other reports show an active involvement of platelets in 
tumorigenesis and metastasis (28–32).

PLATeLeT ACTivATiOn AnD PLATeLeT 
COUnTS in CAnCeR

Reactive platelets can recruit more platelets to form platelet 
aggregates and can also engage in heterotypic aggregates with 
leukocytes (33). Platelets upon activation release granules and 
extracellular vesicles that are rich in proteins, mRNA, miRNA, 
and lipids. These loaded particles can be involved in the transfer 
of receptors to the surface of other cells, including but not limited 
to lymphocytes, macrophages, and tumor cells by membrane 
fusions, and can also induce gene expression changes in the target 
cells by activating transcription factors (34–37). The transfer of 
cargo is not always unidirectional, as platelets that are in the vicin-
ity of the tumor site can also take up RNA and other molecules 
from the tumor. The platelets that have undergone modifications 
after interacting with the tumor are termed as tumor-educated 
platelets (TEP). Recently, these TEPs have been explored for 
their significance and in extracting tumor-specific information 
(38). The reliability of using platelets to detect normal vs. tumor-
educated platelet, along with the possible prediction of primary 
tumor location, all based on the platelet gene expression profiles 
has been successfully shown (39–42). The apparent benefits of 
such analyses involving platelet isolation could be diverse. The key 
feature of such tests is the ease of platelet isolation. Non-invasive 
blood-based liquid biopsies could be advantageous in early detec-
tion and screening of cancer. The importance of increased mean 
platelet volume, platelet counts, size, and platelet to lymphocyte 
ratio indexes in individuals has already been well recognized in 
predicting poor outcomes as well as in predicting association in 
diabetes, cerebral, and cardiovascular events (43–48). The same 
indices also may be predictive regarding cancer prognosis, treat-
ment response outcomes, and overall survival analysis (49–55). 
An elevated platelet distribution width-to-platelet count ratio 
was shown to significantly reduce disease free survival in patients 
with breast carcinoma (52). As blood draw procedures are already 
in place and routinely used in cancer studies in a prospective or 
a retrospective fashion, the added benefit of achieving platelet-
related tumor-specific signature as described by Best et al., and 
the treatment outcomes could become a standard for cancer 
screening and diagnosis (38–40, 56).

PLATeLeTS, SeRUM GROwTH FACTORS, 
AnD PLATeLeT-RiCH PLASMA THeRAPY

Normal platelets in circulation range in number between 150,000 
and 400,000/μl. Based on sheer numbers and biologic properties 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


TABLe 1 | Platelet targeted therapeutics.

Panel inhibitor type inhibitor Target pathway

A vonWillebrand GPIa/IIa Hookworm secretion Surface receptor

Collagen GPVI Revacept Surface receptor

Focal adhesion kinase GSK2256098, PF-562271, Defactinib, PF-573228, Y15  
and Y11, CEP37440

Kinase pathway

B GPIIb/IIIa Abciximab, eptifibatide, tirofiban, XV454, heparins Surface receptor

Vitronectin αv/β3 SB-273005, SC-68448, vitaxin Surface receptor

C P-Selectin Rivipansel, crizanlizumab, heparins Surface receptor

CLEC-2 2CP, Mabs Surface receptor

ROCK Y27632 Signal transduction

Myosin II Blebbistatin Signal transduction

PAR 1 and PAR 4 Voraxopar, SCH 79797, RWJ56110 Gq-protein-coupled receptor

D PDGFR Imatinib, sorafenib, sunitinib, nilotinib, dasatinib, axitinib, 
cediranib, regorafinib, pazopanib, midosotaurin

Tyrosine kinase receptor pathway

VEGFR Bevecizimab, aflibercept, ramucirumab, sunitinib, lenvatinib, 
vandetanib, sorafinib, pazopanib HCL, axaitinib, regroafinib, 
cabozantinib

Tyrosine kinase receptor pathway

FcgammaRIIa Ranibizumab or bevacizuma Tyrosine kinase receptor pathway

E ADP receptor, P2Y1 A2P5P, MRS2179, A3P5P, MRS2500 Gαq-protein-coupled receptor

ADP receptor, P2Y12 Clopidogrel, ticlopidine, prasugrel, ticagrelor, cangrelor,  
elinogrel

Gi-protein-coupled Receptor

F Serotonin receptor 5HT2AR ADP-791, naftidrofuryl, sarpogrelate, AT-1015 Gαq-protein-coupled receptor

G Thromboxane A2 (TxA2) receptor α or β Terutroban, daltroban, picotamide, sulotroban, CAY10535, 
ifetroban, SQ 29,548, BM 567, pinane TxA2

G12/13-protein-coupled receptor

Thromboxane A2 Synthase OKY-046, ridogrel TxA2 synthesis enzyme

Cyclooxygenase 1 (COX-1) Aspirin, ASP6537, SC560, FR122047, mofezolac, 
fluorofuranones

Prostaglandin H2 synthesis 
enzyme (substrate for all PG 
synthesis)

H Prostaglandin E2 (PGE2) receptor EP3 DG-041 Gαq-protein-coupled receptor

12-Hydroxyeicosa tetraenoic acid (12-HETE) 
Receptor, GPR31

ML355, NCTT-956 G-protein-coupled receptor

I Prostacyclin (PGI2) receptor PGI2 agonist endogenous platelet inhibitor, iloprost,  
treprostinil, selexipag

Gαs-protein-coupled receptor

Phosphodiesterase (PDE) PDE3 and PDE5 Cilostazol, dipyridamole, sildenafil Phosphodiesterase enzyme 
inhibitor

This table summarizes the platelet-related targets, inhibitors, and pathway targets dipicted in Figure 1.
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Likewise, vascular endothelial growth factor (VEGF) receptors 
and their inhibitors can be influenced by inhibitors that involve 
platelet  alpha granule releasates (97–99). These factors affect 
endothelial cells, pericytes, lymphocytes, and tumor cells. They 
influence vascular permeability, angiogenesis, inflammation, 
and immune responsiveness. In addition to use in chemotherapy 
(95–99), there is renewed interest in these PDGFR and VEGFR 
targeted compounds in combination with checkpoint block-
ade inhibitors (100). Similarly, other immunoreceptor-based 
therapies can have a direct effect on FcgammaRIIa tyrosine kinase 
receptors in platelets. For example, BCR-ABL inhibitor ponatinib 
inhibits platelet immunoreceptor tyrosine-based activation motif 
(ITAM) signaling under shear which includes platelet activation 
and aggregate formation (101, 102). Overall, TKIs could poten-
tially be reconsidered in the context of platelet function during 
immunotherapy.

PLATeLeT MeTABOLiSM TARGeTeD 
nOn-STeROiDAL AnTi-inFLAMMATORY 
DRUG (nSAiD) USe in CAnCeR

Given the importance of platelets in almost all aspects and 
stages of cancer progression, Table 1 highlights platelet inhibi-
tion pathways. The inhibition of platelets is receiving renewed 
attention as a target. Interest in inhibiting platelets heightens 
in the case of cancers where the disease risk increases with 
chronic inflammation. There have been a number of clinical 
trials addressing the role of platelets in cancer patients. The 
most commonly used drugs to target platelets are the NSAIDs. 
NSAIDs such as aspirin, rofecoxib, sulindac, and celecoxib are 
effective in reducing cancer but have potential cardiovascular 
risks (103–106). One of the most heavily used drug on the mar-
ket is aspirin, it irreversibly acetylates platelet cyclooxygenase 1 
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(COX-1), which is the rate limiting NSAID eicosanoid metabolic 
target found in platelets (Figure  1). By contrast, aspirin less  
selectively inhibits cyclooxygenase 2 (COX-2), expression, which 
is commonly upregulated in cancer (107). Despite gastrointestinal 
side effects that may be heightened in patients with preexisting 
gastric lesions, aspirin has been used in prevention studies as well 
as in experimental models of cancer to inhibit cancer cell growth, 

platelet-tumor cell interactions, heterotypic aggregate formation, 
platelet facilitated tumor cell invasion, and metastasis (108–113). 
In general, the risk/benefit of using aspirin is favorable over a 
given lifetime (114). Moreover, aspirin has also been used in 
combination therapies. In one study, breast cancer patients were 
given aspirin along with tamoxifen therapy, while in another 
study they were given aspirin along with clopidogrel in an effort 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


FiGURe 1 | Platelet targeted therapeutics. The platelet plasma membrane displays multiple receptors that can interact with agonists, antagonists, matrix proteins, 
collagen, other platelets, endothelial cells, immune cells, and tumor cells. (A) Platelets adhere to the damaged vascular endothelium via GPIb-IX-V complex to von 
Willebrand factor (vWF) and via GPVI and GPIa/IIa (α2β1) to collagen. (B) Focal adhesion kinase (FAK) helps mediate GPVI binding to collagen among other 
integrin-mediated interactions. FAK inhibitors could also potentially inhibit GPIIb/IIIa (αIIbβ3) interactions that stimulate calcium and integrin-binding protein 1 (CIB-1) or 
paxillin that is linked to Rho guanine nucleotide exchange factor (Rho-GEF) signaling. Alternatively, FAK inhibition may also alter actin-related protein 2/3 complex 
interactions during actin polymerization and shape change. Direct inhibition of GPIIb/IIIa interactions with fibrinogen or fibronectin during platelet aggregation can be 
disrupted by receptor antagonists. Similarly, direct inhibition of avb3 interactions with vitronectin can also be inhibited. (C) Thrombin Gq-protein-coupled receptors 
involved in platelet activation are protease-activated receptors (PAR) 1 and 4. PARs are stimulated by tumor cell tissue factor-factor VII-factor X complex. Thrombin 
stimulation of PAR 1 acts through the Rho-GEF pathway while PAR4 Gq activation occurs through beta arrestin-2. Signal transduction targets include Rho-
associated kinase (ROCK) or the cytoskeletal protein myosin II. Tumor cell podoplanin interacts with platelet C-type lectin domain family 2 (CLEC-2) that transduce 
signals through spleen tyrosine kinase (Syk) and phospholipase C gamma2 (PLCγ2). Tumor cell mucins and other carbohydrate moieties interact with P-selectin are 
also targets. These P-selectin targets include interactions with lymphocyte L-selectins or endothelial cell E-selectins. (D) The release of alpha granules leads to 
localized increases in growth factors such as platelet-derived growth factors (PDGFs) and vascular endothelial cell growth factor (VEGF) and tyrosine kinase receptor 
stimulating molecules such as fc receptor stimulating molecules FcgammaRIIa. (e) The activation of platelets by ADP (adenosine diphosphate) released from dense 
granules mainly involves P2Y1 or P2Y12 receptors. P2Y1 signals through Gag-protein-coupled receptors that stimulate PLCγ followed by phosphatidylinositol 
4,5-bisphosphate (PIP2) and inositol trisphosphate 3 (IP3) that stimulates its receptor embedded in the endoplasmic reticulum (ER), which causes calcium ion release 
(Ca2+). Alternately, diacylglycerol (DAG) interacts with protein kinase C (PKC). These interactions impinge upon DAG-regulated guanine nucleotide exchange factor I 
(CalDAG-GEFI)-Ras-related protein 1 (Rap1) releasing Rap1-GTP-interacting adaptor molecule (RIAM) leading to actin changes. (F) Serotonin (5-hydroxytryptamine) 
is also released from dense granules that act through 5-hydroxytryptamine receptors (5HT2AR) that activate the Gaq pathway and Ca2+ release. (G) An important 
antiplatelet agent is aspirin that is well known to prevent cancer progression. Aspirin irreversibly acetylates cyclooxygenase 1 (COX-1) eliminating all prostaglandin 
(PG) synthesis. COX-1 enzymatically adds two oxygens to arachidonic acid to produce PGG2 and then PGH2, which is converted to various PGs by synthase 
enzymes. Key platelet PGs are the potent pro-aggregatory agent thromboxane (TX)A2 synthesized by TXA2 synthase. (H) Also, PGE2 synthesized by PGE2 synthase. 
TXA2 and PGE2 cause different platelet responses by stimulating various isoforms of G-protein-coupled TP or EP receptors. TP signals through G12/13 and Rho-GEF 
followed by Rho-associated kinase (ROCK), LIM domain kinase (LIMK), and cofilin and subsequent interactions with actin. Additional interactions include those with 
myosin light chain kinase followed by myosin. Similarly, EP3 receptors stimulate the same signal transduction pathways as Gaq-calcium release linked receptors.  
(i) An important Gas-protein-coupled receptor is the IP for prostacyclin (PGI2) that prevents aggregation by stimulating cyclic adenosine monophosphate (cAMP) 
production by adenylate cyclase (AC) and is influenced by phosphodiesterase 3 or 5 activity. Another abundant eicosanoid produced from arachidonic acid by 
platelets is 12(S)-HETE [12(S)-hydroxyeicosatetraenoic acid] via the activity of the platelet-type lipoxygenase (p12-LOX). Recently, 12-(S)HETE is proposed to 
activate orphan receptor GPR31.
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to reduce the release of platelet proteins and the number of CTCs, 
respectively. Though the impact of platelet inhibition on CTC 
did not correlate with the platelet inhibition, aspirin therapy was 
favorable in reducing the release of platelet-angiogenic proteins 
(94, 115). Another phase II trial with metastatic cancer patients 
reported that aspirin treatment significantly reduced CTC num-
bers in metastatic CRC but did not have significance in metastatic 
breast cancer (116).

Epidemiological evidence also suggests that aspirin (and other 
NSAIDs) alone or in combination is beneficial in chemo preven-
tion. In one such study, molecular pathological analyses con-
ducted on 964 CRC patients suggested that the PIK3CA mutation 
in CRC may be used as a biomarker in identifying patients that 
could potentially receive aspirin as adjuvant therapy (117). The 
study provided association between mutated PIK3CA and longer 
survival in patients who received aspirin after cancer diagnosis. 
This association was lost in patients with wild-type protein (117). 
In other secondary epidemiological analyses, evidence from 
cardiovascular disease prevention studies suggests that aspirin 
therapy reduces CRC incidence and even mortality after 10 years 
of use (118–121). Several reports from literature also support 
that aspirin (and other NSAIDs) has proven to be effective in 
experimental models of cancer as well as in patient studies related 
to colorectal, breast, and ovarian cancers (94, 110–112, 115, 
121–129). However, aspirin gastrointestinal toxicity potentially 
limits its use as a chemopreventive. To balance the risk versus the 
benefit of administering chemopreventive interventions such as 
aspirin, the US Preventive Services Task Force has made recom-
mendations based on clinical evidence (130). The recommenda-
tions are directed toward primary prevention of cardiovascular 
disease and CRC in adults aged 50–59 years of age, particularly 

those at high risk for disease with the exception of individuals 
who are at increased risk of bleeding (130, 131). The benefits of 
cancer prevention with NSAID use to directly or indirectly target 
platelets and their activation can offer better outcomes in patients 
who are at risk of developing cancer.

PLATeLeTS AnD iMMUne MODULATiOn

Among other functions, platelets contribute centrally to immune 
regulation. They interact with immune cells and participate in the 
innate and adaptive immune functions (132–136). Platelets initi-
ate or modulate immune cell and wound sterilization responses 
along with vesicle-mediated transfer of surface proteins onto the 
immune cells in conjunction with stimulation (137, 138). Platelets 
also have high amounts of transforming growth factor-β (TGFβ), 
which is perceived as an immunosuppressive factor modulat-
ing T regulatory cell homeostasis (139, 140). Blocking TGF β1 
receptor was shown to be beneficial in preventing ovarian cancer 
progression by the platelet-derived TGF β1 (141). Functional 
impairment of normal recognition and elimination pathways 
fosters development of a pro-tumorigenic microenvironment. 
Tumor immune surveillance and tumor cell-platelet cross talk 
may thwart immune cell recognition or recruitment of effector 
immune cells to tumors. The most intriguing reports show that 
platelets can directly suppress the immune cells that target or 
eliminate cancer cells. In one study, platelets inhibited and sup-
pressed the function of CD8 as well as CD4 T cells mediated via 
TGFβ and lactate (55). In other studies, platelets were shown to 
protect tumor cells from natural killer (NK) cell cytotoxic activity 
by shielding them or by the transfer of MHC I onto the surface 
of tumor cells (142, 143). The importance of platelets becomes 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


6

Kanikarla-Marie et al. Platelets Inhibition Could Enhance Immunotherapy

Frontiers in Oncology | www.frontiersin.org April 2018 | Volume 8 | Article 107

evident with respect to tumor immunity as platelets can not only 
modify immune cell responses and result in the silencing of the 
tumor targeted immunity but also modulate tumor cells by envel-
oping them or by conferring them a pseudonormal phenotype so 
they can go undetected under immune surveillance.

Among the many roles that platelets play in enriching the 
microenvironment for tumor cell survival, perhaps the most 
challenging to target may be the reversion of suppression on 
CD8+ T cells as platelets have been reported to inhibit CD8 T cell 
function (55). The CD8+ T cells have clinical relevance as their 
main function is to kill cancer cells and are predominant effectors 
in cancer immunotherapy (144). In CRC patients, the absence 
of activated CD8+ T  cells within the tumor and tumor stroma 
predicted disease recurrence within 5 years, whereas for patients 
who do show presence of these T cells, predicts a long disease free 
survival (145). The predictive value of the T cell presence in the 
tumor has gained more importance in treatment response (146). 
If having platelets, especially those that have been educated by the 
tumor, within the tumor as well as in the microenvironment could 
potentially interfere with the T cell functioning, then targeting 
these tumor cell educated platelets could be a key consideration 
in managing cancer immunotherapy.

Another important factor in cancer immunotherapy is the 
expression of programmed death-ligand 1 (PD-L1) on the tumor 
cells. It is of significance as it interacts with and inhibits the cyto-
toxic CD8+ T cells by engaging with their surface programmed 
cell death 1 (PD-1) receptor (147, 148). PD-L1 therefore, is an 
indicative marker of immune suppression and is an important 
target in cancer immuno-oncology field. Recently, it was shown 
that PD-L1 expressed on non-tumor cells can also have an 
inhibitory effect on the cytotoxic CD8+ T cell responses against 
the tumor (149). Immune checkpoint inhibitors that inhibit 
the interaction of PD-L1 with immune cells has been widely 
used in clinical trials to relieve the immune cells of this tumor 
suppression (150–158). Therapy with this strategy alone using 
PD-L1 blocking antibodies showed a mixed response within the 
patient populations leading to the development of vaccines and 
T cell stimulatory molecules, or drug combinations along with 
PD-L1 inhibitors to improve the efficacy of immunotherapy by 
targeting more pathways that lead to tumor cell death and growth 
suppression (159–165). Several factors such as differential PD-L1 
expression on tumors, negligible presence of tumor infiltrating 
lymphocytes, presence of other inhibiting marks on the immune 
cells, and other host factors could be contributing to the failure 
of response to anti-PD1/PD-L1 monotherapy. Moreover, the 
persistence of PD-L1 expression or the PD-L1 positive CTCs 
after anti-PD-L1 therapy in non-small cell lung cancer (NSCLC) 
patients correlated with progressive disease, suggestive of an 
escape mechanism to check point therapy (166). There could 
be some connection between unresponsive CTCs and platelet  
numbers in circulation as escape mechanisms for CTCs from 
immune surveillance could be achieved by being entrapped within 
platelet aggregates, or by expressing platelet proteins on their 
surface and masking themselves. Support for this notion comes 
from a study showing that patients who had higher platelet counts 
showed poorer response to PD-L1 therapy. The study showed 
that elevated platelet to lymphocyte ratio before treatment was 

associated with shorter overall survival and progression free sur-
vival in metastatic NSCLC patients who underwent nivolumab 
therapy (167). In light of these findings, the inhibition of platelets 
to boost or sustain immunotherapy responses is a highly viable 
option. Targeting platelets was shown to enhance adoptive T cell 
cancer therapy suggesting that platelet inhibition could lead to 
more durable immunotherapy responses. Genetically modified 
mice with dysfunctional platelets were used to model adoptive 
T cell therapy responses to demonstrate that platelets are restric-
tive to T  cell mediated cancer immunotherapy and inhibiting 
platelet function could help improve immunotherapy response 
with active T cells (55).

COnneCTinG nSAiDs AnD CHeCKPOinT 
BLOCKADe

Interesting observations recently showed a positive correlation 
between COX-2 and PD-L1 responses in cancer cells (128). 
The upregulation of PD-L1 expression in tumor-infiltrating 
myeloid cells was also shown to be driven by COX-2 pathway 
(168). One of the major upstream targets of PD-L1 expression is 
hence presumed to be COX-2. COX-2 inhibition can therefore 
be explored to enhance the effect of immunotherapy. In other 
studies, COX-2 inhibition was used as an immunotherapy-
enhancing tool. NSAID celecoxib, a COX-2 inhibitor, was 
shown to enhance the proliferation of NK T cells derived from 
laryngeal cancer patients (169). The inhibition of COX-2 was 
also shown to negatively impact immune evasion of tumor cells, 
as its inhibition was shown to synergize with PD-L1 blockade 
suggesting that COX inhibitors could be used in combination 
with immunotherapy (170). Other preclinical studies have also 
reported similarly that inhibiting cyclooxygenase pathway can 
have a synergistic effect with PD-L1 inhibitors (128). Aspirin 
and other NSAIDs that selectively target platelets, COX-2, or 
both could potentially be used as adjuvants with immuno-
therapy to impact the aberrant platelet driven or cyclooxygenase 
driven anti-immune tumor responses. Tumor heterogeneity 
and molecular subtypes, surface markers, microenvironment 
as well as chronic inflammation and other risk factors may 
sub-stratify patients for adjuvant treatment. In the case of CRC, 
these factors may segregate patients not only based on the type 
subtype but also by the kind of response they might show to 
therapy (171, 172). Microsatellite instability high status in CRC 
can also influence checkpoint blockade responses. For example, 
nivolumab provided durable responses and disease control in 
pretreated patients with dMMR/MSI-H metastatic CRC and 
could potentially be a new treatment option for these patients. 
Since inflammation is often associated with platelet activity 
these patients may also benefit from NSAID use (134). In order 
to understand which patient is most likely to benefit from a 
therapy or a combination of drugs, data from larger clinical trials 
and longer patient follow up is needed. Finally, aspirin or other 
NSAIDs recommendations to a patient will depend on their 
tumor consensus molecular profiling, platelet counts, along with 
their risks in developing adverse events. However, the available 
data from clinical trials suggests that the benefits of long-term 
aspirin use outweigh the risks in most cases.
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appears to be a reasonable therapeutic strategy.
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