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Oncoviruses are implicated in around 20% of all human cancers including both solid 
and non-solid malignancies. Epstein–Barr virus (EBV) and human papillomaviruses 
(HPVs) are the most common oncoviruses worldwide. Currently, it is well established 
that onco-proteins of EBV (LMP1, LMP2A, and EBNA1) and high-risk HPVs (E5 and 
E6/E7) play an important role in the initiation and/or progression of several human 
carcinomas, including cervical, oral, and breast. More significantly, it has been recently 
pointed out that viral onco-proteins of EBV and high-risk HPVs can be co-present and 
consequently cooperate to initiate and/or amplify epithelial–mesenchymal transition 
(EMT), which is the hallmark of cancer progression and metastasis. This could occur by 
β-catenin, JAK/STAT/SRC, PI3k/Akt/mTOR, and/or RAS/MEK/ERK signaling pathways, 
which onco-proteins of EBV and HPVs share. This review presents the most recent 
advances related to EBV and high-risk HPVs onco-proteins interactions and their roles in 
the progression of human carcinomas especially oral and breast via the initiation of EMT.

Keywords: epstein–Barr virus, high-risk human papillomaviruses, onco-proteins, epithelial–mesenchymal 
transition, cancer progression

iNTRODUCTiON

Today, it is well-established that lifestyle, gene alteration in addition to infections from microorgan-
isms are important risk factors for human oncogenesis. Accordingly, it was revealed that more than 
50% of malignancy cases are associated with preventable origins, including oncoviruses infections 
(1). Globally, cancer cases associated with infections is around 20%; as roughly, two million of new 
malignancies reported in humans are linked with pathogens; among them 1.6 million occur in devel-
oping countries. More than two-thirds of malignancy cases are associated with well-characterized 
oncogenic viruses, including Epstein–Barr virus (EBV) and human papillomaviruses (HPVs) (2, 3).

Carcinogenic properties of oncoviruses are determined based on their capability to provoke 
cellular transformation and consequently tumor development; an effect that is attributed to genetic 
deregulation of infected cells leading to alteration of their normal functions. For instance, it is well-
established that EBV and high-risk HPVs onco-proteins can take over intracellular and extracellular 
signaling pathways, provoke genomic instability, increase the life-span of infected cells (by inhibiting 
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apoptosis), and destabilize cell senescence process, resulting in 
uncontrolled cell proliferation (3). These elements are important 
biological features of carcinogenesis (4), which can be provoked 
following infection by oncoviruses, including EBV and high-risk 
HPVs.

On the other hand, it has been established that the epithelial– 
mesenchymal transition (EMT) event is an important physi-
ological procedure in the development of metastatic cancer (5). 
Likewise, it has been pointed out that onco-proteins of EBV 
(LMP1, LMP2A, and EBNA1) and high-risk HPVs (E5 and E6/
E7), can enhance cancer progression of human carcinomas via 
the initiation of EMT (6, 7). Meanwhile, it is important to high-
light that EBV and high-risk HPVs can be co-present in certain 
types of human malignancies especially oral and breast cancer  
(8, 9); consequently, onco-proteins of these viruses can cooperate 
to increase invasive ability of such cancers via the “amplification” 
of EMT. This review consolidates the existing evidence on puta-
tive effects of the co-presence of EBV and high-risk HPVs and 
their association with EMT and human carcinomas, especially 
oral and breast, in order to explain the conceptual framework for 
the impact of co-viral infection in cancer progression.

eBv AND eMT iN HUMAN CARCiNOMAS

Epstein–Barr virus is a very common human gammaherpesvirus, 
as roughly more than 90% of the adult population is infected by 
this virus at one point of their life (10). Acute infection with 
EBV can cause infectious mononucleosis (glandular fever), and 
its latent state can evolve to yield several B-cell lymphomas, oral 
cancers (especially nasopharyngeal carcinomas: NPC), gastric 
cancer, and other malignancies (11, 12). EBV-infected cells 
express six EBV nuclear antigens (EBNA1, -2, -3A, -3B, -3C,  
and -LP) in addition to three latent membrane proteins (LMP1, 
-2A, and -2B), and multiple non-coding RNAs (EBERs and 
miRNAs) (13–15).

The expression patterns of these genes define the types of 
cancers correlated with EBV (11, 12). For example, type II latency 
which is associated with LMP1, -2A, and EBNA1 gene expressions 
is linked with Hodgkin’s lymphoma and nasopharyngeal as well as 
other carcinomas, including gastric and probably breast (16–18). 
Thus, LMP1 is regarded as the main EBV-encoded oncogenic 
protein as it induces a multitude of effects promoting cell growth, 
protecting cells from apoptosis, enhancing cell motility, and 
stimulating angiogenesis; additionally, it is frequently expressed 
in EBV-associated human oral carcinomas (18, 19). Several recent 
studies including two from our lab revealed that EBV is present in 
around 40% of human breast cancer samples and its presence is 
associated with more aggressive phenotypes (9, 20–26).

Regarding the interaction between EBV onco-proteins and 
EMT, it has been revealed that LMP1 can trigger multiple signal-
ing pathways, including NF-κB, PI3K/Akt, and MAPK, all of 
which are actively involved in the induction of EMT (7, 27, 28). 
Accumulating evidence has shown that LMP1 can downregulate 
E-cadherin expression (27, 29) by inducing a transcriptional 
repression complex composed of DNA methyltransferase and 
histone deacetylase, which is located on the E-cadherin gene 
promoter (CDH1 gene). LMP1 can also stimulate the exchange 

from E-cadherin to N-cadherin; and enhance the association of 
β-catenin with N-cadherin (30). Furthermore, LMP1 stimulates 
the expression of metalloproteinase 9 and regulates the transcrip-
tion factors TWIST, SNAIL, and β-catenin (28, 31, 32).

On the other hand, LMP2A is another onco-protein of EBV 
and is overexpressed in the vast majority of EBV-associated 
carcinomas, especially NPC (33). It has been shown that LMP2A 
augments the invasive/migratory ability and incites changes in 
EMT-like cellular biomarkers (34); additionally, the same authors 
pointed out that LMP2A can induce EMT initiation by activat-
ing the 4EBP1–eIF4E axis thereby enhancing the expression of 
metastatic tumor antigen-1 by targeting the rapamycin (mTOR) 
pathway.

EBNA-1 onco-protein of EBV has a multifunctional role as a 
virus-related protein. EBNA-1 is overexpressed in NPC, inducing 
higher invasion and metastatic ability, as well as influencing EMT 
biomarkers (35, 36); EBNA1 regulates EMT through the de-
regulation of SLUG, SNAIL, TCF8/ZEB1, vimentin, occludins-1, 
as well as E-cadherin, which are important genes associated with 
EMT (36).

Finally, it is important to underline that miRNAs, as post-
transcriptional regulators, are integrated into the EBV-regulated 
EMT program and consequently cancer progression (7, 37). 
So far, a total of 25 EBV miRNA precursors with 44 mature 
miRNAs have been classified and mapped to the BHRF1 and 
BART regions (4 and 40 miRNAs, respectively) of the EBV 
DNA (38). miR-BART9 is overexpressed in NPC and has been 
found to stimulate its metastatic ability by targeting E-cadherin 
and inducing a mesenchymal phenotype and biomarkers (39). 
Recently, it has been reported that targeting PTEN 3′UTR, miR-
BART7-3p downregulates epithelial biomarkers, and persuades 
mesenchymal features via PI3K/Akt/GSK-3 signaling pathways; 
this can lead to a high expression and nuclear accumulation of 
Snail and β-catenin in NPC and associates positively with lymph 
node metastasis (40).

Aga et al. (41) reported that treatment of EBV-negative cells 
with LMP1-exosomes increases migration and invasiveness of 
NP cell lines, which correlates with phenotypes associated with 
EMT. He et  al. (42) pointed out that miR-BART6-3p, which is 
an EBV-encoded microRNA, inhibits EBV-associated cancer 
cell migration and invasion of NPC and gastric cancer cells by 
reversing the EMT event. On the other hand, a recent investiga-
tion by Zuo et al. (43) revealed that cadherin 6 is upregulated in 
LMP1-positive NPC tissues, which is identified as a target of the 
epithelium-specific miR-203. While, cadherin 6 activation in turn 
can induce EMT and promote metastasis in NPC. Moreover, it 
has been recently indicated that the most abundant miRNAs of 
EBV, in gastric cancer, are Bart4, Bart11, Bart2, Bart6, Bart9, and 
Bart18. Among them, Bart9 displays the same sequence as hsa 
miR-200a and miR-141; while, BART9 knockdown can enhance 
E-cadherin expression in EBV-positive gastric cancer cells (44). 
Taken together it implicates EBV infection in EMT initiation and 
consequently cancer progression, especially oral, via its onco-
proteins and non-coding RNAs; however, we believe that more 
investigations are necessary to understand the role of all EBV 
onco-proteins and miRNA in the initiation of EMT in human 
carcinomas, especially breast.

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


3

Cyprian et al. EBV/HPVs Interaction and EMT in Human Carcinomas

Frontiers in Oncology | www.frontiersin.org May 2018 | Volume 8 | Article 111

HiGH-RiSK HPvs AND eMT iN HUMAN 
MALiGNANCieS

HPVs are small, double-stranded DNA viruses that mostly infect 
cutaneous and mucosal epithelial tissues of the anogenital tract. 
Over 150 different types of HPV have been identified so far, 
one-third of which infect epithelial cells in the genital area (6). 
HPVs are classified as high or low risk, where high-risk types 
are linked with cancer development, while low-risk types are 
generally self-limiting and do not cause cancer. In contrast, 
infections with high-risk HPVs (type 16, 18, 31, 33, 35, 39, 45, 
51, 52, 55, 56, 58, 59, 68, 73, 82, and 83) are correlated mainly 
with cervical cancers, as approximately 96% of these malignan-
cies are positive for high-risk HPVs (45–49). More specifically, 
high-risk HPV early proteins, or onco-proteins, including the E5, 
E6, and E7 increase cellular alterations that can possibly lead to 
HPV-induced carcinogenesis (6, 50, 51). In this regard, earlier 
studies demonstrated that the E5 onco-protein could affect cel-
lular transformation and consequently lead to carcinogenesis via 
its interaction with EGF-R1 signaling pathways (MAP kinase and 
PI3K/Akt) and pro-apoptotic proteins (52–54).

E6 and E7 of high-risk HPVs are assumed to work together, 
as they are both expressed from bicistronic mRNA (55) and initi-
ated from the viral early promoter (p97). E6 and E7 both have 
functions that affect cell cycle progression due to their associa-
tion with cell cycle controllers (50, 56, 57).

The viral E7 onco-protein causes an unscheduled S-phase 
entry which is complemented by the role of E6 that prevents 
the induction of apoptosis (58). Alternatively, it has been shown 
that the interaction of E6 with p53 leads to the inactivation of 
p53-mediated growth suppression and/or apoptosis (59). Also, 
E6 can associate with other pro-apoptotic proteins, including Bak 
and Bax (60–62). Nevertheless, the E6 onco-protein of high-risk 
HPVs can enhance cell proliferation independently of E7 through 
its C-terminal PDZ-ligand domain (63), which mediates supra-
basal cell proliferation (64, 65) and may lead to cancer progres-
sion by disrupting normal cell–cell adhesion. On the other hand, 
several investigations have documented the correlation between 
E7 with members of the pocket protein family, such as pRb. This 
connection prevents S-phase entry by displacing E2F family of 
transcription factors (56), irrespective of the presence of external 
growth factors, causing the expression of DNA replication pro-
teins (55, 66).

Concerning the role of high-risk HPVs in cancer progression 
and EMT, it is well-known that onco-proteins of these viruses are 
consistently expressed in infected carcinoma cells (67); this could 
form an important element to initiate cellular transformation 
and, therefore, tumor formation of certain types of malignancies 
via their involvement in the EMT process (68, 69). For instance, 
E6/E7 onco-proteins of HPV type 16 activate Jagged1, which 
can be associated with the induction of PI3K-mediated EMT. In 
addition, E6/E7 apparently incite FGF-induced EMT in cervi-
cal oncogenesis (70). In parallel, it has been shown that E6/E7 
onco-proteins suppress the expression of E-cadherin in cervical 
cancer cells triggered by FGF stimulation, and consequently 
increase the invasiveness of cancer cells (70). On the other hand, 
it was reported that E6/E7 can induce EMT via PI3K/AKT and/

or MEK/ERK in primary human keratinocytes (71); also, E6/
E7 promote EMT via the activation of its transcriptional factors 
especially ZEB1 and ZEB2 (72).

In our laboratory, we have generated a novel model to explore 
the interaction outcome between E6/E7 onco-proteins of high-
risk HPV and HER-2/ErbB-2 receptor in human head and neck 
(HN) carcinogenesis; this model was developed since ~25–30% 
of human HN cancers are positive for HPVs and express/over-
express HER-2 (73). Using this model, we reported that E6/E7 
onco-proteins of HPV type 16 cooperate with HER-2 receptors 
to provoke cell transformation of human normal oral epithelial 
cells; this is accompanied by a delocalization of β-catenin from 
the undercoat membrane to the nucleus in these cells. The E6/
E7/HER-2 cooperation also induces morphologic changes from 
a cobblestone-shaped epithelial to the spindle-shaped mesen-
chyme form, which enhances cell invasion and metastatic ability 
of these transformed cells. Additionally, our studies revealed that 
cyclin D1 is the main target of E6/E7/HER-2 interaction via the 
alteration of β-catenin’s role from a cell–cell adhesion protein to 
a transcriptional controller (73). Also, we have shown that cyclins 
D1, D2, and D3 are crucial for cell transformation provoked by 
E6/E7/HER-2 cooperation in our cell models and mouse normal 
embryonic fibroblast cells (74, 75). Last, our data pointed out that 
the cooperation outcome of E6/E7 and HER-2 takes place via 
β-catenin activation through pp60 (c-Src) phosphorylation (76).

Likewise, in oral cancer samples, it has been shown that 
E-cadherin is downregulated in HPV-positive samples in com-
parison with HPV-negative ones, while, vimentin expression 
remained unaltered (69); herein, it is important to highlight that 
both E-cadherin and vimentin are important biomarkers of EMT 
(5). In addition, Wakisaka et al. (77) reported that HPV-positivity 
is associated with EMT phenotype of oropharyngeal carcinomas 
and lymph node metastasis. Additionally, in tonsillar carcinoma 
cases, HPV-positivity is correlated with downregulation of 
E-cadherin and nuclear translocation of β-catenin indicating a 
more aggressive phenotype and risk of metastasis (78).

Next, to identify the role of high-risk HPVs infection in 
human cancer progression, we assessed the outcome of E6/E7 
onco-proteins of HPV 16 in two non-invasive human breast 
cancer cell lines, MCF7 and BT20. Our data showed that E6/E7 
of HPV 16 provoke cell invasive and metastatic capabilities of 
both cell lines (79). This is associated with an upregulation of 
Id-1, a family member of helix-loop-helix transcription factors, 
which is an important regulator of invasion and metastasis of 
breast cancer (80, 81). We further established that E6/E7 onco-
proteins can enhance Id-1 promoter activity in both cancer cell 
lines. Our study on tissue samples indicated that HPV type 16 
presence is significantly higher in invasive breast carcinomas in 
comparison with ductal carcinoma in in situ and normal breast 
tissues. Furthermore, our results displayed that Id-1 upregula-
tion is associated with the presence of high-risk HPVs in human 
invasive and metastatic breast cancer tissues from Canadian and 
Syrian women (79, 82, 83). Herein, we would like to mention that 
the presence of high-risk HPVs in human breast cancers varies 
from 2 to 83% (please refer to the next section).

Concerning the role of E5 onco-protein of high-risk HPV and 
cancer progression, it is important to highlight that there are few 
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investigations related to this critical topic (84, 85). However, it 
is evident that E5 can enhance cancer progression alone via its 
interaction with EGF-R1 signaling pathways (MAP kinase and 
PI3K/Akt) or via switching FGFR2b to FGFR2c (52–54, 85). 
In addition, it has been recently proposed that E5 of high-risk 
HPVs can cooperate with E6/E7 onco-proteins to enhance cancer 
progression via EMT (6).

Finally, it is important to highlight that recent studies 
have identified and validated HPV-encoded miRNAs (86). 
Accordingly, Liu et al. (87) reported that miR-375 deregulation 
can affect cell invasion ability of E6/E7-expressing cervical cancer 
cells via the modulation of EMT. Moreover, it has been revealed 
that E6 of HPV 16 can promote EMT and invasion in cervical 
cancer via the repression of miR-218 (88). On the other hand, it 
has been pointed out that E6 deregulate miR-34a, in HN cancer 
cells, which is an important controller of EMT and, therefore, 
cancer progression (89). Thus, it is evident that HPV-miRNA 
can play an important role in the regulation of cell invasion and 
metastasis via EMT.

Altogether these findings support the idea that high-risk 
HPVs can enhance cancer progression via the initiation of EMT.

eBv/HPvs iNTeRACTiON AND eMT iN 
HUMAN CANCeR

It is evident that some organs and tissues can be co-infected with 
more than one species of viruses, including EBV and HPVs. 
Accordingly, in 2009, we hypothesized that human oral normal 
epithelial cells, particularly nasopharyngeal tissues, are prone to 
persistent HPVs and EBV co-infections; hence, high-risk HPVs 
and EBV co-infections could have a major role in the initiation 
and/or progression of oral cancer (8). Several investigations 
have explored this avenue and showed a co-presence of EBV 
and HPV in different types of carcinomas, including cervi-
cal, oral (nasopharyngeal), and breast cancer, as well as other 
malignancies (90–93). Herein, we must underline that EBV or 
high-risk HPVs infection alone is not enough to initiate cellular 
transformation of normal epithelial cells; the infected cells must 
endure additional genetic changes, and/or co-infection with 
more than one type of oncovirus to reach a full transformation 
(9, 73–75). Thus, we have generated a new model to study the 
cooperation effect between high-risk HPVs and HER-2 receptor 
in HN oncogenesis; as approximately 25 and 30% of HN cancers 
overexpress HER-2 and are positive for high-risk HPVs (73). As 
we mentioned above, we found that E6/E7 onco-proteins of HPV 
16 cooperate with HER-2 to provoke cellular transformation and 
initiate EMT of human normal oral epithelial cells (73, 74).

In order to further explore the prevalence of EBV and high-risk 
HPVs in human HN cancers including oral malignancy in the 
Syrian population, we examined the presence of these viruses in 
a cohort of 80 oral cancer tissue samples from Syria using immuno-
histochemistry and Tissue Microarray methodologies. Our data 
revealed that 43% of these cancers are positives for high-risk HPVs 
(48, 49, 83). Genotyping investigation of high-risk HPVs showed 
that HPV types 16, 18, 31, 33, and 35 are the most frequent HPV 
types in HN cancers in Syria (94). The co-presence of EBV and 

high-risk HPVs in these samples is currently under investigation. 
In parallel, and in collaboration with our colleagues (Drs. Alaoui-
Jamali and da Silva from McGill University), we are exploring 
the co-prevalence of EBV and high-risk HPVs in Canadian oral 
cancer samples. While, presently, there are no studies vis-à-vis 
the mechanisms of EBV and HPVs onco-proteins interactions 
in human oncogenesis; however, we believe that EMT initiation 
and amplification is the main target of EBV/HPVs interaction 
in human carcinogenesis (Figure 1). Thus, in our laboratory, we 
are presently exploring this important topic using both human 
normal oral and mammary epithelial cells as well as cancer cells.

Meanwhile, few studies have correlated the presence of EBV 
with HPV in human oral squamous cell carcinomas (SCCs). For 
instance, in oropharyngeal cancer, the presence of EBV and HPV 
viruses together in approximately 15–20% of oral SCCs (91, 96).

Likewise, Jiang et al. (89), found that 75% of tonsillar carcino-
mas and 90% of tongue SCCs are HPV-positive. However, EBV 
alone was found in 42 and 80% of tonsillar and tongue SCCs, 
respectively. In parallel, EBV and HPV co-infection was observed 
in 25% of tonsillar and 70% of tongue SCCs (95). Herein, it is 
important to emphasize that the presence of EBV or HPVs in 
NPC and/or oral SCCs is correlated with an overall better survival 
compared to EBV or HPVs-negative cancers (97–99). This may 
be attributed to the possible role of onco-proteins of these viruses, 
especially in the case of HPVs, in making cancer cells more sensi-
tive to chemotherapy (100). However, it has been demonstrated 
that EBV and HPV co-infections can enhance invasiveness ability 
of human oral cancer (89) and breast cancer, as described in the 
next paragraph.

Concerning EBV and HPVs in human breast cancer, it has 
been shown that around 30–50% of breast malignancy cases 
are positive for EBV (21–25). In contrast, few studies were 
unable to detect EBV in human breast carcinomas (101, 102).  
In our lab, we explored the prevalence and role of EBV 
infections in human breast carcinogenesis; our investigation 
showed that around 52% of our samples are positive for EBV. 
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FiGURe 2 | Schematic outline showing potential cooperation between Epstein–Barr virus (EBV) and high-risk human papillomaviruses (HPVs) onco-proteins in the 
amplification of epithelial–mesenchymal transition (EMT) event. We note that EBV and high-risk HPVs onco-proteins share various downstream-signaling pathways, 
including β-catenin, JAK/STAT/SRC, PI3k/Akt/mTOR, and RAS/MEK/ERK; thus, pathways’ crosstalk of EBV/HPVs onco-proteins can lead to a more hostile 
metastatic cancer.

We also noted that the presence of EBV is associated with 
invasive breast cancer phenotype in more than 60% of the 
examined cases (26).

Earlier studies showed that HPVs could be found in 2–86% 
of human breast cancer cases (24, 82, 92, 103–105). However, a 
small number of investigations could not find HPVs in breast 
cancer and normal mammary tissues (106–108). In this regard, 
E6/E7 onco-proteins of HPVs have been identified in breast 
cancer (109); though, there is a low level of transcription of 
these onco-proteins (110). Meanwhile, it has been reported that 
the presence of HPVs in breast cancer is associated with more 
aggressive phenotype (9, 82, 103, 111).

Previous studies predicted that oncoviruses, including EBV 
and high-risk HPVs, can be co-present in human breast cancer 
and consequently can play critical roles in the initiation and/or 
progression of this cancer (24, 92, 112, 113). To explore the co-
presence and cooperation effect of EBV and high-risk HPVs in 
human breast cancer, we investigated their co-presence in breast 
cancer samples from Syria. We found that 32% of our samples 
are positive for both high-risk HPVs and EBV. Additionally, 
we examined the association between the co-existence of these 
viruses and cancer phenotype. Our data pointed out that the 
co-presence of EBV and HPVs is linked with high-grade invasive 
ductal carcinomas and lymph node involvement (9).

On the other hand, we would like to mention that, in this 
current issue, Vranic et  al. (114) as well as de Lima et  al. (90) 
reviewed the prevalence and role of EBV/HPVs co-infection in 
human cervical cancer. They pointed out that ~29% of human 
cervical carcinomas are positive for both EBV and HPVs, which 
is associated with an invasive cancer phenotype.

Overall, several studies as well as ours clearly indicate that 
oncoviruses, including EBV and high-risk HPVs, can be found 
in several human carcinomas, such as oral, breast, and cervical.  
We believe that their co-infection can have critical roles in 
the development of these malignancies and their progression; 

especially, since EBV and HPVs onco-proteins share several 
signaling pathways, such as β-catenin, JAK/STAT/SRC, PI3k/
Akt/mTOR, and/or RAS/MEK/ERK, which can enhance 
cancer metastatic progression via the amplification of EMT 
(Figure  2). Thus, we think that the activation of these four 
pathways together could be the main mechanism behind the 
amplification of EMT (Table 1). Meanwhile, it is important to 
emphasize that co-infection of EBV and HPVs as well as other 
human viruses, such as herpes simplex virus 1 and 2, human 
cytomegalovirus, BK virus, JC virus, and adeno-associated 
virus, could also play a significant role in the development 
and/or progression of certain types of human carcinomas; this 
could involve other “unknown” mechanisms related to these 
co-infections (99). Nevertheless, it is important to highlight 
that there are no mechanistic studies regarding the role of EBV/
HPV viral co-infection and the EMT event.

TABLe 1 | Epstein–Barr virus (EBV) and high-risk human papillomaviruses (HPVs) 
onco-proteins interactions can occur via β-catenin, JAK/STAT/SRC, PI3k/Akt/
mTOR, and/or RAS/MEK/ERK signaling pathways and probably other paths.

The most common pathways of eBv and high-risk HPvs

HR-HPV Onco-proteins E5→EGFR→RAS→RAF→MEK→ERK1/ERK2
→AKT→mTOR
→JAK→STAT→SRC

→β-catenin

E6→p53→AKT→mTOR

E7→pRb→AKT→mTOR

EBV Onco-proteins LMP1→JAK→STAT→SRC
→β-catenin

→PI3K→AKT→mTOR

LMP2A→RAS→RAF→MEK→ERK1/ERK2
→AKT→mTOR

EBNA1→STAT→SRC
→β-catenin
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CONCLUSiON AND FUTURe OBJeCTiveS

This review presented evidence that oncoviruses co-infection, 
including EBV and high-risk HPVs, are important factors in 
human oncogenesis, thus, it is clear that they can enhance the 
progression of human carcinomas via the initiation of EMT which 
could occur by β-catenin, JAK/STAT/SRC, PI3k/Akt/mTOR, 
and/or RAS/MEK/ERK pathways. Therefore, further studies 
are necessary to identify the exact signaling pathways of EBV/
HPVs onco-proteins’ interactions with the EMT event, given that 
no studies are currently available on this topic. Meanwhile, we 
assume that generating new in vitro and, in vivo models, as in 
cell lines and animal ones are important to determine the exact 
roles of these oncoviruses together and to discern their functions 
in the initiation and/or progression of oncogenesis; this could 
provide new targets to manage the malignancies associated with 
these oncoviruses and their co-incidence.

Alternatively, and regarding the prevention of oncoviruses-
associated cancers, we believe that the elimination of some 
known risk factors related to lifestyle can reduce the develop-
ment of these malignancies and metastases; especially, since it 
has been pointed out that oncoviruses co-infection could play an 
important role in the progression of these cancers. Meanwhile, 

prevention of EBV and HPV co-infections using the upcoming 
and/or presently available vaccines, respectively (115–117), 
could significantly decrease the rate of EBV and HPVs-associated 
malignancies and their progression to invasive forms that are 
responsible for most cancer-related deaths.
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