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Background: Radiomics has been widely investigated for non-invasive acquisition of 
quantitative textural information from anatomic structures. While the vast majority of 
radiomic analysis is performed on images obtained from computed tomography, mag-
netic resonance imaging (MRI)-based radiomics has generated increased attention. In 
head and neck cancer (HNC), however, attempts to perform consistent investigations 
are sparse, and it is unclear whether the resulting textural features can be reproduced. 
To address this unmet need, we systematically reviewed the quality of existing MRI 
radiomics research in HNC.

methods: Literature search was conducted in accordance with guidelines established 
by Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Electronic 
databases were examined from January 1990 through November 2017 for common 
radiomic keywords. Eligible completed studies were then scored using a standardized 
checklist that we developed from Enhancing the Quality and Transparency of Health 
Research guidelines for reporting machine-learning predictive model specifications and 
results in biomedical research, defined by Luo et al. (1). Descriptive statistics of checklist 
scores were populated, and a subgroup analysis of methodology items alone was con-
ducted in comparison to overall scores.

Results: Sixteen completed studies and four ongoing trials were selected for inclu-
sion. Of the completed studies, the nasopharynx was the most common site of study 
(37.5%). MRI modalities varied with only four of the completed studies (25%) extracting 
radiomic features from a single sequence. Study sample sizes ranged between 13 and 
118 patients (median of 40), and final radiomic signatures ranged from 2 to 279 features. 
Analyzed endpoints included either segmentation or histopathological classification 
parameters (44%) or prognostic and predictive biomarkers (56%). Liu et al. (2) addressed 
the highest number of our checklist items (total score: 48), and a subgroup analysis of 
methodology checklist items alone did not demonstrate any difference in scoring trends 
between studies [Spearman’s ρ = 0.94 (p < 0.0001)].
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conclusion: Although MRI radiomic applications demonstrate predictive potential in 
analyzing diverse HNC outcomes, methodological variances preclude accurate and 
collective interpretation of data.

Keywords: radiomics, magnetic resonance imaging, mRi, texture analysis, head and neck, radiation oncology

iNtRODUctiON

Rationale
Tumor characterization remains a major obstacle in the treatment 
of HNC patients (3, 4). Structural heterogeneity may represent 
underlying differences in tumor biology, which often cannot be 
explained by clinical data alone (5–8). Radiomics, the quantita-
tive evaluation of anatomic structures from diagnostic imaging 
modalities, could possibly mitigate this variance (5, 6, 9). By 
describing morphological parameters and textural features from 
voxel elements, radiomics has the potential to examine tumors 
entirely (10–13).

Although multiple studies have applied radiomic analyses in 
HNC patients, computed tomography (CT) is the imaging modal-
ity most frequently investigated (14–26). This preference is due, 
in part, to the relative ease of data extraction and interpretation: 
Textural features can be derived from CT signal intensities (SIs) 
because their units of measurement, Hounsfield units (HUs), 
directly represent tissue radiodensity. Thus, SI gradients contain 
information about structural properties, which could then be 
translated into clinically meaningful data (9).

Computed tomography affords yet another advantage in that 
its imaging performance tends to be standardized across scanners 
and vendors (9). However, CT acquisition parameters can still 
influence the appearance of radiomic features (27). In non-small 

Abbreviations: ADC, absolute diffusion coefficient; ARM, auto-regressive 
model; CCC, concordance correlation coefficient; ChiCTR, Chinese Clinical Trial 
Registry; CI, confidence interval; CT, computed tomography; DCE, dynamic con-
trast-enhanced; DICOM, digital imaging and communications in medicine; DWI, 
diffusion-weighted imaging; EQUATOR, Enhancing the Quality and Transparency 
of Health Research; FDG/PET, fludeoxyglucose-positron emission tomography; 
fMRI, functional magnetic resonance imaging; GBM, glioblastoma; GLAG, 
gray-level absolute gradient; GLCM, gray-level co-occurrence matrix; GLGCM, 
gray-level gradient co-occurrence matrix; GLH, gray-level histogram; GLRLM, 
gray-level run-length matrix; HNC, head and neck cancer; HU, Hounsfield 
unit; IBSI, image biomarker standardisation initiative; ICC, intraclass coefficient 
constant; IP, inverted papilloma; LAMBDA-[RAD]2-HN initiative, a Large-scale 
Image Aggregation for Machine-Learning/Big Data Applications in Radiomics/
Radiotherapy for Head and Neck Cancer; LDA, linear discriminant analysis; 
MDACC, MD Anderson Cancer Center; MRE, magnetic resonance elastography; 
MRI, magnetic resonance imaging; MS, methodology score; NCBI, National 
Center for Biotechnology Information; NIH RePORTER, National Institute of 
Health Research Portfolio Online Reporting Tool; NPC, nasopharyngeal cancer; 
NSCLC, non-small cell lung cancer; OPC, oropharyngeal cancer; PCA, principal 
component analysis; PFS, progression-free survival; PRISMA, Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses; QA, quality analysis; QIBA, 
Quantitative Imaging Biomarkers Alliance; QoL, quality of life; RECIST, Response 
Evaluation Criteria in Solid Tumors; ROI, region of interest; RT, radiotherapy; 
SCC, squamous cell carcinoma; SI, signal intensity; SNR, signal-to-noise ratio; 
STIR, short tau inversion recovery; SVM, support vector machine; TCIA, The 
Cancer Imaging Archive; TS, total score; WT, wavelet transform.

cell lung cancer (NSCLC), Mackin et al. (27) designed a radiom-
ics-specific CT phantom to test inter-scanner variability. Mean 
CT number, reflected in HU, approximated the same variability 
between extracted tumor features from the scans themselves 
(27). Although extraction of features with discriminative ability 
from multiple scanners is promising, research is lacking in their 
application and robustness. Likewise, variances in reconstruction 
algorithms and image noise represent barriers to the accuracy of 
extracted features (9).

Similarly, radiomic studies based on magnetic resonance 
imaging (MRI) also face derivational challenges intrinsic to the 
technology. Not only are scanner parameters obstacles to repro-
ducibility of features, but images themselves may reflect multiple 
tissue properties with specific acquisition characteristics (28). For 
instance, MRI SIs depends on pulse sequences, relaxation times, 
as well as a host of other acquisition-related processes; thus, 
seamless integration of radiomic analyses requires substantive 
effort (28).

When conducted appropriately, however, such studies can 
potentially provide a breadth of information superior to extrapo-
lated values from CT radiomic features, as multiple physical 
properties of a voxel can be extracted via distinct sequence 
acquisition processes (e.g., spin–spin, proton density) and could 
be leveraged even further using novel techniques for simultane-
ous voxel characterization (e.g., MR fingerprinting) (29).

For example, MRI radiomics could potentially describe 
distinct patterns in tumor physiology: phenotypic categories 
from diffusion-weighted imaging (DWI) and dynamic contrast-
enhanced (DCE) MRI have successfully predicted prognostic  
status in breast cancer patients (30). In addition, radiomic features 
derived from T1-weighted MRI reliably categorized molecular 
subtypes of breast tumors (31). For cases of glioblastoma (GBM), 
MRI radiomic profiles outperformed clinical and radiologic 
risk models in stratification of survival (32). Radiomic features  
have also successfully classified prostate tumors by Gleason 
scores (33, 34).

Objectives and Research Question
To the best of our knowledge, MRI radiomic applications in HNC 
have yet to be systematically summarized and reviewed in the 
clinical literature. In this effort, we assessed the quality of existing 
research: We comprehensively described MRI radiomic studies 
specific to the head and neck sub-site, with an intentional focus on 
study design. We compare and contrast the studies with a checklist 
based on Luo et al. (1) Enhancing the Quality and Transparency of 
Health Research (EQUATOR) methodology reporting guidelines. 
Subsequently, we discuss ongoing clinical trials and suggest future 
directions for MRI radiomic applications in HNC. The purpose of 
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FigURe 1 | Study methodology and search strategy via Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (35).
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this systematic review is to assess the level of evidence and gauge 
the applicability of MRI radiomics in HNC.

metHODS

Study Design and Systematic Review 
Protocol
Study methodology followed outlines established by Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(Figure 1).

Eligibility Criteria
Full-text, original manuscripts, published in English, accepted for 
publication, and available online or in-print were evaluated. For 
inclusion, study populations consisted of patients diagnosed with 

HNC. All other cancer populations were excluded. Interventions 
included investigations of MRI radiomic features, where MRI was 
the primary imaging modality implemented. Studies exclusively 
researching first-order MRI features were excluded as they did 
not accurately represent the scope of typical MRI radiomic appli-
cations in HNC. Regarding outcomes, studies were included if 
they investigated segmentation accuracy, histopathological clas-
sification parameters, or prognostic and predictive biomarkers. 
Study design could be observational (e.g., prospective cohort, 
retrospective cohort, and case–control) or a clinical trial (e.g., 
randomized controlled trial).

Study Search Strategy and Process
Electronic databases (National Center for Biotechnology 
Information PubMed, Elsevier EMBASE, National Institute of 
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Health Research Portfolio Online Reporting Tool, ClinicalTrials.
gov, and the Chinese Clinical Trial Registry) were searched from 
January 1990 through November 2017. Keywords and search 
strategy are described in our supplementary material (Table S5). 
For each included manuscript, reference lists were searched for 
additional eligible studies. Study search was completed by three 
authors independently (Amit Jethanandani, Timothy A. Lin, and 
Stefania Volpe), reviewing manuscripts in a stepwise method: 
By title alone, followed by abstract, then full-text. Search results 
were  imported into individual spreadsheets using JMP Pro 
software version 12.1.0 (SAS Institute Inc., Cary, NC, USA). 
Discrepancies between results were discussed at team meetings, 
moderated by a fourth author (Hesham Elhalawani). Study search 
and selection were completed on November 13, 2017.

Data Sources, Study Sections, and Data 
extraction
Selected studies consisted of completed research and ongoing 
trials. Once a final list was established, data extraction was 
completed independently by two authors (Amit Jethanandani 
and Timothy A. Lin) then assessed for quality by a third author 
(Hesham Elhalawani). Information was extracted into JMP Pro 
spreadsheets and included the following data: Manuscript title; 
authors; publication date; number of patients; head and neck 
sub-site; MRI modality and/or sequence used for radiomics 
analysis; region of interest (ROI) segmentation method; image 
pre-processing; feature extraction software; analyzed endpoint; 
statistical findings: radiomic model performance; conclusions; 
search terms and databases used to identify selected studies. 
Completed studies were stratified based on endpoints evaluated: 
Segmentation or histopathological classification vs. prognostic 
or predictive measures. Synthesis of data into a final spreadsheet 
was accomplished at team meetings among three authors (Amit 
Jethanandani, Timothy A. Lin, and Hesham Elhalawani).

Checklist Construction
A qualitative scoring method was developed for independent 
evaluation of completed studies. This system was adapted from 
Luo et  al. (1) EQUATOR methodology reporting guidelines, 
which represent criteria outlined by a multidisciplinary panel of 
11 clinicians, machine-learning specialists, and expert statisti-
cians. The guidelines aimed to achieve two main objectives: (1) 
establish a list of key reporting items and (2) design a standard-
ized, stepwise approach for generation of predictive models. 
The Delphi method was leveraged to iteratively narrow a list of 
included topics, discussed over e-mail between the panel mem-
bers, to the final guidelines.

The guidelines were categorized by manuscript section for 
each reporting item: Title and abstract, introduction, methods, 
results, and discussion. Within these categories, reporting items 
were grouped by subsection. For example, the methods section 
contained the following groups: “Describe the setting,” “define the 
prediction problem,” “prepare data for model building,” “build the 
predictive model,” and “report the final model and performance.” 
Our checklist mirrored this organization, with a few exceptions: 
Within the “build the predictive model” subsection, we further 
defined “data (feature) pre-processing” and “basic statistics of 

the dataset.” Data pre-processing refers to data cleaning, data 
transformation, outlier removal, criteria for outlier removal, 
and handling of missing values. Basic statistics included items 
clarifying whether the model reflected the chosen classification 
or regression problem, the validation strategy, validation metrics, 
and the starting time for validation data collection. For organiza-
tion of reporting items, a blank checklist is provided in our sup-
plementary data section (Table S1 in Supplementary Material).

Each mandatory checklist item was categorized into a yes/no 
binary variable, which indicated whether the study appropriately 
addressed the corresponding criteria. The checklist was designed 
by one author (Timothy A. Lin) and subsequently revised by 
two authors (Amit Jethanandani and Hesham Elhalawani). Each 
completed study was scored individually by two authors (Amit 
Jethanandani and Timothy A. Lin). After all completed stud-
ies were scored, a group of three authors (Amit Jethanandani, 
Timothy A. Lin, and Hesham Elhalawani) met together to resolve 
discrepancies. There were 55 total checklist items, with two items 
containing sub-scores, representing a maximum overall score 
of 58 points. Once total checklist scores [total score (TS)] were 
finalized, methodology scores (MS) alone were generated for 
each completed study.

Data analysis
Descriptive statistics for all included studies were populated and 
reviewed. For completed studies, TS and MS were tabulated in 
JMP Pro software. In addition, a subgroup analysis compar-
ing collinearity of MS to TS was conducted using Spearman’s 
ρ.  Subgroup analysis was completed using the same JMP Pro 
software mentioned earlier.

ReSULtS

Study Selection and characteristics
Sixteen completed (2, 36–50) and four ongoing studies (51–54) 
were selected for inclusion. For completed studies, online or print 
publication dates ranged between May 2013 and October 2017. 
The selected studies could be retrieved from PubMed, and the 
most successful search term was “MRI texture analysis” (50% 
discovered with this keyword alone).

Synthesized Findings of completed 
Studies
Patient sample sizes ranged between 13 and 118 patients with a 
median of 40 patients (Table 1). Head and neck sub-sites were 
diverse, including tumor volumes as well as normal anatomic 
structures. Of studies extracting radiomic features from tumor 
volumes, nasopharyngeal cancer (NPC) studies (37.5%) were 
the most common. Investigations of radiotherapy (RT)-related 
toxicities in normal tissue composed a small sample of the cohort 
(12.5%). Specific sub-sites were unknown for two studies (12.5%).

Magnetic resonance imaging sequences also varied, with 
T1-weighted, T2-weighted, and contrast-enhanced T1-weighted 
scans representing the most commonly used sequences. Only 
four studies (25%) derived texture features from a single MRI 
sequence. Thor et  al. (45) extracted 24 textures, containing 
first- and second-order features, from T1-weighted post-contrast 
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images to quantify radiation-induced trismus. Brown et  al. 
(36) investigated whether 21 texture features from a set of 300 
DWI MRI parameters could reliably predict histopathological 
classification of thyroid tumors. Jansen et  al. (40) generated 
pharmokinetic maps from DCE MRI images, applying texture 
measures of energy and homogeneity to determine associations 
with treatment response in oropharyngeal cancer patients.

Region of interest segmentation methods were less variable: 
Manual segmentation by trained experts alone (62.5%) composed 
the majority of studies. This was followed by combined manual 
and autosegmentation (31.25%), with one segmentation method 
unspecified (6.25%). One study investigated the classification per-
formance of an autosegmentation method. Fruehwald-Pallamar 
et  al. (38) leveraged a three-step strategy: Atlas-based registra-
tion, support vector machine (SVM) feature training, and parotid 
volume segmentation using trained feature SVM. For validation, 
reliability of the autosegmentation method was compared with 
trained physician contours using a Dice overlap ratio.

Most studies (62.5%) clarified image pre-processing steps 
before feature extraction. Preferred software for feature extrac-
tion included Matlab (37.5%) (MathWorks, Natick, MA, USA) 
and MaZda (25%) (Institute of Electronics, Technical University 
of Lodz, Poland). Feature pre-processing and model selection 
methods are discussed in the “Checklist scores” section of this 
manuscript.

Final radiomic signatures ranged from inclusion of 2 to 279 
features. The upper limit reflects the choice of one study to 
maintain their initially derived feature set, which was not reduced 
in dimensionality. Meyer et al. (41) generated 279 features from 
T1-weighted and T2-weighted images corresponding to the 
following categories: gray-level co-occurrence matrix (GLCM), 
gray-level histogram, gray-level run-length matrix, gray-level 
absolute gradient, auto-regressive model, and wavelet transform. 
They then compared the derived T1- or T2-weighted features to 
cellular density, presence of Ki-67 antigen, or p53 index histopa-
thology in 12 thyroid cancer patients.

Reports of radiomic model performance were typically posi-
tive (93.75%). However, Fruehwald-Pallamar et al. (39) concluded 
texture analysis was not practical across multiple MRI protocols, 
scanners, and vendors. Table  1 lists the statistical findings 
specific to radiomic model performance of each study. Linear 
discriminant analysis (LDA) was the most commonly identified 
classification method, with four studies (25%) leveraging LDA to 
combine or reduce feature subsets. Likewise, four studies (25%) 
investigating progression outcomes in NPC patients utilized least 
absolute shrinking and Lasso methods to select significantly asso-
ciated features for inclusion in final models. Only seven studies 
(44%) completely reported the predictive performance of their 
final model, in terms of their validation strategies, parameter 
estimates, and confidence intervals (CIs).

Analyzed endpoints ranged from segmentation and histopatho-
logical classification categories (44%) to prognostic or predictive 
biomarkers (56%). Among studies evaluating segmentation or 
classification, analyzed endpoints included: Histopathological 
classification (85.7%) and segmentation accuracy (14.3%). For 
studies assessing prognostic and predictive biomarkers, endpoints 
included: treatment response (33.3%), progression-free survival 

(PFS) (22.2%), progression dichotomized (22.2%), prognostic 
performance of predicting local or distant treatment failure 
(11.1%), and presence of radiation-induced trismus (11.1%).

All six NPC studies investigated prognostic or predictive 
biomarkers. Although they contained varying sample sizes (100–
118), four studies (42, 47–49) selected from the same number 
of extracted radiomic features (970), subsequently constructing 
radiomic signatures from contrast-enhanced T1-weighted or 
T2-weighted feature categories. Among these studies, three inves-
tigated progression (either dichotomized yes/no or analyzed con-
tinuously) or a construct of prognostic performance. Liu et al. (2), 
alternatively investigated treatment response, defined using the 
Response Evaluation Criteria in Solid Tumors (RECIST). Patients 
with partial or complete response were considered responders, 
whereas patients with stable or progressive disease were clas-
sified as non-responders. One hundred and twenty six texture 
parameters were selected from contrast-enhanced T1-weighted, 
T1-weighted alone, and T2-weighted feature categories, then 
reduced to 15 features: GLCM, intensity size-zone matrix, and 
gray-level-gradient co-occurrence matrix. Using two separate 
selection methods, the remaining NPC study, Farhidzadeh et al. 
(50), examined the prognostic predictive power of intratumoral 
features—from either highly or weakly enhancing sub-regions—
to classify patients by PFS category.

Checklist Scores
Finalized checklist scores are available in our supplementary 
dataset (Table S2 in Supplementary Material). Liu et  al. (2) 
addressed the highest number of checklist items (TS: 48), followed 
by Brown et al. (36) and Ramkumar et al. (43) (TS: 45). Of note, 
all studies scored points for identifying their clinical goals, stating 
their predictive modeling, defining their target(s) of prediction, 
describing their sample size, defining the observational units of 
their response variable(s), interpreting their final model(s), and 
reporting the clinical implications of their data. By subsection, 
most study titles (93.75%) identified their reports as introduc-
ing a predictive model. Abstracts typically addressed objectives 
(87.5%), performance metrics in point estimates (87.5%), and 
practical relevance of study conclusions (87.5%); however, only 
three abstracts contained information on data sources (18.75%) 
or framed their performance metrics in terms of CIs (18.75%). 
Although only six study introductions addressed prediction 
accuracy of existing models (37.5%), this section contained the 
highest number of unanimously addressed items (50% of check-
list items were unanimously addressed).

Methodology criteria contained the most checklist items 
[n  =  32 (58.1%)]. Of the subsections in this category, studies 
missed the most points for failing to clarify their data (feature) 
pre-processing: Only seven studies (44%) discussed their data 
transformation, four (25%) removed outliers, three (18.75%) 
stated criteria for outlier removal, and one study (6.25%) 
discussed how missing values were handled. However, missing 
information in the abstract section, such as data sources, was 
eventually addressed in study methods (75%). Other common 
omissions included failures to specify model selection strategies 
(50% addressed); to define performance metrics in selecting the 
best model (37.5%); to explain the practical cost of prediction 
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taBLe 1 | Magnetic resonance imaging (MRI) radiomics in HNC: completed studies

article  
title

article  
authors

Publication 
date

Number of 
patients

Head and neck  
sub-site

mRi modality 
and/or 
sequence used 
for radiomics 
analysis

Region of 
interest (ROi) 
segmentation 
method

image pre-
processing: 
yes/no

Feature 
extraction 
software

analyzed  
endpoint

Statistical findings: 
radiomic model 
performance

conclusions Successful search 
terms used 

[1 = Radiomic(s), 
2 = mRi texture 

analysis, 
3 = texture 

analysis, 4 = head 
and neck, 

5 = magnetic 
resonance imaging 

texture analysis]

Databases 
[1 = Pubmed, 
2 = emBaSe, 

3 =NiH, 
4 = clinicaltrials.
gov, 5 = chinese 

clinical trial 
Registry 

(chictR)]

Studies on radiomics for segmentation and histopathological classification

MRI texture 
analysis reflects 
histopathology 
parameters in 
thyroid cancer—a 
first preliminary 
study

Meyer HJ, 
Schob S, 
Hohn AK, 
Surov A

10/6/2017 
(electronic 
publication, 
ePub); 
12/2017 
(Print)

13 Thyroid T1-weighted 
turbo spin 
echo (TSE); 
T2-weighted TSE

Not specified Yes MaZda Histopathological 
classification

279 texture features were 
analyzed for univariate 
association with 
histological parameters 
using a Spearman’s 
correlation coefficient

Several significant 
correlations were 
identified between 
texture features and 
histopathology

2 1

Multi-institutional 
validation of a 
novel textural 
analysis tool for 
preoperative 
stratification 
of suspected 
thyroid tumors on 
diffusion-weighted 
MRI

Brown AM, 
Nagala S, 
McLean 
Ma, Lu Y, 
Scoffings 
D, Apte A, 
Gonen M, 
Stambuk 
HE, Shaha 
AR, Tuttle 
RM, Deasy 
JO, Priest 
AN, Jani P, 
Shukla-Dave 
A, Griffiths J

5/20/2015 
(ePub); 
4/2016 
(Print)

42 (training=24, 
validation=18)

Thyroid Diffusion-
weighted imaging 
(DWI)

Manual Yes MaZda Histopathological 
classification

A linear discriminant 
analysis (LDA) model 
of the top 21-ranking 
MaZda textural features 
classified 89/94 ROIs 
with 92% sensitivity and 
96% specificity [AUC: 
0.97, 95% confidence 
interval (CI): 0.92–1.0]. 
In a test set of 18 cases, 
the model’s sensitivity 
was 89% (95% CI: 
65–99%) and its 
specificity was 97% (95% 
CI: 74–100%)

Texture analysis 
is sensitive and 
specific for 
stratification of 
thyroid nodules

2 1

MRI texture 
analysis predicts 
p53 status in 
head and neck 
squamous cell 
carcinoma

Dang M, 
Lysack 
JT, Wu T, 
Matthews 
TW, 
Chandarana 
SP, Brockton 
NT, Bose P, 
Bansal G, 
Cheng H, 
Mitchell JR, 
Dort JC

9/25/2014 
(ePub); 
1/2015 
(Print) 

16 Oropharynx Contrast-
enhanced 
T1-weighted FSE; 
T2-weighted 
fast spin echo 
(FSE) with fat 
saturation; DWI

Manual Yes 2D Fast Time-
Frequency 
Transform Tool

Histopathological 
classification

A model of seven 
significant variables 
(determined using a 
subset-size forward 
selection algorithm 
and isolation of high-
classification percentage 
variables) correctly 
classified 81.3% of 
tumors (κ: 0.625, 
p < 0.05)

A radiomic 
model containing 
variables with 
high classification 
performance could 
predict p53 status 
in oropharyngeal 
cancer patients

2 1

(Continued)
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Texture-based 
analysis of 100 
MR examinations 
of head and 
neck tumors—is 
it possible to 
discriminate 
between benign 
and malignant 
masses in a 
multicenter trial?

Fruehwald-
Pallamar J, 
Hesselink 
JR, Mafee 
MF, Holzer-
Fruehwald 
L, Czerny C, 
Mayerhoefer 
ME

9/30/2015 
(ePub); 
2/2016 
(Print)

100 Head and neck 
benign (cysts = 8, 
inflammatory 
masses = 5, 
parotid = 9, 
glomus = 9, 
vascular 
malformation = 5, 
schwannoma = 4, 
other = 6) 
and malignant 
(squamous cell 
carcinoma = 31, 
lymphoma = 8, 
adenoid 
cystic = 5, 
adeno = 4, 
other = 6) tumors

Various Manual and 
autosegmentation

No MaZda Histopathological 
classification

LDA models based off 
subsets of previously-
identified, significant 
texture features 
demonstrated differences 
on STIR (61.29–80.65%) 
and T2-weighted 
images (T2-TSE: 
81.82–100%, T2-TSE 
with fat suppresion: 
71.74–78.26%) 
for 2D evaluation 
and on contrast-
enhanced T1-TSE 
with fat saturation 
(58.54–85.37%) for 3D 
evaluation. Secondary 
analysis of subgroups by 
Tesla strength was also 
conducted

Texture analysis 
is not practical 
for differentiation 
of tumors using 
different magnetic 
resonance (MR) 
protocols on 
different MR 
scanners

2 1
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Automated 
segmentation of 
the parotid gland 
based on atlas 
registration and 
machine learning: 
a longitudinal MRI 
study in head-
and-neck radiation 
therapy

Yang X, Wu 
N, Cheng G, 
Zhou Z, Yu 
DS, Beitler 
JJ, Curran 
WJ, Liu T 

10/13/2014 
(ePub); 
12/2014 
(Print) 

15 Head and neck 
(oropharynx and 
larynx but other 
sites not specified)

Contrast-
enhanced 
T1-weighted; 
Contrast-
enhanced 
T2-weighted

Manual and 
autosegmentation

Yes Not specified Segmentation 
accuracy

A three-step 
autosegmentation 
method leveraging, as 
a component, a trained 
kernel-based support 
vector machine (SVM) 
model successfully 
differentiated 100% 
of parotid volumes 
where the average 
percentage of volume 
differences between 
the proposed method 
and manual physician 
contours were 7.98% 
(left parotid) and 8.12% 
( right parotid). Average 
Dice volume overlap: 
91.1 ± 1.6% (left) and 
90.5 ± 2.4% (right). 
Significant differences in 
volume reductions were 
found between 3-month 
and 1-year follow-up 
examinations (p = 0.19) 
and between 6-month 
and 1-year follow-up 
examinations (p = 0.14)

An 
autosegmentation 
method leveraging 
SVM models could 
accurately segment 
parotid glands when 
compared with 
manual review by 
trained experts
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Texture-based and 
diffusion-weighted 
discrimination 
of parotid gland 
lesions on MR 
images at 3.0 Tesla

Fruehwald-
Pallamar J, 
Czerny C, 
Holzer-
Fruehwald L, 
Nemec SF, 
Mueller-Mang 
C, Weber M, 
Mayerhoefer 
ME

5/23/2013 
(ePub); 
11/2013 
(Print)

38 Parotid masses Contrast-
enhanced 
T1-weighted TSE; 
T1-weighted TSE; 
T1-weighted with 
fat suppression; 
Short Tau 
Inversion 
Recovery (STIR)

Manual and 
autosegmentation

Yes MaZda Histopathological 
classification

LDA models based off 
subsets of previously-
identified, significant 
texture features was 
leveraged to determine 
differences between 
benign and malignant 
parotid masses or 
pleomorphic adenomas 
and Warthin tumors 
on multiple imaging 
modalities. Contrast-
enhanced T1-weighted 
features correctly 
classified 81.8–84.5% 
of benign-malignant 
masses. Whereas, the 
same models applied to 
STIR imaging was poorer 
in distinguishing benign-
malignant masses  
(73.5–78.4%) and 
pleomorphic adenomas-
Warthin tumors (50–59%)

Contrast-enhanced 
T1-weighted 
features contained 
the most predictive 
textural information 
for distinguishing 
benign and 
malignant parotid 
masses. STIR 
images contained 
the least relevant 
textural information

2 1

MRI-based 
texture analysis 
to differentiate 
sinonasal 
squamous cell 
carcinoma from 
inverted papilloma

Ramkumar 
S, Ranjbar S, 
Ning S, Lal 
D, Zwart CM, 
Wood CP, 
Weindling 
SM, Wu 
T, Mitchell 
JR, Li J, 
Hoxworth 
JM

3/2/2017 
(ePub); 
5/2017 
(Print)

46 (training=33, 
validation=13)

Sinonasal Contrast-
enhanced 
T1-weighted with 
fat suppression; 
T1-weighted; 
T2-weighted with 
fat suppression

Manual and 
autosegmentation

Yes Python Histopathological 
classification

The classification model, 
developed using five 
texture algorithms, 
demonstrated 90.9% 
accuracy in the training 
set and 84.6% accuracy 
in the validation set 
(p = 0.537). With 
both sets included, 
model accuracy 
(89.1%) outperformed 
neuroradiologists’ 
ROI review (56.5%, 
p = 0.0004). This was 
not significantly different 
from neuroradiologist 
review of tumors (73.9%, 
p = 0.060) or entire 
images (87%, p = 0.748)

Machine-learning 
accuracy of texture 
analysis algorithms 
outperformed 
neuroradiologists’ 
region of interest 
(ROI) review in 
classification 
of sinonasal 
carcinomas vs. 
inverted papillomas; 
however, its 
accuracy was 
not significantly 
different from 
neuroradiologists’ 
review of tumors or 
entire images

2 1
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(chictR)]

Studies on radiomics for prognostic and predictive biomarkers

Exploration and 
validation of 
radiomics signature 
as an independent 
prognostic 
biomarker in 
stage III-IVb 
nasopharyngeal 
carcinoma

Ouyang 
FS, Guo 
B, Zhang 
B, Dong Y, 
Zhang L, Mo 
X, Huang 
W, Zhang S, 
Hu Q

9/26/2017 
(ePub); 
8/24/2017 
(Print)

100 
(training=70, 

validation=30)

Nasopharynx Contrast-
enhanced 
T1-weighted; 
T2-weighted

Manual Yes Matlab PFS (Progression 
free survival)

In both the discovery and 
validation sets, a radiomic 
signature—using features 
selected via least 
absolute shrinkage and 
selection operator (Lasso) 
regression—successfully 
stratified patients by 
PFS risk category (HR: 
5.14, p < 0.001; HR: 
7.28, p = 0.015) while 
other identified clinical-
pathologic risk factors for 
PFS were not significant 
(all p for HR > 0.05).

A radiomic signature 
based off pre-
treatment MRI scans 
could predict PFS 
risk category and 
improve clinical 
decision-making

1 1

Advanced 
nasopharyngeal 
carcinoma: 
pre-treatment 
prediction of 
progression based 
on multi-parametric 
MRI radiomics

Zhang B, 
Ouyang FS, 
Gu D, Dong 
Y, Zhang L, 
Mo X, Huang 
W, Zhang S

9/22/2017 
(ePub); 
8/2/2017 
(Print)

113 
(training=80, 

validation=33)

Nasopharynx Contrast-
enhanced 
T1-weighted; 
T2-weighted

Manual No Matlab Progression 
(Dichotomized 
to Yes and No 
categories)

Similar to the above 
strategy, radiomic 
features were selected 
using least absolute 
shrinkage and a Lasso 
method for significant 
association with 
progression. In both the 
training and validation 
cohort, the resulting 
radiomic-based model 
optimally performed 
when derived from 
combined contrast-
enhanced T1-weighted 
and T2-weighted imaging 
(training: AUC: 0.896, 
95% CI: 0.815–0.956; 
validation: 0.823, 95% 
CI: 0.645–1.00)

A radiomic model 
based on contrast-
enhanced T1 
and T2 features 
outperformed a 
model based on 
either MRI modality 
alone in its ability to 
predict progression 
in advanced 
nasopharyngeal 
cancer (NPC)

1 1
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Radiomic machine-
learning classifiers 
for prognostic 
biomarkers 
of advanced 
nasopharyngeal 
carcinoma

Zhang B, He 
X, Ouyang 
FS, Gu D, 
Dong Y, 
Zhang L, Mo 
X, Huang 
W, Tian J, 
Zhang S

6/10/2017 
(ePub); 
9/10/2017 
(Print)

110 
(training=70, 

validation=40)

Nasopharynx Contrast-
enhanced 
T1-weighted; 
T2-weighted

Manual Yes Matlab Prognostic 
performance of 
predicting local or 
distant treatment 
failure

Of the six feature 
selection and nine 
classification methods 
examined, the best 
predictive model utilized 
a combination Random 
Forest method (AUC: 
0.8464 ± 0.0069; test 
error, 0.3135 ± 0.0088)

Radiomics models 
utilizing random 
forest methods 
demonstrated the 
highest prognostic 
performance 
compared with other 
machine-learning 
classification 
schemes, 
suggesting its 
utility in enhancing 
applications of 
radiomics in 
precision oncology

1 1

Radiomics features 
of multi-parametric 
MRI as novel 
prognostic factors 
in advanced 
nasopharyngeal 
carcinoma

Zhang B, 
Tian J, Dong 
D, Gu D, 
Dong Y, 
Zhang L, 
Lian Z, Liu 
J, Luo X, 
Pei S, Mo X, 
Huang W, 
Ouyang FS, 
Guo B, Liang 
L, Chen W, 
Liang C, 
Zhang S

3/9/2017 
(ePub); 
8/1/2017 
(Print)

118 
(training=88, 

validation=30)

Nasopharynx Contrast-
enhanced 
T1-weighted; 
T2-weighted

Manual No Matlab PFS Radiomic features were 
selected using least 
absolute shrinkage 
and a Lasso method 
for PFS nomograms. 
Radiomic signatures 
were significantly 
associated with PFS, 
with signatures derived 
from joint contrast-
enhanced T1-weighted 
and T2-weighted images 
(Training C-index: 0.758, 
95% CI: 0.661–0.856; 
Validation C-index: 0.737, 
95% CI: 0.549–0.924). 
Outperforming 
signatures from either 
modality alone. When 
combined with clinical 
characteristics, the 
radiomics signature 
outperformed clinical 
characteristics alone 
in predicting PFS in 
advanced NPC (C-index, 
0.776 vs. 0.649; 
p < 1.60 × 10−7)

Multiparametric 
MRI-based radiomic 
nomograms 
demonstrate 
prognostic ability 
in predicting 
progression in NPC 
patients

1 1
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Texture analysis 
on parametric 
maps derived from 
dynamic contrast-
enhanced magnetic 
resonance imaging 
in head and neck 
cancer

Jansen JF, 
Lu Y, Gupta 
G, Lee NY, 
Stambuk HE, 
Mazaheri Y, 
Deasy JO, 
Shukla-
Dave A

1/28/2016 
(Print)

19 Oropharynx Dynamic 
contrast-
enhanced (DCE)

Manual No Matlab Treatment 
response

Texture analysis on 
parametric DCE-MRI 
maps revealed energy 
of ve was higher in 
intra-treatment vs. 
pre-treatment scans 
(p < 0.04)

Pharmokinetic 
models performed 
on DCE images, 
producing ktrans 
and ve maps, were 
unable to predict 
treatment response. 
However, imaging 
biomarker E of ve 
was significantly 
higher in intra-
treatment scans, 
vs. pre-treatment 
scans, suggesting 
a possible change 
in heterogeneity. 
The study ultimately 
conlcudes 
chemoradiation 
treatment reduces 
tumor heterogeneity 
in this patient cohort

2 1

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


13
Frontiers in O

ncology | w
w

w
.frontiersin.org

M
ay 2018 | Volum

e 8 | A
rticle 131

(Continued)

taBLe 1 | Continued

article  
title

article  
authors

Publication 
date

Number of 
patients

Head and neck  
sub-site

mRi modality 
and/or 
sequence used 
for radiomics 
analysis

Region of 
interest (ROi) 
segmentation 
method

image pre-
processing: 
yes/no

Feature 
extraction 
software

analyzed  
endpoint

Statistical findings: 
radiomic model 
performance

conclusions Successful search 
terms used 

[1 = Radiomic(s), 
2 = mRi texture 

analysis, 
3 = texture 

analysis, 4 = head 
and neck, 

5 = magnetic 
resonance imaging 

texture analysis]

Databases 
[1 = Pubmed, 
2 = emBaSe, 

3 =NiH, 
4 = clinicaltrials.
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Use of texture 
analysis based 
on contrast-
enhanced MRI to 
predict treatment 
response to 
chemoradiotherapy 
in nasopharyngeal 
carcinoma

Liu J, Mao Y, 
Li Z, Zhang 
D, Zhang Z, 
Hao S, Li B

1/18/2016 
(ePub); 
8/2016 
(Print)

53 (training=42, 
validation=11)

Nasopharynx Contrast-
enhanced 
T1-weighted; 
T2-weighted; 
DWI; STIR TSE

Manual Yes Matlab Treatment 
response

Three parameter sets of 
texture features derived 
from their respective 
imaging modalities were 
iteratively curated using 
multiple selection (e.g., 
the dynamic range 
metric) and classification 
methods (e.g., LDA). All 
three (T1: 0.952/0.939, 
T2: 0.904/0.905, 
DWI: 0.881/0.929) 
demonstrated an ability 
to predict treatment 
response, with 
supervised learning 
models using features 
from T1-weighted 
models exhibiting the 
highest classification 
performance vs. 
T2-weighted [artificial 
neural network (ANN): 
p = 0.043, k-nearest 
neighbors (k-NN): 
p = 0.033] or DWI 
(ANN: p = 0.032, k-NN: 
p = 0.014)

Radiomic models 
exhibit an ability to 
predict treatment 
response in NPC 
patients

2 1
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(chictR)]

Characterization 
of cervical lymph-
nodes using a 
multi-parametric 
and multi-modal 
approach for an 
early prediction of 
tumor response to 
chemo-radiotherapy

Scalco E, 
Marzi S, 
Sanguineti 
G, Vidiri A, 
Rizzo G

9/14/2016 
(ePub); 
12/2016 
(Print)

30 Head and 
neck (sites not 
specified)

T2-weighted; 
DWI; computed 
tomography (CT)

Manual Yes Python Treatment 
response

Pre-treatment features 
outperformed mid-
chemoradiation features 
in prediction of treatment 
response. Absolute 
diffusion coefficient 
(ADC) had the highest 
accuracy but, when 
combined with texture 
analysis, classification 
performance increased 
(accuracy = 82.8%). 
When T2-weighted 
texture features were 
evaluated independently, 
their best combination 
of pre-chemoradiation 
indices was equivalent in 
accuracy (81.8%)

An accurate 
assessment 
of response to 
chemoradiation 
in head and neck 
cancer patients 
could potentially 
be predicted from 
ADC parameters 
combined with 
texture analysis 
of T2-weighted 
imaging

2 1

Classification 
of progression 
free survival with 
nasopharyngeal 
carcinoma tumors

Farhidzadeh 
H, Kim JY, 
Scott JG, 
Goldgof DB, 
Hall LO, 
Harrison LB

3/24/2016 
(ePub)

25 Nasopharynx Contrast-
enhanced 
T1-weighted

Manual and 
autosegmentation

No Not specified PFS 
(dichotomized)

Texture features derived 
from highly-enhancing 
signal intensity 
subregions classified PFS 
with 80% accuracy (AUC: 
0.60). Texture features 
derived from weakly-
enhancing subregions 
classified PFS with 76% 
accuracy (AUC: 0.76)

Intratumoral textural 
variations obtained 
through radiomics 
analyses can provide 
a "novel metric" to 
predict prognosis 
and assist clinicians 
in the design of 
individualized 
treatment regimens

1 1

A Magnetic 
Resonance 
Imaging-based 
approach to 
quantify radiation-
induced normal 
tissue injuries 
applied to trismus 
in head and neck 
cancer

Thor M, Tyagi 
N, Hatzoglou 
V, Apte A, 
Saleh Z, Riaz 
N, Lee NY, 
Deasy JO

3/25/2017 
(ePub); 
1/2017 
(Print)

20 Head and 
neck (sites not 
specified)

Contrast-
enhanced 
T1-weighted

Manual No A 
Computational 
Environment 
for 
Radiotherapy 
Research

Radiation- 
induced trismus

Univariate statistical 
associations were 
derived. Mean dose to 
masseter (M), mean dose 
to medial pterygoid (MP), 
and Haralick correlation 
[gray-level co-occurrence 
matrix (GLCM)] of MP 
demonstrated the best 
discriminative ability in 
characterizing radiation-
induced trismus (AUC: 
0.85, 0.77, and 0.78, 
respectively)

An interplay between 
dose to M and MP 
as well as GLCM 
of MP suggests a 
possible relationship 
relevant to the 
etiology of radiation-
induced trismus

1 1
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errors (18.75%); and to identify which independent variables pri-
marily take a single value (6.25%). Subgroup analysis of MS to TS 
demonstrated collinearity between both scoring sets [Spearman’s 
ρ = 0.94 (p < 0.0001)].

Studies were strong in reporting their predictive performance, 
but only seven (44%) completely addressed their metrics in terms 
of validation strategies, parameter estimates, and CIs. A list of 
measured outcomes reported in each study is available in our 
supplementary material (Table S4). In addition, just one study 
(6.25%), Fruehwald-Pallamar et al. (38), compared their strategy 
with existing models in the literature using CIs. As for their 
conclusions, studies consistently failed to demonstrate whether 
sufficient data were available to fit their respective models (25%). 
However, most addressed potential bias (62.5%) as well as gener-
alizability (68.75%) of their data.

Synthesized Findings of Ongoing trials
Ongoing trials (51–54) (Table  2) estimate completion dates 
between June 2018 and December 2019 with one end-date 
unknown (25%). Three studies did not indicate a specific MRI 
sequence for feature extraction (75%). In addition, three studies 
will evaluate multiple head and neck sub-sites (75%). Two studies 
will prospectively evaluate data (50%), one study will be a case 
series (25%), and one study did not specify its design (25%). All 
studies will evaluate prognostic or predictive endpoints and, in 
addition, one study will evaluate a decision support system as its 
primary endpoint (25%). No preliminary data are available for 
any of the ongoing studies.

DiScUSSiON

Summary of main Findings
Our review represents the first attempt to summarize MRI 
radiomics research in HNC patients. Each completed study was 
evaluated using checklists generated from Luo et al. (1) EQUATOR 
methodology reporting guidelines: Individually scored, then 
collectively assessed for quality. Overall, our results indicate sig-
nificant heterogeneity in study design, with limited consensus on 
a preferred radiomic signature. Thus, despite addressing reporting 
guidelines, included studies still demonstrate poor standardiza-
tion. Such deficits may limit their generalizability and eventual use 
as clinical-decision support systems. However, this comprehensive 
review may improve comparison of data across study methodolo-
gies and structure similar analyses in other cancer sites.

Addressing Study Design
Several factors contribute to the lack of standardization across 
MRI radiomic studies in HNC patients. Variations follow the 
typical radiomics workflow: Patient populations (or head and 
neck sub-sites), image acquisition and pre-processing (MRI 
modalities), ROI segmentation methods, image pre-processing 
and feature extraction, feature selection, statistical modeling, and 
analyzed endpoints.

Head and Neck Sub-Sites
In our analysis, there was not a single head and neck sub-site 
representing a majority of all studies. However, the nasopharynx 

(37.5%) was the most commonly researched site. Diversity in head 
and neck sub-sites is not a unique characteristic of MRI radiomic 
studies, as research using CT radiomics has demonstrated a 
similar range of investigated patient populations (14). However, 
the high percentage of NPC studies may reflect the frequent use 
of MRI in their standard of care (55, 56).

In all six NPC studies, radiomic signatures demonstrated pre-
dictive potential. Of the feature categories included in their final 
radiomic signatures, GLCM was the only shared feature category 
between studies. This is consistent with NPC radiomic studies 
using other imaging modalities: Lu et al. (57) analyzed 88 texture 
features from FDG/PET-CT scans of 40 NPC patients, calculat-
ing the robustness of selected parameters in segmentation and 
discretization. Five GLCM properties (SumEntropy, Entropy, 
DifEntropy, Homogeneity1, and Homogeneity2) significantly 
demonstrated robustness at an intraclass coefficient constant 
≥0.8 for seven segmentation methods and five discretization 
bin sizes.

Magnetic resonance imaging radiomics is not limited to stud-
ies of tumors alone. Radiomic signatures can predict RT-related 
toxicities in normal tissues, such as radiation-induced trismus 
(45), or they can be designed to autosegment parotid glands 
post-RT (46). Future studies should investigate whether radiomic 
features could predict the effects of RT-related toxicities on qual-
ity of life or if changes in corresponding critical organ volumes, 
such as structures involved in the swallowing mechanism, can be 
estimated.

MRI Modalities
Magnetic resonance imaging sequence preferences varied 
among studies, which is not uncommon to radiomics research in 
other cancer sites (58). Multiparametric approaches may reduce 
the risk of bias from features extracted from one sequence alone 
(49). However, since Brown et  al. (36) and Jansen et  al. (40) 
evaluated physiologic parameters, it is reasonable that additional 
MRI sequences would not adequately address their respective 
hypotheses. For example, Jansen et al. (40) selected DCE MRI 
for its ability to incorporate pharmacokinetic modeling. Before 
their study, DCE MRI parametric maps exhibited high image 
coherence among a tumor response group of limb sarcoma 
patients (59). Brown et al. (36) chose DWI MRI to improve its 
accuracy in stratification of thyroid nodules, a utility proven in 
feasibility studies (60, 61).

Other than sequence selection, MRI modalities may differ in 
their scanner properties, which would affect the reproducibility 
of images and, in turn, the texture features derived from them. 
To investigate whether texture-based signatures could appropri-
ately classify head and neck masses across centers, Fruehwald-
Pallamar et al. (39) recruited five MRI scanners from multiple 
manufacturers—each with varying field strengths, sequences, 
and acquisition parameters. The objective was to test whether 
texture analysis could be reliably reproduced in a “real world” 
clinical scenario. Although the authors ultimately could not 
recommend texture analysis for routine practice, certain texture 
features maintained discriminatory significance—particularly 
those derived from short tau inversion recovery and T2-weighted 
sequences. However, a review of study methodology revealed 
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taBLe 2 | Magnetic resonance imaging (MRI) radiomics in HNC: ongoing trials

article title article 
authors

Publication 
date

Number of 
patients

Head and neck 
sub-site

mRi modality 
and/or 
sequence used 
for radiomics 
analysis

ROi 
segmentation 
method

image pre-
processing: 
yes/no

Feature 
extraction 
software

analyzed endpoint Statistical 
findings: 

radiomic model 
performance or 

conclusions

Successful search terms 
used [1 = Radiomic(s), 

2 = mRi texture analysis, 
3 = texture analysis, 
4 = head and neck, 

5 = magnetic resonance 
imaging texture analysis]

Databases 
(1 = Pubmed, 
2 = emBaSe, 

3 = NiH, 
4 = clinicaltrials.
gov, 5 = chictR)

Big data and models for 
personalized head and 
neck cancer decision 
support (BD2DECIDE)

Poli T, 
Schcekenback 
K, Schipper 
J, Colter L, 
Licitra L, Gatta 
G, Favales F, 
Trama A, De 
Cecco L, Silini 
EM, Maglietta 
G, Caminiti 
C, Iambin P, 
Hoebers F, 
Berlanga A

Estimated 
study 
completion 
date: 4/2019

Prospective arm: 
450, Retrospective: 
1000

Head and neck 
(Oral cavity, 
oropharynx, 
larynx, 
hypopharynx)

T1-weighted; 
T2-weighted; 
Computed 
Tomography (CT) 

Not specified Not specified Not specified Validation of decision 
support system; 
secondary outcomes 
include improved 
quality of life and 
assessment of 
survival time

N/A 1 4

Predictors of normal 
tissue response from 
the microenvironment in 
radiotherapy for prostate 
and head-and-neck 
cancer (MICROLEARNER)

Valdagni R, 
Orlandi E, 
Bedini N, 
Cecco LD, 
Zaffaroni N, 
Rancati T

Estimated 
study 
completion 
date: 
12/31/2019

Prospective clinical 
trial population: 
130 prostate, 130 
HNC; prospective 
validation population: 
70 prostate, 70 HNC

Prostate; Head 
and neck (oral 
cavity, pharynx, 
larynx, paranasal 
sinuses and 
nasal cavity, 
salivary glands)

MRI (not specified) Not specified Not specified Not specified Acute toxicity 
<90 days after Rt; 
secondary outcomes 
include late toxicity

N/A 1 4

Radiomics features 
for prediction of effect 
of local advanced 
nasopharyngeal carcinoma 
based on CT or MRI pre-
chemoradiotherapy—a 
prospective cohort study

Su T-S Estimated 
study 
completion 
date: TBD

Case series of 200 Nasopharynx CT or MRI (not 
specified)

Not specified Not specified Not specified Overall survival 
(OS), secondary 
outcomes include 
local-control rate 
and progression-free 
survival (PFS)

N/A 1 5

Personalized postoperative 
radiochemotherapy in 
patients with head and 
neck cancer

Zips DA Estimated 
study 
completion 
date: 6/2018

Not specified Head and neck 
(oropharynx and 
hypopharynx)

Positron Emission 
Tomography (PET), 
MRI (not specified)

Not specified Not specified Not specified PFS; secondary 
outcomes—disease 
free survival, OS, 
development of a 
multi-parametric 
decision support 
system

N/A 1 4
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omissions in model selection strategy, and their overall checklist 
score was below the median (TS: 37). Another issue was their 
intentionally diverse study population. Even though the sample 
consisted of 100 patients, the sub-sites were heterogeneous, with 
an unequal distribution of tumors among seven categories of 
benign masses and five categories of malignant masses. Thus, it 
is difficult to draw conclusions on radiomic signatures off this 
study alone.

Although the Quantitative Imaging Biomarkers Alliance 
(QIBA) continues to develop protocols for optimizing acquisition 
parameters, a technically confirmed profile for MRI radiomics 
does not exist. Yet, functional magnetic resonance imaging, DWI 
MRI, DCE MRI, and magnetic resonance elastography imaging 
biomarker profiles are currently in progress. The QIBA profile 
on DWI MRI (62), for example, specifies quality analysis (QA) 
of image acquisition and review of acquired data in brain, liver, 
and prostate studies. QIBA designed DWI MRI phantoms to 
streamline calculations of absolute diffusion coefficient (ADC) 
parametric maps and bias estimates, signal-to-noise ratios, as 
well as ADC spatial and b-value dependences. Extension of this 
protocol to DWI MRI radiomic studies in thyroid cancer could 
thus standardize ADC ROI assessment.

ROI Segmentation Methods
Once useable images are generated, ROIs must be segmented 
to assign volumes for feature derivation. Similar to other 
processes in the radiomics workflow, segmentation methods 
vary in their approach and design. Volumes are typically 
delineated either by manual contours, which can be laborious 
and time-consuming, or through autosegmenting machine-
learning algorithms (63). Although the latter may present a 
new opportunity for standardized segmentation methods, 
challenges persist related to the complex anatomy of the head 
and neck sub-site, optimization of patient-based atlases, and 
SVM training characteristics (46). Further still, such methods 
may pale in comparison to recent advances in deep learning, 
where autosegmentation of myocardial volumes has already 
been accomplished on cardiac MRI (64). For studies leveraging 
one segmentation method alone, QA must be specified to limit 
ROI variation error. Example QA strategies include utilizing 
multiple experts to review volumes or statistically validating 
segmentation methods, as Fruehwald-Pallamar et  al. (38) 
optimally demonstrated.

Image Pre-Processing and Feature Extraction
Before feature extraction, image quality should be ensured 
through pre-processing steps. To mitigate noise, which may 
confound raw imaging data, filters can be applied. Filter choice 
is dependent on acquisition parameters of imaging modalities, 
which necessitates standardization of preceding steps. Other 
obstacles to image pre-processing include diverse resampling 
schemes, varying computational definitions, motion artifacts, 
tumor size, and intratumoral heterogeneity, all of which need to 
be accounted for in study methodology (65, 66). As an example, 
Liu et  al. (37) not only specified the standardization of their 
image acquisition parameters but also detailed their protocol for 
normalizing variations in image gray-level ranges.

Feature extraction ultimately depends on choice in software 
as well as characteristics of the features themselves. Radiomics 
features can be categorized by statistical output, where each 
subsequent ordinal group represents a higher complexity of 
voxel-based analysis. For example, first-order characteristics 
(e.g., ADC) are spatially independent descriptors of voxel distri-
bution. Second-order characteristics, often equated with textural 
features, describe spatial relationships between two neighboring 
voxels (12). Often, however, studies do not explicitly character-
ize their extracted feature set, a major limitation to research 
reproducibility. At the minimum, the included studies in this 
review extracted spatially dependent features to investigate their 
endpoints.

Feature Selection
Each study developed a unique radiomic signature, which 
demonstrates both the strengths and weaknesses of “big data” 
research. Strengths include the volume of potentially useful 
quantitative information and flexibility of radiomic applications, 
but reproducibility and reliability of measured outcomes remain 
a concern (65). Thus, comparison of all selected features between 
studies is not entirely feasible. Although radiomic signatures 
contained similar categories of features, diverse parent feature 
samples derived from diverse MRI sequences with their own 
diverse scanner properties, signify the level of input and output 
variation inherent to these studies.

While most included studies detailed selection of extracted 
radiomic features, Meyer et al. (41) did not reduce their initially 
derived feature set. Direct and inverse correlations between speci-
fied features and classification parameters were discovered, but this 
presents a challenge to rationalize statistically. Potentially spuri-
ous associations (e.g., false positives) are inadequately addressed, 
which reflects the issues (e.g., approaches to data cleaning and 
transformation) identified collectively in our checklist. Future 
studies should clearly justify handling of missing values as well 
as terms and conditions for outlier removal. As checklist scores 
indicate, this remains an unaddressed issue.

Investigating the stability of MRI radiomic signatures could 
also identify necessary tweaks to the system. For instance, a 
feature selection method based on established stability criteria 
may help guide standardization of radiomic signatures (65). In 
soft tissue sarcomas, DWI MRI radiomic features derived from 
ADC maps were shown to maintain relevance across geometric 
transformations of ROIs (67). In recurrent GBM, test-retest 
reproducibility of 158 second-order radiomic features revealed 
74% stability (68). Similarly, Liu et  al. (2) only incorporated 
reproducible textural parameters in their final radiomic signa-
ture. They used a concordance correlation coefficient ≥0.9 to 
initially select features that maintained stability across different 
multi-observer ROI iterations of the same NPC patient. Outside 
of validation datasets, however, similar approaches are lacking 
in HNC studies.

Statistical Modeling
Discussed in previous reviews, a final radiomic signature is con-
strained by statistical analysis (9, 69, 70). When building predictive 
models, a set of candidate models should be reduced to the most 
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appropriate classifier, defined by performance metrics of a spe-
cific selection strategy (e.g., k-fold validation) (1, 66). Otherwise, 
a concern may be the adoption of dimensionality-reduction 
techniques solely to limit over-fitting of data. A combined feature 
extraction and statistical learning platform, built for radiomic 
challenges, would quell concerns about optimization of radiomic 
models. Until then, the aforementioned barriers persist across 
imaging modalities, with limited research focused exclusively on 
MRI radiomic applications (65).

Analyzed Endpoints
Choice of analyzed endpoint guides investigators through their 
specific radiomics pipeline. Thus, this adds another layer of 
complexity to selection, extraction, and modeling of features. To 
objectively predict outcomes, then, automating the above steps 
may preclude confounded associations. In their prospective MRI 
radiomic analysis of head and neck tumor p53 classification, 
for example, Dang et al. (37) used separate software for feature 
quantification and selection to identify best candidate predictors. 
Textural features can be biased by imbalances in events or classi-
fication parameters, particularly for prediction of rare outcomes. 
Statistical sampling techniques to enhance prediction accuracy 
should be implemented for unbalanced datasets.

In their 2016 review of HNC radiomics, Wong et  al. (14) 
identified four of the included studies in our cohort, with three 
(75%) investigating classification schemes and just one (25%) 
analyzing prognostic or predictive biomarkers. At the time, CT 
radiomics research in HNC concentrated on the latter category 
(14). Discovered through our search strategy, abstracts from 
conference proceedings (Table S3 in Supplementary Material) all 
focused on prognostic endpoints in NPC patients (71–73). Thus, 
perhaps, MRI radiomic studies in HNC are trending toward these 
outcome measures.

Checklist Scores
Studies with the highest overall scores [e.g., Liu et al. (37) (TS: 
48)] addressed more of the methodology reporting guidelines 
than studies with lower scores (Spearman’s ρ  =  0.94), which 
reflects areas of improvement for subsequent work. For example, 
Liu et al. (2) (MS: 30), were awarded points across the category 
except for one item (stating how missing values were handled). In 
addition to an internal 10-fold cross-validation strategy, the study 
externally validated their findings in an independent sample of 
11 patients. They were also the only study to address each item in 
the “Build the predictive model” subsection. Their manuscript’s 
discussion received points for every item in the “limitations” 
subsection; in particular, the authors demonstrated sufficient data 
available for fitting of their models (neglected in 75% of studies).

Likewise, Ramkumar et al. (43) addressed methodology items 
commonly missing in other studies. For instance, the authors 
explained possible prediction errors of texture analysis in dis-
tinguishing sinonasal squamous cell carcinoma from inverted 
papilloma. Similarly, they addressed multiple items in the data 
pre-processing subsection including data cleaning (e.g., feature 
reduction) and data transformation. The study meticulously 
described organization and selection of features, via a principal 
component analysis, as well as the metrics in building their final 

model. Although not technically an external validation set, the 
addition of a neuroradiologist review to an internal leave-one-out 
cross-validation assess buffered the strength of their classification 
accuracy.

Limitations
The review does present some notable limitations. A literature 
search with a known end-date may miss studies published in the 
interim; this is a limitation of any systematic review. Since MRI 
radiomics is a field still in its infancy, with a nomenclature not 
fully standardized, search keywords based on existing literature 
may not detect all eligible works inclusively. Specifically, keywords 
containing “texture analysis” may not encompass the breadth of 
radiomic investigations. To address this, we combed references 
of each included manuscript. Yet, we are aware of the challenges 
and risk of bias in selecting potential studies for inclusion and 
presenting a complete summary of a burgeoning research topic.

Although our checklist was constructed from established 
guidelines (1), the scoring system required multiple revisions 
to fairly assess the included studies. As the guidelines were not 
intended to be quantitative measurements, our group met fre-
quently to weight each item. In addition, we removed guidelines 
which were difficult to interpret among all authors. Finally, we 
cannot predict whether the original authors of the guidelines 
would have constructed the same checklist. We can, however, 
attest to its quality, given its review by multiple expert radiation 
oncologists trained in radiomic analyses.

conclusion
Magnetic resonance imaging radiomic studies in HNC lack 
standardization of study design, which practically limits their 
clinical relevance. Nonetheless, radiomic applications have 
demonstrated predictive potential in classification schemes and 
prognostic biomarker identification. Our quantitative scoring 
system may encourage routine study assessment, perhaps ensur-
ing better data moving forward.

As our collation of the available HNC evidence indicates, MRI 
radiomics is an evolving field of study. Thus, we suggest several 
steps for streamlining future investigations. At our institution, 
novel radiomic-specific MRI phantoms are currently in develop-
ment and may quantify the effects of inter-scanner variability on 
radiomic feature generation (70). Understanding the interplay 
between these processes will hopefully enhance data output. 
Regarding extraction and selection of features, the imaging 
biomarker standardisation initiative continues to derive testable 
categories (74). However, feature stability assessments in MRI are 
still pending. Analysis should be conducted using readily avail-
able software with sufficient flexibility across statistical platforms. 
Reports of finalized results should follow Luo et al. (1) EQUATOR 
methodology reporting guidelines.

To cross-validate radiomic signatures externally, tests should 
be performed on public patient datasets (e.g., The Cancer Imaging 
Archive). To this end, an upcoming multi-site collaboration 
between MDACC and other academic cancer centers will generate a 
repository of patient data in Digital Imaging and Communications 
in Medicine format, as part of our LAMBDA-[RAD]2-HN initiative: 
a Large-scale Image Aggregation for Machine-Learning/Big Data 
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Applications in Radiomics/Radiotherapy for Head and Neck 
Cancer. This working group aims to provide an open-access library 
of curated “big data,” rigorously maintained and routinely assessed 
for quality (75). Therefore, subsequent efforts to standardize MRI 
radiomics in HNC would share a reliable data pool.
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