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Osteosarcomas are the most frequent form of primary bone tumors and mainly affect 
children, adolescents, and young adults. Despite encouraging progress in therapeutic 
management, including the advent of multidrug chemotherapy, the survival rates have 
remained unchanged for more than four decades: 75% at 5 years for localized disease, 
but two groups of patients are still at high risk: metastatic at diagnosis (overall survival 
around 40% at 5 years) and/or poor responders to chemotherapy (20% at 5 years). 
Because these tumors are classified as “complex genomic,” it is extremely difficult 
to determine the signaling pathways that might be targeted by specific therapies.  
A hypothesis has thus emerged, stating that the particular microenvironment of these 
tumors may interfere with the tumor cells that promote chemoresistance and the 
dissemination of metastases. The stroma is composed of a large number of cell types 
(immune cells, endothelial cells, mesenchymal stromal cells, etc.) which secrete growth 
factors, such as transforming growth factor-β (TGF-β), which favors the development 
of primary tumors and dissemination of metastases by constituting a permissive niche 
at primary and distant sites. Rather than targeting the tumor cells themselves, which 
are very heterogeneous in osteosarcoma, the hypothesis is instead to target the key 
actors secreted in the microenvironment, such as TGF-βs, which play a part in tumor 
progression. In the last decade, numerous studies have shown that overexpression of 
TGF-β is a hallmark of many cancers, including primary bone tumors. In this context, 
TGF-β signaling has emerged as a crucial factor in the cross talk between tumor cells 
and stroma cells in poor-prognosis cancers. Secretion of TGF-β by tumor cells or 
stroma cells can effectively act in a paracrine manner to regulate the phenotype and 
functions of the microenvironment to stimulate protumorigenic microenvironmental 
changes. TGF-β can thus exert its protumorigenic function in primary bone tumors by 
promoting angiogenesis, bone remodeling and cell migration, and by inhibiting immu-
nosurveillance. This review focuses on the involvement of TGF-β signaling in primary 
bone tumor development, and the related therapeutic options that may be possible for 
these tumors.
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iNTRODUCTiON

Osteosarcoma (OS) is the most common malignant primary 
bone tumor, occurring above all in children, adolescents, or young 
adults with a median age of onset of 18 years. These tumors occur 
commonly in the metaphyseal region of the long bones, developing  
at sites of rapid bone growth (1). The World Health Organization 
classification of tumors of the soft tissue and bone defines 
osteosarcoma as a “malignant, bone-forming tumor, divided into 
several histological subtypes: chondroblastic, fibroblastic, osteo-
blastic, telangiectasic, or small cells” (2). Some of these histologi-
cal forms have distinct molecular and biological behaviors. Most 
osteosarcomas are “conventional OS” (85%), defined as primary 
intramedullar high-grade malignant tumors in which neoplastic 
cells produce immature bone or osteoid tissue.

Current treatment associates surgery with combinational chemo-
therapy which cures at 5 years approximately 70% of patients with 
localized disease, with response to preoperative chemotherapy as 
the strongest predictor of overall survival (3). However, survival 
for patients with metastatic or relapsed disease has remained 
unchanged over the past 40 years, with an overall survival rate of 
about 20% at 5 years (4, 5). At the time of diagnosis, 20% of patients 
present with detectable lung metastases, but it has been estimated 
that undetectable metastases are present in 80% of cases (6).

New therapeutic options are therefore needed for this type of 
tumor.

OSTeOSARCOMA MiCROeNviRONMeNT: 
POTeNTiAL THeRAPeUTiC TARGeTS

Conventional high-grade osteosarcomas are generally genomi-
cally unstable tumors with complex karyotypes (7). Rarity and 
genomic complexity, as well as intra-tumoral and intertumoral 
heterogeneity, have presented challenges for the molecular char-
acterization of osteosarcomas. These tumors are characterized by 
chromosomal instability, with high levels of somatic structural 
variations and copy number alterations (8). Somatic mutations 
in both TP53 and RB1 are the most frequently reported (9, 10).  
Other mutated genes include RecQ protein-like 4, which encodes 
a RecQ helicase, and RUNX2. Another contributor to genomic 
instability is alternative lengthening of telomeres, which prevents 
telomere shortening and induces senescence (11). To date, the 
search for common molecular therapeutic targets in osteosar-
coma has been disappointing. In this context, rather than target-
ing tumor cells themselves, the hypothesis is to target the key 
actors secreted in the microenvironment and which play a part 
in tumor progression.

Irrespective of their origins, tumors are heterogeneous cel-
lular entities whose progression greatly depends on reciprocal 
interactions between genetically altered neoplastic cells and 
their non-neoplastic counterparts present in the microenvi-
ronment. Tumor bulk is therefore composed of differentiated 
tumor cells, and by cancer stem cells that are combined and 
interact with normal cells. The interplay between them regulates 
the production and biological activity of many soluble factors 
and extracellular matrix components that allow the growth 
and maintenance of solid tumors (12). Therefore, the reactive 

stroma plays a key role in the development and progression of 
cancer. Osteosarcoma originates in bone where there is a high 
concentration of mesenchymal progenitors. Tumor-associated 
stroma mainly consists of two major categories of component: 
(i) the extracellular matrix, composed of structural proteins 
such as collagen and elastin, specialized proteins such as 
fibronectin, and proteoglycans such as hyaluronan; (ii) cellular 
elements, composed of cells surrounding the tumor tissue that 
play a part in the stromal response, i.e., bone cells, vasculature 
and endothelial cells, pericytes, immune cells such as mac-
rophages [tumor-associated macrophages (TAMs)] and lym-
phocytes, and mesenchymal stromal cells (MSC). In addition, 
fibroblasts that differentiate from MSC and usually switch to a 
tumor-promoting cell phenotype, called the cancer-associated 
fibroblasts, are also present in the tumor microenvironment 
(TME) (13).

Mesenchymal stromal cells are involved in osteosarcoma 
growth and progression, through cross-feeding of the tumor cells 
via the release of cytokines and soluble growth factors, by helping 
in migration, proliferation and stemness, membrane cross-talk 
via microvesicle secretion, metabolic reprogramming of tumor 
cells, and immune escape. MSC are non-hematopoietic precursors 
found in the bone marrow. They contribute to the maintenance 
and regeneration of a variety of tissues of mesodermal lineage, 
including bone.

One of the main features of osteosarcomas is their influ-
ence on bone remodeling as they are characterized by both 
the formation of osteoid matrix, and by osteolytic lesions.  
A vicious cyclie between tumor and bone cells occurs during 
the development of osteosarcoma, promoting tumor growth and 
metastatic dissemination (Figure 1). In brief, osteosarcoma cells 
produce soluble osteolytic factors such as interleukin-6 (IL-6), 
IL-11, tumor necrosis factor-α, or receptor activator of NF-κB 
ligand (RANKL) that activate osteoclastogenesis, leading to bone 
degradation. Following this process, growth factors trapped in 
the bone matrix, such as transforming growth factor-βs (TGF-βs),  
are released into the bone microenvironment and stimulate 
tumor growth and metastatic progression (14, 15). The impact of 
osteoclast activity on osteosarcoma growth and progression has 
been reported by several studies (16–19). Therefore, therapeutic 
approaches targeting osteoclasts may be a promising option. 
Although the use of zoledronate, a strong inhibitor of osteoclast 
function, in the French randomized OS2006 trial in combination 
with chemotherapy and surgery, did not show any significant 
improvement (20), targeting the cytokines released during bone 
degradation, in particular TGF-β, remains relevant.

TGF-β SiGNALiNG PATHwAYS

In humans, the TGF-β family is composed of 33 members, encoded 
by 33 different genes, including the TGF-βs, activins, nodal, bone 
morphogenetic proteins, and growth and differentiation factors 
(21–23). Of these secreted cytokines, three different isoforms 
of TGF-βs have been identified in mammals: TGF-β1, -β2, and 
-β3. TGF-β isoforms are secreted as latent precursor molecules, 
requiring activation into a mature form for receptor binding. 
Many activators of latent TGF-βs have been described in the last 
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FiGURe 1 | The vicious cycle between tumor and bone cells during osteosarcoma development. Osteosarcoma cells produce soluble osteolytic factors  
such as receptor activator of nuclear factor kappa-B ligand (RANKL), interleukin-11 (IL-11), IL-6, and tumor necrosis factor-α (TNF-α) that directly activate 
osteoclastogenesis, leading to bone degradation. Osteosarcoma cells also produce soluble factors, such as bone morphogenetic protein (BMP) or parathyroid 
hormone-related protein (PTHrP), which stimulate the production of RANKL by osteoblasts and therefore increase osteoclast activity. Osteoblasts are derived from 
mesenchymal stem cell in response to transcriptional factors such as Runx2 and osterix. Following bone degradation, the growth factors trapped in the bone matrix, 
such as transforming growth factor-βs (TGF-βs), are released into the bone microenvironment and stimulate both tumor growth and metastatic progression.

FiGURe 2 | The transforming growth factor-β (TGF-β)/Smad signaling pathway. 
TGF-β dimers bind to two TβRII receptors that induce the assembly of two TβRI 
and two TβRII receptors into a heterotetrameric complex in which TβRII 
phosphorylates and activates TβRI. Smad3 (S3) is then phosphorylated and 
activated by TβRI. Activated S3 dissociates from the Smad anchor for receptor 
activation protein (SARA) and recruits Smad4 (S4). This protein complex is 
translocated into the nucleus to regulate target gene expression in association 
with cofactors (Co-F) and/or p300. Smad7 (S7) recruits E3-ubiquitin ligases 
(Smurf1 and Smurf2) to activate TRβI, resulting in receptor degradation.
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few decades, including integrins, proteases such as MT1-matrix 
metalloproteinase (MMP) or others MMPs, and physicochemical 
factors such as detergents, and ionizing and ultraviolet radiation 
(22, 24–26). Once activated, TGF-β dimers signal from the mem-
brane to the nucleus by binding to two heteromeric cell surface 
serine/threonine kinase receptors, named type I (TβRI) and type 
II (TβRII) receptors. Ligand binding induces the assembly of two 
TβRI and two TβRII receptors into a heterotetrameric complex 
in which TβRII phosphorylates a specific serine residue of TβRI 
and in turn activates the serine/theronine kinase of TβRI (27–29).

Transforming growth factor-βs thus activate the Smads 
cascade (Figure  2), known as the canonical TGF-β signaling 
pathway. Briefly, receptor-regulated Smads (R-Smads), includ-
ing Smad2 and Smad3, are phosphorylated and activated by 
TβRI. Activated R-Smads then dissociate from the Smad anchor 
for receptor activation protein (30) and recruit the common-
mediator Smad (co-Smad), Smad4. This protein complex is 
translocated into the nucleus to regulate target gene expression. 
At the regulatory DNA binding sequence of genes, the R-Smad/
co-Smad complex activates transcription through physical 
interaction and functional cooperation of DNA-binding Smads 
with sequence-specific transcription factors (29). The minimal 
Smad-binding element contains four base pairs, 5′-AGAC-3′, 
but binding to other G/C-rich sequences has also been reported 
(31). Interaction between the R-Smad/co-Smad complex and 
other transcription factors (either co-activators or co-repressors) 
generates a high-affinity protein-DNA complex to regulate gene 
expression. Several inhibitory mechanisms regulate the TGF-β 
signaling cascade. Of them, Smad7, induced by TGF-β (32), 
competes with R-Smads for binding to activated TβRI and thus 

inhibits R-Smad phosphorylation. Smad7 also has the ability to 
recruit E3-ubiquitin ligases (Smurf1 and Smurf2) to activate TβRI, 
resulting in receptor degradation (33, 34). Moreover, Smad7 may 
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FiGURe 3 | The tumor suppressor and protumoral properties of transforming growth factor-β (TGF-β) in carcinoma. Tumor suppressor properties: TGF-βs inhibit  
cell proliferation largely by inducing the expression of cyclin-dependent kinase (CDK) inhibitors such as p21Cip1 (p21) and p15lnk4b (p15). Protumoral properties: 
TGF-βs stimulate epithelial–mesenchymal transition (EMT). This process is associated with a loss or downregulation of E-cadherin, claudins, and occludins, and  
an upregulation of mesenchymal markers such as N-cadherin, fibronectin, and vimentin. These changes in gene expression are regulated by transcription factors 
such as Snail-1, Snail-2, ZEB-1, and ZEB-2. TGF-βs stimulate angiogenesis in part by stimulating platelet-derived growth factor (PDGF) and vascular endothelial 
growth factor (VEGF) expression. TGF-βs favor cancer cell migration and invasion in part by increasing matrix metalloproteinase-2 (MMP) expression. TGF-βs  
exert immunosuppressive effects via the modulation of the activity or biology of immune cells such as T-cells, natural killer cells (NK-cells), macrophages, and 
dendritic cells.
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recruit protein phosphatases to the receptor complex, resulting in 
its inactivation (35).

In addition to this canonical pathway, TGF-βs are also able to 
activate Smad independent or non-canonical pathways, includ-
ing mitogen-activated protein kinases and phosphoInositide3-
kinase/AKT (PI3K/AKT) signaling pathways (36). In this context, 
one of the first non-Smad effectors of the TGF-β receptor complex 
is TRAF6, implicated in the activation of TGF-β-activated kinase 
1, capable of activating the SAP/JNK and p38-kinase pathways 
(37, 38). More recently, it has been shown that TRAF6 favors the 
formation of a TβRI/p85α complex, leading to activation of the 
PI3K/AKT cascade (39).

TGF-β AND OSTeOSARCOMA

Regarding carcinoma, it is widely accepted that TGF-βs act both 
as tumor suppressors in premalignant tumors and as tumor 
promoters in advanced tumors (15, 40–43) (Figure 3).

Briefly, TGF-β1 acts as a tumor suppressor mainly through its 
ability to inhibit cell proliferation both by inducing the expression 
of cyclin-dependent kinase inhibitors such as p21Cip1 and p15lnk4b, 

and/or by reducing the expression of proliferative drivers such 
as c-Myc and cyclin-D (44–46). In this context, alterations or 
mutations to TGF-β cascade members have been associated with 
several types of carcinoma (47, 48).

In contrast with carcinoma, it seems that TGF-βs fail to inhibit 
mesenchymal cell proliferation, particularly in the case of osteo-
sarcoma cells (49, 50) and that TGF-βs exert only protumoral 
properties in sarcomas through their pro-metastatic effects. In 
this context, we will focus in this chapter on the pro-metastatic 
properties of TGF-βs in osteosarcoma. In the last few decades, 
studies of TGF-βs expression in cancer have correlated TGF-βs 
levels with the metastatic potential of tumors, suggesting that 
TGF-βs play a role in tumor progression. In osteosarcoma, 
TGF-β1 and TGF-β2 expression increase in the sera of patients 
compared to those of healthy donors (50). This increase in 
TGF-β production is correlated with high-grade osteosarcoma 
and associated with the presence of lung metastases (50–52). 
In addition, our previous results suggest that TGF-β is capable 
of targeting both tumor cells and their microenvironment. The 
secretion of TGF-βs by tumor cells or stroma cells can effectively 
act in an autocrine/paracrine manner to regulate the phenotype 
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FiGURe 4 | The crucial role of transforming growth factor-βs (TGF-βs) in osteosarcoma tumor growth and metastatic dissemination. Following bone degradation, 
the TGF-βs trapped in the bone matrix are released and promote osteosarcoma growth and metastatic dissemination by targeting both osteosarcoma tumor cells 
and their microenvironment. TGF-βs target osteosarcoma cells: TGF-βs stimulate “epithelial–mesenchymal transition-like” (EMT), cell migration, and invasion in part 
by increasing matrix metalloproteinase-2 (MMP-2) expression. TGF-βs target tumor microenvironment: TGF-βs upregulate the expression of osteolytic factors such 
as receptor activator of nuclear factor kappa-B ligand (RANKL) and interleukin-11 (IL-11) and therefore stimulate bone osteolysis and the secretion of protumoral 
factors. TGF-βs upregulate platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) expression, and therefore angiogenesis. Finally, 
TGF-βs exert immunosuppressive effects by regulating immune cell proliferation and activity.
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and functions of the microenvironment in order to stimulate 
protumorigenic microenvironmental changes.

TGF-β exerts Protumorigenic Functions  
by Targeting Tumor Cells: TGF-β and 
epithelial–Mesenchymal Transition  
(eMT) or “eMT-Like” Phenomena
The switch in TGF-β properties during carcinogenesis has been 
associated with the ability of TGF-βs to induce the EMT pro-
cess (53). This multi-step process, characterized by a decrease 
in epithelial properties and an increase in mesenchymal ones, 
promotes the invasiveness of cancer cells and contributes to the 
development of circulating tumor cells (43, 54). This cellular 
process involves different molecular and cellular modifications, 
including a loss of cell-to-cell interactions associated with a loss or 
downregulation of crucial components in the intercellular junc-
tion such as E-cadherin, claudins, occludins, and desmosomes. 
In parallel, an upregulation of mesenchymal marker expression, 
such as N-cadherin, fibronectin, and vimentin, is observed. These 
changes in gene expression are regulated by different transcrip-
tion factors such as Snail-1, Snail-2 (Slug), ZEB-1, and ZEB-2, 
or Twist (53, 54). Various secreted factors, such as fibroblast 
growth factors, hepatocyte growth factor, Wnts, Hedgehog 
proteins, or TGF-βs, induce EMT or are implicated in EMT 
(55). The regulation of EMT by TGF-βs has been associated with 

Smad-dependent and Smad-independent signaling pathways 
(43, 56). In TGF-β-induced EMT, Smad proteins can induce the 
expression of transcription factors such as Snail, Slug, and Twist 
involved in the loss of E-cadherin expression, and in turn in the 
loss of the E-cadherin adhesion complex (55, 57). Interestingly, 
several other signaling pathways, such as the Wnt, Hippo, and 
Sonic Hedgehog cascades, cooperate with the Smad cascade to 
regulate EMT in many cancer cells (55).

Despite the fact that osteosarcoma arises from transformed 
cells of mesenchymal origin, numerous studies have demon-
strated that an overexpression of EMT-transcription factors 
such as Snails, ZEBs, or Twist is involved in the pathogenesis 
of osteosarcoma, making possible an “EMT-like” phenomenon 
(Figure 4) that promotes the invasive properties of osteosarcoma 
cells and therefore the formation of metastases at distant second-
ary sites (58). Osteosarcoma tissues thus exhibit elevated Twist 
expression compared with non-tumorigenic osteochondroma 
tissue. In addition, metastatic osteosarcoma (grade III) shows 
an increase in Twist expression compared with non-metastatic 
osteosarcoma (grade I/II) (59). In this context, in vitro studies 
have demonstrated that Twist overexpression in SaOS2 osteo-
sarcoma cells is associated with both an increase in cell invasive 
properties and osteosarcoma cell resistance to cisplatin (60). 
Similarly, Snail-2 is expressed in the three main histological 
subtypes of long bone osteosarcoma (osteoblastic, chondro-
blastic, and fibroblastic), and Snail-2 expression is statistically 
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correlated with tumor grade whatever the osteosarcoma subtype 
(61). Finally, the transcript and protein levels of ZEB-1 are sig-
nificantly higher in osteosarcoma tissues when compared with 
normal bone tissues, ZEB-1 levels being increased in patients 
with lung metastasis (62).

Together, these results demonstrate that an “EMT-like” phe-
nomenon may be associated with the pathogenesis of osteosar-
coma. Although the role of TGF-β has not yet been fully defined 
in this EMT-like process, in vitro experiments have demonstrated 
that the ability of TGF-βs to promote this EMT-like phenomenon 
(63) may be associated with the pro-migratory effect of TGF-β1 on 
several osteosarcoma cell lines (50, 64–66). In vivo experiments, 
using molecular (overexpression of the Smad inhibitor, Smad7) 
and pharmacological (SD-208 and/or halofuginone) approaches, 
have demonstrated that TGF-βs affect the development of lung 
metastases in osteosarcoma (50, 67). This effect is associated in 
large part with the ability of Smad7, SD-208, or halofuginone to 
block the capacity of TGF-β1 to stimulate osteosarcoma migra-
tion and invasion (15, 50, 67).

TGF-β exerts Protumorigenic Functions by 
Targeting the TMe: Angiogenesis, Bone 
Remodeling, and immunosurveillance
Tumors are heterogeneous tissues in which tumor cells are sur-
rounded by and interact with a complex TME, composed of both 
cellular and non-cellular components. This TME plays a critical 
role in determining the fate of tumor cells during tumorigenesis 
and metastasis. Aberrant upregulation of TGF-β expression in the 
TME has thus been implicated in promoting cancer progression 
and metastasis (68–70). In this context, we will focus the follow-
ing chapter on the role of TGF-β in tumor angiogenesis, bone 
remodeling, and modulation of the immune system.

TGF-β and Tumor Angiogenesis
Angiogenesis is a complex biological process that plays a crucial 
role in sustaining the microenvironment, growth, and metastatic 
potential of several tumors (71). Schematically, this process favors 
the formation of blood vessels, increasing the supply of nutri-
ments and providing an entry point for the invasive cells (72). 
The proliferation, migration, and maturation of endothelial cells 
are critical steps involved in regulating the angiogenic process.  
A crucial primary cytokine that drives this process is the secreted 
vascular endothelial growth factor (VEGF) which stimulates the 
proliferation and migration of endothelial cells, and the formation 
of vessels (73–75). Other secreted cytokines, such as platelet-
derived growth factor (PDGF), also play a major role in blood 
vessel formation by inducing vessel maturation mainly by increas-
ing pericyte migration and the induction of pericytes coverage 
(70, 76). Regarding the role of TGF-β in angiogenesis, TGF-β1 
KO mice display a phenotype that is defective in angiogenesis  
(77, 78). In addition, the loss of endothelial type I or type II 
TGF-β receptors in mice results in a decrease in vessel formation  
(79, 80). With regard to tumor angiogenesis, high circulating lev-
els of TGF-β1 are correlated with increased tumor angiogenesis 
in many forms of cancer (41). Different experimental models for 
tumor progression, as well as data from human biopsies, have thus 
demonstrated that a high expression of TGF-β is associated with 

the expression of angiogenic factors (81) and correlates with the 
increase in new vessel formation (82, 83). Interestingly, TGF-β1 
is able to increase VEGF (84) or PDGF (85) expression in many 
cancer cells, and therefore to induce tumor angiogenesis (86, 87).

For osteosarcoma pathogenesis (Figure 4), VEGF expression 
has been associated with microvascular density (88), and patients 
with high VEGF expression levels exhibit lower disease-free 
survival (89). In vitro studies revealed that U2OS osteosarcoma 
cells secrete a PDGF-like growth factor (90), and a malignancy-
dependent co-expression of PDGF and PDGF receptors has been 
observed in the biopsies of osteosarcoma patients (91). Finally, 
in vivo experiments demonstrated that blocking TGF-β signaling 
by Smad7 overexpression in osteosarcoma cells or treating mice 
with the ALK5 inhibitor SD-208, reduces expression of both the 
endothelial marker CD146 and PDGF (50).

TGF-β and Bone Remodeling
Two cell lineages, the mesenchymal osteoblastic and hematopoi-
etic osteoclastic lineages, are implicated in bone remodeling. 
Schematically, the osteoblasts and osteoclasts drive bone forma-
tion and resorption, respectively. The three mammalian isoforms 
of TGF-β (TGF-β1, -β2, and -β3) are found in bone (92). The role of 
these TGF-βs in skeleton development in general, and specifically 
during bone remodeling, is complex. In vitro, TGF-β1 stimulates 
the proliferation and migration of mesenchymal stem cells dur-
ing the early stages of osteoblastogenesis, and inhibits both the 
differentiation of mesenchymal stem cells into osteoblasts, and 
the activity of osteoblasts in the late stages of osteoblastogenesis  
(15, 93–95). For osteoclastogenesis, TGF-β1 affects bone resorp-
tion in a dose-dependent manner (15, 92). In vitro, low doses 
of TGF-β1 stimulate the differentiation of osteoclasts, and high 
doses of TGF-β1 inhibit the differentiation of osteoclasts through 
modulation of RANKL and osteoprotegerin expression by osteo-
blasts (96). As a consequence, in vivo experiments indicate that 
TGF-βs favor bone resorption and destruction (15).

Interestingly, blocking the TGF-β signaling pathway in 
osteosarcoma cells reduces the bone osteolysis associated with 
tumor growth and, in turn, tumor progression. Indeed, in a 
xenograft murine model of osteosarcoma using human HOS or 
SaOS2 cells, Smad7 overexpression in tumor cells inhibited the 
tumor-associated bone destruction by both promoting ectopic 
bone formation and preventing trabecular bone osteolysis (50). 
One hypothesis to explain this phenomenon is that blocking the 
TGF-β cascade in osteosarcoma cells inhibits the expression and 
secretion of the TGF-β target genes, such as RANKL and IL-11, 
which stimulate osteoclast activity (50).

One of the hallmarks of the extra cellular matrix in tumor 
progression is also upregulation of proteolytic enzymes such 
as MMPs (68, 69, 97). For osteosarcoma, several studies have 
shown that highly invasive osteosarcomas express higher levels 
of MMP-2 than weakly invasive tumors, and osteosarcoma cell 
invasion is associated with MMP-2 expression (98, 99). In addi-
tion, MMP-2 expression correlated with prognosis and response 
to chemotherapy (100, 101). Interestingly, blocking the TGF-β 
signaling pathway in osteosarcoma cells reduces the formation 
of lung metastases, mainly by inducing a decrease in MMP-2 
expression in tumors. In addition, blocking the TGF-β cascade in 
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TABLe 1 | Transforming growth factor-β (TGF-β) inhibitors in clinical development in cancer (ClinicalTrials.gov).

Drug Targets Trial number Cancer Clinical 
development phase

TGF-β ligand inhibitors

Fresolimumab (GC-10008) panTGF-β NCT00356460 Advanced Renal Cell Carcinoma or Malignant Melanoma I
NCT00923169 Advanced Renal Cell Carcinoma or Malignant Melanoma I
NCT01472731 Relapsed Malignant Glioma II
NCT01112293 Relapsed Malignant Pleural Mesothelioma II
NCT01401062 Metastatic Breast Cancer II
NCT02581787 Early Stage Non-small Cell Lung Cancer I, II

Trabedersen (AP12009) TGF-β2 NCT00844064 Pancreatic Neoplasms, Melanoma or Colorectal Neoplasms I
NCT00431561 Glioblastoma or Anaplastic Astrocytoma II
NCT00761280 Anaplastic Astrocytoma or Glioblastoma III

Belagenpumatucel-L (Lucanix) TGF-β2 NCT00676507 Advanced Non-small Cell Lung Cancer III
NCT01058785 Lung Neoplasm, Carcinoma, Bronchogenic II
NCT01279798 Lung Neoplasm or Advanced Carcinoma Non-Small Cell Lung Cancer III

Recombinant human granulocyte 
macrophage-colony stimulating factor 
(rhGMCSF)/shRNAfurin vaccine

TGF-β1,2 NCT01309230 Ovarian Cancer II
NCT01505166 Colon Cancer II
NCT01867086 Ovarian Cancer II
NCT01551745 Ovarian Cancer II
NCT01061840 Ewings Sarcoma, Non Small Cell Lung Cancer, Liver Cancer I
NCT01453361 Advanced Melanoma II

TGF-β receptor inhibitors

Galunisertib (LY2157299) TβRI NCT02734160 Metastatic Pancreatic cancer I
NCT02154646 Pancreatic Neoplasm I
NCT01722825 Advanced or Mestastatic Neoplasm I
NCT02452008 Prostate Cancer II
NCT02538471 Metastaric Breast Cancer II
NCT02423343 Refractory or Recurrent Non-Small Cell Lung Cancer Recurrent, or  

Hepatocellular Carcinoma
I, II

NCT02304419 Neoplasm I
NCT01373164 Pancreatic Cancer I, II
NCT02672475 Triple-Negative Breast Carcinoma I
NCT02688712 Rectal Adenocarcinoma II
NCT02240433 Hepatocellular Carcinoma I
NCT03206177 Carcinosarcoma of the Uterus or Ovary I
NCT02906397 Advanced Hepatocellular Carcinoma I
NCT01220271 Glioma I, II
NCT01582269 Recurrent Glioblastoma II
NCT01246986 Hepatocellular Carcinoma II
NCT01682187 Glioma I
NCT02178358 Hepatocellular Carcinoma II
NCT02734160 Metastatic Pancreatic Cancer I

TEW-7197 TβRI NCT02160106 Advanced Stage Solid Tumors I
NCT03143985 Multiple Myeloma I

PF-03446962 ALK1 NCT02116894 Colorectal Cancer I
NCT00557856 Advanced Solid Tumors I
NCT01620970 Transitional Cell Carcinoma of Bladder II
NCT01337050 Stomach Cancer I
NCT01911273 Advanced or Metastatic Liver Cancer II
NCT01486368 Malignant Pleural Mesothelioma II

IMC-TR1 TβRII NCT01646203 Advanced Solid Tumors I

Fresolimumab (GC1008) is an antibody capable of neutralizing TGF-β1,2,3. Trabedersen (AP 12009) is an antisense oligodeoxynucleotide specific to human TGF-β2. 
Belagenpumatucel-L (Lucanix) is a TGF-β2 antisense transgene. rhGMCSF/shRNAfurin vaccine is a dual-modulatory autologous whole cell vaccine (bi-shRNA furin and GMCSF 
autologous tumor cell vaccine), incorporating the rhGMCSF transgene and the bifunctional shRNA-furin to block pro-protein conversion to active TGF-β1,2. Galunisertib (LY2157299) 
is a TβRI inhibitor. TEW-7197 is an inhibitor of the protein serine/threonine kinase activity of TβRI. PF-03446962 is a monoclonal antibody against ALK1. IMC-TR1 is a monoclonal 
antibody against TβRII.
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tumor cells inhibits the expression and activation of MMP-2 and 
the ability of TGF-β to stimulate osteosarcoma cell migration and 
invasion (50) (Figure 4).

TGF-β and the Immune System
Transforming growth factor-βs are secreted cytokines that have 
multiple immunosuppressive properties (102) via modulation of 
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the activity or biology of several cells in the immune system, such 
as T-cells, natural killer (NK) cells, macrophages, and dendritic 
cells (41, 103, 104).

These immunosuppressive abilities of TGF-βs include inhibi-
tion of T-cell proliferation, inhibition of T-cell differentiation into 
cytotoxic T lymphocytes and helper T cells, and inhibition of the 
T-cell stimulatory functions of antigen-presenting cells (104). 
For example, in a mouse model expressing a dominant negative 
form of TβRII restricted to CD4+ and CD8+ T-cells, an antitumor 
response is observed against melanoma progression (105).

The functional activation of NK cells, which play a crucial role 
in the antitumor response by recognizing and destroying tumor 
cells, is inhibited by TGF-β via different mechanisms (105). For 
example, TGF-βs antagonize the IL-15-induced cell proliferation 
associated with NK-cell activation and thus block the functional 
activation of NK-cells (106). The biological functions of the DC 
cells involved in the activation of the immune response, and 
therefore in determining the host response to primary tumor 
cells, are also regulated by TGF-β (104). For example, TGF-β 
increases the expression of inhibitor of differentiation 1 driving 
the switch from dendritic cell differentiation to myeloid-derived 
suppressor cell expansion during tumor progression (107).

Solid tumors are usually invaded by macrophages called TAMs. 
These TAMs are classically divided into two categories: M1 polar-
ized macrophages, identified as antiumor cells, and M2 polarized 
macrophages, identified as protumor cells (108, 109). In this 
context, certain studies have demonstrated the ability of TGF-βs 
to drive the induction of macrophage polarization from M1 to M2 
subtypes (110). All these immunosuppressive properties of TGF-βs  
induce tumor evasion from immune response (41, 68, 103, 104).

The immune environment of osteosarcoma is mainly com-
posed of myeloid cells (monocytes, macrophages, and dendritic 
cells) and T-lymphocytes (111). Osteosarcoma cells control the 
recruitment and differentiation of immune-infiltrating cells, and 
establish a local immune tolerant microenvironment, allowing 
the tumor to grow (111).

While initial studies demonstrated that macrophages are asso-
ciated with reduced metastasis and improved survival in high-
grade osteosarcoma (112), recent studies have shown that TAMs 
are associated with better overall survival (113, 114). T-cells are 
the other cell population represented in the immune infiltrate in 
osteosarcoma (111). Recent studies have indicated that the CD8+/
FOXP3+-ratio is a strong prognostic factor for osteosarcoma at 
diagnosis (115).

CONCLUSiON AND CLiNiCAL 
ReLevANCe

In carcinoma, TGF-βs exhibit both tumor suppressor and protu-
moral properties, depending on the stage of the disease. In this 

context, it seems that the timing of therapies targeting TGF-βs 
needs to be considered with great precision. For sarcoma, and spe-
cifically osteosarcoma, TGF-βs mainly seem to exert protumoral 
properties by targeting both tumor cells and their microenviron-
ment. It therefore appears that TGF-βs, major drivers for osteosar-
coma, could be considered as promising therapeutic targets in this 
disease. In the last decade, different strategies targeting TGF-βs 
have been developed (Table  1), including anti-ligand antisense 
oligonucleotides, which are capable of binding human TGF-β2 
mRNA (trabedersen), antibodies that target ligands or recep-
tors, such as fresolimumab, a humanized mAB against TGF-β,  
and drugs against TGF-β receptor kinases, such as galunisertib 
(LY2157299, a TβRI inhibitor) [reviewed in Ref. (116–118)].

With these strategies, certain trials have shown positive results. 
For example, trabedersen has been successfully tested in patients 
with recurrent or refractory high-grade glioma. This randomized, 
open-label, dose-finding phase IIb study evaluated the efficacy 
of trabedersen administered intratumorally at doses of 10 or 
80 µM compared with standard chemotherapy (temozolomide or 
procarbazine/lomustine/vincristine) in patients with recurrent/
refractory glioblastoma multiform or anaplastic astrocytoma 
(AA). Analysis of the AA subgroup revealed a significant benefit 
regarding the 14-month tumor control rate for 10  µM trabed-
ersen vs chemotherapy. In addition, the trend for the 2-year 
survival rate was for the superiority of 10  µM trabedersen vs 
chemotherapy (119). Concerning galunisertib, the clinical benefit 
was observed in 12 of the 56 patients with glioma (21.4%) (120). 
Most other clinical trials were negative or are still in progress. It 
should be noted that some drugs that block TGF-β activity have 
shown cardiotoxicity as side effects.

However, these strategies that target the TGF-β pathway 
could be considered and proposed in the therapeutic arsenal for 
osteosarcoma patients.
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