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In recent decades, breast cancer has become largely manageable due to successes with 
hormone receptor targeting. Hormone receptor-positive tumors have favorable outcomes 
in comparison to estrogen receptor (ESR1, ER)/progesterone receptor-negative tumors 
given the targetable nature of these tumors, as well as their inherently less aggressive 
character. Nonetheless, treatment resistance is frequently encountered due to a variety 
of mechanisms, including ESR1 mutations and loss of ER expression. A new era of pre-
cision medicine utilizes a range of methodologies to allow real-time analysis of individual 
genomic signatures in metastases and liquid biopsies with the goal of finding clinically 
actionable targets. Preliminary studies have shown improved progression-free survival 
and overall survival with implementation of this information for clinical decision making. 
In this review, we will discuss the opportunities and challenges in integrating precision 
medicine through next-generation genomic sequencing into the management of breast 
cancer.

Keywords: hormone receptor-positive breast cancer, personalized medicine, liquid biopsy, circulating tumor DNA, 
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HORMONe ReCePTOR-POSiTive DiSeASe

Breast cancer is the most common cancer in US women, and the second leading cause of death. 
It is estimated that 252,710 women in the US will be diagnosed with invasive breast cancer this 
year, and 40,610 women will succumb to this disease during this time. Despite these disquieting 
statistics, relative survival rates are quite high, estimated to be 91% at 5 years post diagnosis and 
80% at 15 years (1, 2). In large part excellent outcomes can be attributed to successes with targeting 
hormone receptors in hormone receptor-positive disease, which comprises 83% of invasive breast 
cancers according to recent data (1).

Hormone receptor inhibition has been pursued as far back as the 1960s, albeit initially with the 
goal of developing contraceptives. Tamoxifen, initially known as ICI 46474, was considered a failure 
when it was found to stimulate rather than suppress ovulation while being investigated for its intended 
use as an anti-estrogen (3). It was not until the 1970s that it was analyzed for its antitumor effects, 
obtaining approval for use in advanced breast cancer in 1977. Over time, tamoxifen would gain wide 
acceptance after studies demonstrated a clear reduction in mortality with use in the adjuvant setting 
(4–7). Meta-analyses of 15 years follow-up data from randomized trials of patients with ER-positive 
disease given 5-year adjuvant tamoxifen after 6 months of anthracycline-based chemotherapy have 
demonstrated an approximately 50% reduction in breast cancer mortality (8).

Gene expression signatures based on microarray studies have distinguished breast cancer into 
various molecular intrinsic subtypes (luminal A, luminal B, HER2-like, basal-like, and normal-like); 
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however, hormone receptor positivity remains the fundamental 
feature of this disease (9, 10). ER/progesterone receptor (PR) sta-
tus, specifically, drives the recommendation to initiate hormone 
targeted therapies, defined as the presence of at least 1% posi-
tive staining in tumor nuclei via immunohistochemistry (IHC) 
testing (11, 12). Standard of care dictates endocrine therapy for 
patients with ER-positive disease, regardless of other parameters, 
as per guidelines by ASCO, ESMO, and St. Gallen International 
Expert Consensus (13–15).

ER expression serves not only as a predictive biomarker for 
response to endocrine therapy but also provides prognostic value. 
ER positivity has been found to confer a survival advantage in 
patients treated with endocrine therapy, specifically tamoxifen, 
which has not been observed with ER negative disease (5, 16–18).  
Several reports have documented amplification of estrogen rece-
ptor 1 (ESR1), although this remains controversial. Interestingly, 
ESR1 amplification has not been found to correlate with outcomes 
in it of itself, although an ER-related transcription signature 
developed by Symmans et al., termed a sensitivity to endocrine 
therapy index, demonstrated a significant association with distant 
relapse-free survival (19).

Tamoxifen is a selective estrogen receptor modulator, exerting 
inhibitory effects on estrogen signaling by functioning as a com-
petitive inhibitor, promoting ER conformational change, which 
prevents coactivator binding and thereby hindering propagation 
of downstream signaling (20). Tamoxifen has been the first-line 
agent of choice for use in hormone receptor-positive disease for 
many years. Interestingly, two genetic events that alter genera-
tion of estradiol and metabolism of tamoxifen may be important 
in breast cancer. A recent report indicated that CYP19A1, the 
aromatase gene responsible for generation of estradiol in post-
menopausal women, is amplified in endocrine-resistant breast 
cancer (21). Tamoxifen is metabolized by CYP2D6 to endoxifen, 
and evidence suggests that certain CYP2D6 genotypes have 
reduced metabolism and level of endoxifen, which may be asso-
ciated with worse outcomes (22). However, this is a controversial 
area with several studies not supporting this (23). Most recently, 
the tamoxifen metabolite, endoxifen, has shown promise in a 
phase I study in women with endocrine refractory metastatic 
disease, demonstrating a clinical benefit rate or partial response 
of 26% (24).

Evidence now supports upfront use of aromatase inhibitors 
(AIs), specifically in the postmenopausal population. AIs block 
the synthesis of estrogen from non-ovarian, precursor steroids, 
and have demonstrated superiority with regard to overall response 
rates, progression-free survival (PFS), and 10-year mortality rates 
in comparison to tamoxifen in this population (25, 26). The lower 
incidence of thromboembolic events and vaginal bleeding with 
AIs further support their use over tamoxifen (27–29).

Selective estrogen receptor degraders (SERDs) encompass an 
emerging class of hormone receptor-targeted therapies with ful-
vestrant currently as the only approved agent to date. Fulvestrant 
inhibits ER dimerization, reducing its nuclear translocation, lead-
ing to accelerated receptor degradation and ultimately resulting 
in the complete suppression of the estrogenic effects on breast tis-
sue (30). Results of the phase III FALCON study comparing use of 
fulvestrant to anastrozole in advanced hormone receptor-positive 

breast cancer suggest fulvestrant could be considered in the first-
line setting given its noted improvement in PFS (hazard ratio 
0.797; median PFS, 16.6 versus 13.8 months, respectively) (31).

Despite tremendous advances in the treatment of hormone 
receptor-positive breast cancer, resistance remains a critical issue. 
The Early Breast Cancer Trialists’ Collaborative Group recently 
reported a meta-analysis of 20-year follow-up of 88 clinical 
trials involving 62,923 women with ER-positive breast cancer 
treated for 5 years with endocrine therapy (mainly tamoxifen). 
Importantly, breast cancer recurrences occurred at a steady rate 
throughout the period of 5–20 years (32). The multiple molecular 
mechanisms of resistance include alteration of ER expression, 
dysregulation of co-regulators, and cross talk with growth factor 
signaling pathways (33).

Her2 (eRRB2)-POSiTive BReAST CANCeR

HER2 expression serves as a separate yet equally important 
parameter guiding breast cancer management and is also one of 
the key mediators of endocrine resistance (33). HER2, initially 
named neu, was identified as an oncogene as it was found to be 
activated in ethylnitrosourea-induced rat neuroblastomas (34). 
It was isolated by multiple groups based on its high homology 
with v-erbB and EGFR, specifically in the ATP-binding domain, 
but notably found to be distinct from EGFR itself (35–38). HER2 
overexpression is demonstrated in approximately one quarter 
of breast cancers (39), with gene amplification of 2- to 20-fold 
estimated to occur in 30% of all breast tumors (40). HER2 gene 
amplification confers a worse prognosis with shorter time to 
relapse and a decline in overall survival (OS), correlating with 
the degree of gene amplification (40, 41). Monoclonal antibodies 
targeting the extracellular domain of HER2 raised in cell lines 
expressing high HER2 levels showed promise in their ability to 
inhibit tumor cell proliferation in vitro (42–44) leading to even-
tual development of a humanized form (45) currently in use as 
the approved agent trastuzumab.

In patients with HER2-positive metastatic breast cancer (MBC),  
trastuzumab in combination with standard chemotherapy demon-
strated a clear benefit in time to progression, dura tion of 
response, and OS as compared to chemotherapy alone (46). 
A notable 37 and 40% relative improvement in OS and DFS, 
respectively, would be demonstrated in women with surgi-
cally removed high risk disease receiving trastuzumab as part 
of standard therapy leading to eventual FDA approval in 2006 
(47). Recurrence in this population, however, is not uncommon, 
prompting development of a range of agents targeting HER2 via 
distinct mechanisms. Pertuzumab is a humanized monoclonal 
antibody, which binds the extracellular domain of HER2 as 
trastuzumab, but at a separate epitope, thereby inhibiting recep-
tor dimerization and preventing downstream signaling (48). 
The addition of pertuzumab to trastuzumab plus docetaxel in 
patients with HER2-positive MBC did demonstrate improved 
median survival by roughly 16 months (49). Lapatinib, an oral 
tyrosine kinase inhibitor to both epidermal growth factor recep-
tor and HER2 was approved in combination with capecitabine for 
patients who had prior treatment with Trastuzumab refractory 
HER2-positive MBC (50). Other HER2-targeted modalities 
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are notable for the development of ado-trastuzumab emtansine 
(T-DM1), an antibody drug conjugated to a cytotoxic agent 
(DM1). TD-M1 first gained approval when compared to lapatinib 
with capecitabine in the phase III EMILIA trial with an OS benefit 
of nearly 6 months (51). Single agent T-DM1 has been shown to 
significantly increase OS in patients with advanced disease with 
progression on multiple HER2-targeted therapies per findings 
from the TH3RESA trial (52). Another tyrosine kinase inhibitor 
that targets pan-HER2 receptors, neratinib, has recently gained 
approval in the extended adjuvant setting for patients with HER2-
positive localized breast cancer based on the ExteNET study (53). 
Most recently, MYL-14010, a trastuzumab biosimilar developed 
for the purpose of improving global access and affordability was 
approved after it was demonstrated to be equivalent to trastu-
zumab with regard to outcomes and safety parameters (54).

TARGeTiNG OTHeR PATHwAYS iN 
HORMONe ReCePTOR-POSiTive 
BReAST CANCeR

The mammalian target of rapamycin (mTOR) pathway has a 
documented role in ER-resistant disease, with mTOR being of 
particular interest given its downstream position from the vital 
PI3K/AKT and Ras/Raf/Mek/Erk signaling pathways [reviewed 
in Ref. (55)]. Everolimus, a macrolide immunosuppressant and 
an mTOR inhibitor, has been utilized in treatment of various 
malignancies. The phase III BOLERO-2 trial demonstrated that 
everolimus in combination with exemestane, a steroidal AI, 
showed a median PFS of 7.8 versus 3.2 months for exemestane 
plus placebo based on investigator assessment (HR 0.45; 95% CI: 
0.38–0.54; P < 0.0001), leading to FDA approval.

In an effort to target common dysregulated pathways in an 
otherwise highly heterogeneous disease, CDK4/6 inhibitors have 
come into favor in the recent years given their central role in cell 
cycle progression and interaction with ER. In an unchecked state 
in the setting of molecular aberrancy, uncontrolled transcription 
and proliferation ensues [reviewed in Ref. (56)]. Palbociclib, 
the first approved of the CDK4/6 inhibitors currently in use, is 
thought to preferentially inhibit growth in ER+ disease based on 
in  vitro findings, which importantly demonstrated enhanced 
sensitivity in ER-resistant cell lines (57). In phase III PALOMA-2 
and PALOMA-3 trials, Palbociclib in combination with an AI or 
SERD, respectively, demonstrated improvement with regard to 
PFS but not OS thus far in patients with advanced HR+ Her2− dis-
ease (58, 59). Based on these studies, current guidelines advocate 
for concurrent use of palbociclib with hormone therapy in the 
first-line setting in patients with metastatic hormone-positive, 
HER2-negative disease. Subsequent FDA-approved CDK4/6 
inhibitors have been similarly found to improve PFS when 
combined with an AI in the advanced setting. At an 18-month 
follow-up, HR+ Her2− patients treated with Ribociclib plus 
letrozole had a 63% PFS rate, as compared to 42% in the placebo 
plus letrozole-treated population (60). Abemaciclib was first 
studied as a monotherapy in MBC patients with progression 
on prior lines of therapy, and demonstrated an overall response 
rate of 19.7% with a median PFS of 6  months, and median 

OS of 17.7  months (61). In the follow-up MONARCH 2 and 
MONARCH 3 trials, combination of abemaciclib with either 
fulvestrant or an AI, respectively, has consistently demonstrated 
an improved PFS when used in the first-line setting in patients 
with HR+ Her2− advanced disease (62, 63). Most recently, a 
meta-analysis including the aforementioned CDK4/6 studies has 
confirmed the noted improvement in PFS and overall response 
rate when used in combination with an AI as first-line therapy 
in HR+ Her2− patients with advanced breast cancer (64). Data 
are still being collected in relation to the utilization of rapamycin 
post-CDK4/6 therapy (65).

MOLeCULAR evOLUTiON AND 
eNDOCRiNe ReSiSTANCe iN HORMONe 
ReCePTOR-POSiTive DiSeASe

Recent evidence suggests that breast cancers evolve in response 
to various pressures including those such as lack of nutrients and 
oxygen, as well as in response to the application of targeted thera-
pies. Part of this evolution is reflected by changes in expression 
of ER, PR, and HER2, with a meta-analysis indicating that these 
biomarkers change in approximately 20% of cases (66). Given 
this, ASCO recently changed guidelines to indicate that bio-
markers should be measured on metastatic tissue if it is available, 
and therapy can be directed to that measured biomarker (67). 
Cejalvo et al. recently measured PAM50 intrinsic subtypes in 123 
patient-matched pairs of primary and MBC (68). They found no 
changes in subtype in basal-like tumors, but changes in subtypes 
in HER2-enriched (23.1%), luminal B (30.0%), and in luminal A 
(55.3%) breast cancers. Luminal A primary breast cancers often 
converted to luminal B upon metastasis, and occasionally to 
from luminal to HER2-enriched. We recently reported similar 
changes in intrinsic subtypes switching in patient-matched pairs 
of primary and brain (69) and bone (70) metastases. A challenge 
of many of these studies is understanding the role of therapy in 
causing changes in biomarkers, yet a recent study sequencing 
primary and MBC in the de novo metastatic therapy naïve setting 
showed mutational differences (71).

Large international consortia have characterized the muta-
tional landscape of primary breast cancer, and these studies have 
laid the foundation for detection and targeted therapies against 
mutations. However, the landscape in MBC remains understud-
ied. Foundation Medicine reported on clinical genomic testing 
of all coding exons of 287 cancer-related genes plus select introns 
from 19 genes frequently rearranged in cancer in 18,004 cancers, 
with a large fraction being advanced cancers (72). They and other 
groups noted changes in frequency of mutations in MBC includ-
ing increased mutation of ESR1 (73–77). Specifically, the Y537S 
and D538G mutations have been found to confer shortened OS 
(78). These mutations are in the ligand-binding domain (LBD) 
and cause ER to exhibit ligand-independent activity. We recently 
reported recurrent ESR1 gene fusions, where the LBD is removed 
and the ER becomes constitutively active, in endocrine-resistant 
breast cancer (79). Several reports have indicated amplification 
of ESR1 (80), and we recently reported on response to high dose 
estradiol in a breast cancer with ESR1 amplification (81).
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MONiTORiNG MOLeCULAR evOLUTiON 
AND ReSiSTANCe iN eR-POSiTive 
BReAST CANCeR

Tissue collection becomes a particularly more complicated 
matter after resection of the primary tumor. Beyond issues with 
accessibility of metastatic sites, the need to obtain genomic 
information that is also temporally more reflective of the current 
state of the tumor has promoted the concept of liquid biopsies to 
gain favor. Liquid biopsies, which include the collection of cir-
culating tumor cells (CTCs) or cell-free DNA (cfDNA) present 
in plasma, offer a relatively noninvasive method of monitoring 
disease, and in many cases, mutational status. CTCs, initially 
described as far back as 1869 in a postmortem case (82), are gen-
erally isolated based on EpCAM expression, and more recently 
also on physical properties of the CTCs. Cell Search is currently 
the only system with FDA approval for use in MBC. Methods 
in development are currently being pursued that instead rely 
on microfilters and the comparatively larger size of CTCs (83). 
CTC detection is challenging owing to extremely low frequency 
in circulation; however, multiple trials have been able to reliably 
demonstrate presence of CTCs in early and advanced breast 
cancer. These studies have consistently reported a worse prog-
nosis with regard to PFS and OS with increase in the number 
of CTCs (84–88).

Cell-free DNA is easier to isolate than CTCs, requiring only a 
simple isolation of plasma and then DNA extraction. Circulating 
tumor DNA (ctDNA) can be identified in cfDNA by the pres-
ence of mutations that should not be present in normal germline 
DNA (generally isolated from white blood cells in buffy coat), 
and can be detected by an ever expanding number of techniques 
including digital droplet polymerase chain reaction (ddPCR) 
(89), BEAMing (beads, emulsion, amplification, magnetics) 
(90, 91), massively parallel sequencing (92), tagged amplicon 
deep sequencing (93), and the pyrophosphorolysis-activated 
polymerization method (94, 95). Early studies in cell-free tumor 
DNA present in serum revealed a significantly higher concentra-
tion in serum of patients with advanced disease as compared to 
patients without cancer or with slow growing tumors. Follow-up 
studies demonstrating decreased strand stability suggested the 
origin of this DNA is from tumor versus from normal tissue 
(96). There is debate regarding the exact mechanism of DNA 
release in plasma, although leading theories support spontane-
ous release versus apoptosis, and less likely release due to cell 
lysis or necrosis (97–99). Most recently, studies suggest cfDNA 
secretion is likely an active process that may occur in associa-
tion with a protein complex (100). The feasibility of using these 
techniques for ctDNA detection and subsequent mutational 
analysis has been verified in multiple tumor types (101–103). In a 
recent study, analysis of alteration burden in ctDNA was found to 
predict response in patients with various malignancies receiving 
checkpoint inhibitors, indicating a more favorable outcome in OS 
and PFS in tumors with high alteration burden (104). In breast 
cancer, specifically, serial monitoring of ctDNA has been shown 
to predict disease recurrence months before metastasis could be 
clinically detected (105, 106), as has been found to be inversely 
correlated with OS (107).

Progression of disease or recurrence indicate either selection 
for clones resistant to treatment or evolution of the primary 
tumor with accumulation of mutations subsequently leading to 
therapy resistance. In either case, identification and sequencing of 
culprit mutations provide both a mechanism to predict response 
to therapies and outcomes, as well as a target to which future 
therapies can be developed. ddPCR and next-generation sequenc-
ing have been utilized by multiple groups to detect ESR1 hotspot 
mutations in patients with advanced breast cancer (108) in an 
appreciable frequency (109–111), and higher in the metastatic 
setting as compared to micrometastatic disease (109, 112, 113).  
Not surprisingly, ESR1 mutations have been demonstrated in 
patients with ER-positive disease previously exposed to AI 
therapy and found to confer a shorter PFS with subsequent AI 
therapy. The incidence of ESR1 mutations were notably more 
frequent when exposed in the metastatic setting versus during 
adjuvant AI therapy (113).

GUiDANCe

Numerous groups are currently documenting molecular evolu-
tion in hormone receptor-positive disease, and current evidence 
indicates that ESR1 is mutated (base pair, amplification, and 
fusion) in up to 50% of advanced endocrine-resistant breast 
cancers. However, the effect of these mutations on prognosis 
and response to endocrine therapy is unknown and thus the 
clinical actions to be taken upon the finding of an ESR1 muta-
tion are currently under intense investigation. Outside of ESR1, 
advanced endocrine-resistant breast cancers harbor mutations 
in many other pathways, but again the effect of targeting these 
mutations is currently under investigation. Investigators at 
Memorial Sloan Kettering Cancer Center recently reported on 
clinical genomic sequencing of over 10,000 advanced cancers 
and linked these to the OncoKB database of clinically action-
able variants to show which ones have clinical utility (114). They 
were able to place 11% of patients on genomic-directed therapy. 
Lefebvre et al. reported not only on whole-exome sequencing of 
216 advanced breast cancers and noted mutation and amplifica-
tion of ESR1, but also mutation of clinically actionable genes 
ERBB4, NOTCH3, and ALK (115). Thoughtful agent selection 
becomes imperative, especially in the metastatic setting when 
time is more limited. Von Hoff et al. demonstrated an improve-
ment in PFS in a range of refractory metastatic cancers treated 
with targeted therapies selected based on individualized FISH, 
microarray, or IHC data (116).

Despite the vast potential for liquid biopsy incorporation 
in clinical decision making, this field remains in its infancy. 
Numerous trials are currently underway evaluating the role of 
plasma ctDNA in both observational capacities to predict res-
ponse, as well as from interventional perspectives [reviewed in 
Ref. (117)]. A Precision Oncology Decision Support System has 
been established at MD Anderson Cancer Center that provides 
a clinical interpretation service that comments on the clinical 
significance and actionability of alterations present in a tumor 
sample (118). Following the results of their recommendations, 
a small yet clinically significant improvement in OS and DFS 
was reported in the population in which the genomic panel 
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annotations led to a change in therapy (119). A similar model can 
be envisioned with the use of liquid biopsies to guide selection of 
therapy as patients progress on their current treatment. Several 
trials are ongoing and in development, notably IMAGE and 
IMAGE-II studies initiated at the Sidney Kimmel Comprehensive 
Cancer Center at John Hopkins, which aim to identify actionable 
mutations in MBC as detected in tissue and blood.

Further studies are required to ensure what is gained in 
convenience in sample collection does not come at the expense 
of genomic expression concordance between tumor tissue and 
what is observed in liquid biopsy samples. Intra-heterogeneity 
demonstrated within individual CTCs from the same patient 
(120) brings into question the appropriateness of reliance on 
genomic data obtained from single cells. Furthermore, the 
limited half-life of circulating nucleic acids in circulation, esti-
mated to be in the range of minutes (121), may greatly influence 
our ability to detect clinically significant alterations in a timely 
fashion.

At present, ASCO guidelines strongly recommend against 
use of data obtained from CTCs to guide decision making 
with regard to adjuvant systemic therapy (122) and cite a lack 
of evidence to suggest benefit in the metastatic setting (67). 
At least with regard to presence of ESR1 mutations, however, 

Fribbens et al. report an improvement in PFS in patients with 
ESR1 mutated, HR+, HER2− MBC treated with fulvestrant as 
opposed to exemestane (110).

Current efforts in data collection using liquid biopsies in par-
allel with evidence-driven recommendations will indisputably 
provide a wealth of information that will continue to guide the 
field. As our understanding evolves by way of dynamic monitor-
ing, the goal of utilizing liquid biopsies can approach an eventual 
reality. In a more real sense, however, an accurate reflection of a 
tumor profile will likely require incorporation of sources such as 
both cfDNA and CTCs, as well as RNA-based testing.
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