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Brain metastases are the most common tumors of the central nervous system (CNS). 
Incidence rates vary according to primary tumor origin, whereas the majority of the 
cerebral metastases arise from primary tumors in the lung (40–50%). Brain metastases 
from lung cancer can occur concurrently or within months after lung cancer diagnosis. 
Survival rates after lung cancer brain metastasis diagnosis remain poor, to an utmost 
of 10 months. Therefore, prevention of brain metastasis is a critical concern in order to 
improve survival among cancer patients. Although several studies have been made in 
order to disclose the genetic and molecular mechanisms associated with CNS metastasis,  
the precise mechanisms that govern the CNS metastasis from lung cancer are yet to 
be clarified. The ability to forecast, which patients have a higher risk of brain metastasis 
occurrence, would aid cancer management approaches to diminish or prevent the 
development of brain metastasis and improve the clinical outcome for such patients. In 
this work, we revise genetic and molecular targets suitable for prediction of lung cancer 
CNS disease.
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iNTRODUCTiON

Brain metastases are the most common tumors of the central nervous system (CNS). Metastatic 
brain lesions outnumber primary brain tumors with a 10-fold (1) with incidence rates varying 
according to the primary tumor origin. The majority of the cerebral metastases arise from pri-
mary tumors in the lung (40–50%) and it is estimated that 50% of the patients with small-cell 
lung cancer (SCLC) or non-small-cell lung cancer (NSCLC) will develop brain metastasis (2, 3).  
In contrast to cerebral metastases from other primary cancers, where generally a metastatic 
latency period takes place, brain metastasis from lung cancers often occur months after, or even 
con currently, with the diagnosis of the primary tumor (4). Metastatic brain lesions carry a clinical 
burden of morbidity and mortality, as well as significant neurological deficits, cognitive impair-
ment, and emotional difficulties (5). Despite treatment, lung cancer brain metastases are usually 
fatal for 90% of patients within two years after the initial diagnosis, with a median survival of 
7–10 months five years after diagnosis (2). Previous efforts to characterize patients that are at high 
risk of developing brain metastasis have been fairly disappointing.

Currently, only clinical and pathologic variables are used to predict the risk of brain metastasis 
in patients with lung cancer. However, data on predictive parameters are diverse and not clinically 
usable (Table 1). Identifying patients at highest risk of developing brain metastases on the basis 

https://www.frontiersin.org/Oncology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2018.00159&domain=pdf&date_stamp=2018-05-11
https://www.frontiersin.org/oncology/archive
https://www.frontiersin.org/Oncology/editorialboard
https://www.frontiersin.org/Oncology/editorialboard
https://doi.org/10.3389/fonc.2018.00159
https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:j.m.kros@eramusmc.nl
https://doi.org/10.3389/fonc.2018.00159
https://www.frontiersin.org/Journal/10.3389/fonc.2018.00159/full
https://www.frontiersin.org/Journal/10.3389/fonc.2018.00159/full
https://www.frontiersin.org/Journal/10.3389/fonc.2018.00159/full
https://loop.frontiersin.org/people/477352


TaBLe 1 | Conflicting clinical and pathological risk factors associated with the development of brain metastases.

Reference analysis N =  Type Tumor Pathologic 
stage

Recurrence 
site

age Tumor status Lymph-
vascular 

space 
invasion

Nodal status Histologic type

Ceresoli et al. (8) Multivariate 112 Non-small-cell 
lung cancer 
(NSCLC)

IIB–IIIB Brain <60, p = 0.03 ND ND p = 0.003* Non-squamous+

Andre et al. (9) Multivariate 267 NSCLC IIIN2 Brain ND − ND ND Adenocarcinoma+
Bajard et al. (10) Multivariate 305 NSCLC I–IIIB Brain <62, p = 0.004 T4, p = 0.0009 ND N2-3, p = 0.0057 Adenocarcinoma, 

p = 0.0002

Carolan et al. (11) Multivariate 83 NSCLC IIIB Brain <60, p = 0.022 ND ND ND −
Chen et al. (12) Kaplan-Meier 211 NSCLC IIIA Brain − − ND ND Squamous vs non-

squamous, p = 0.02

Hubbs et al. (3) Multivariate 975 NSCLC I–II Brain <77, p<0.01 Size, p < 0.01 p = 0.03 p = 0.04 −
Jacobs et al. (13) Multivariate 78 NSCLC II, III Brain − − ND N1-2 vs N0, p < 0.02 ND

Mujoomdar et al. (14) Hierarchical logistic 
regression

264 NSCLC I–IV Brain − Size, p < 0.001 ND p < 0.017 Adenocarcinoma+ 
undifferentiated vs 
squamous, p = 0.001

Robnett et al. (15) Multivariate 150 NSCLC II, III Brain − ND ND ND IIIB non-squamous+
Schouten et al. (16) Univariate 2724 Div. I–IV Brain <70 (breast and lung 

cancer)
ND ND ND ND

Tang et al. (17) Univariate 25 NSCLC I–III Brain − − ND Mediastinale vs hilar, 
p = 0.03

ND

Tang et al. (18) Multivariate 292 NSCLC ND Brain − T2 vs T3–4, 
p = 0.005*

ND N0–1 vs N2–3, 
p < 0.001*

−

Tsuchiya et al. (19) Multivariate 322 NSCLC IA Brain and  
others

− Size ≥15 mm, 
p = 0.038

ND ND Squamous, p = 0.002

Westeel et al. (20) Multivariate 192 NSCLC I–IV Brain and  
others

<61, p = 0.01 ND ND ND ND

ND, not determined; “−”, no predictive value (p > 0.05); “+”, predictive value, no significance.
*Significant for univariate analysis only.
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of standard clinical and pathological factors, such as status of 
primary tumor, tumor histology, nodal involvement, and patient 
age, may not be reliable due to small hazard ratios and unknown 
prognostic factors (6). Recently, Hung et al. (7) demonstrated in a 
study on 182 lung adenocarcinomas with distant metastases that 
the micropapillary histology subtype was significantly associ-
ated with brain metastasis (p =  0.01). However, a more robust 
method to identify which patients are at risk of developing brain 
metastasis is urgently needed.

Molecular classification by correlating distinct molecular 
markers with oncogenic mechanisms has been practiced to 
improve risk stratification of the TNM staging system (21). The 
potential of molecular biologic distinction would direct appropri-
ate therapy, thereby improving patient outcome. Among early-
stage (I/II) NSCLC patients, the 5-year overall survival (OS) rate 
is only 45.1% (22). Many clinical trials have confirmed that post-
operative adjuvant therapy can prolong the survival of NSCLC 
patients. In a recent meta-analysis of 3,923 patients, Chen et al. 
(23) demonstrated the efficacy of postoperative chemotherapy – 
both cisplatin based (p < 0.0001) and single tegafur-uracil (UFT, 
p = 0.002), in stages I–II, IA, and IB NSCLC, and no significant 
benefit was found in stage IA patients (p  =  0.43). In addition, 
cisplatin was shown to be better than single UFT chemotherapy 
in OS (p = 0.0005 and p = 0.81, respectively) (23). More trials 
should be conducted in order to confirm the efficacy of disease-
free survival therapies in future clinical practice.

In order to predict the rise of cerebral metastasis of lung  
cancer, we would need a measurable biomarker that correlates 
well with brain seeding of the lung cancer cells. Molecular 
markers may be classified into subgroups based on their mecha-
nism of action in the metastatic cascade to the brain (6). The 
optimal marker to disclose concealed (brain) metastatic disease 
would be displayed in primary tumors while not detectable in 
the serum of control subjects (24). The capacity to identify 
metastatic disease based on proto-oncogenes such as Kirsten rat 
sarcoma viral oncogene homolog (KRAS) and tumor suppressor  
p53 (TP53), present in only half of the lung cancer patients 
(47 and 50%, respectively) (25), demands a more broaden and 
deepened spectrum of the investigation of primary lung cancers,  
the molecular interactions with other cells, and the tumor 
microenvironment.

The process of metastasis is a selective and refined event 
called organotropism whereby, apart from an overall tendency 
to spread and invade, primary tumors show predilection for 
particular distinct organs (26). Cancers that metastasize to brain 
need to take a number of anatomic, physiologic, and molecular 
hurdles. The first requirement is intravasation into the blood 
stream, dependent upon a reversible epithelial-to-mesenchymal 
transition (EMT). The epithelial cell traits, such as cell polarity 
and E-cadherin-mediated cell adhesion, are suppressed and 
replaced by mesenchymal cell characteristics. The cells become 
motile, invasive, and resistant to apoptosis (27). Through the 
EMT process, tumor cells acquire stem cell-like features such 
as self-renewal, differentiation and ability to seed, justifying the 
term “tumor-initiating cells” (27). EMT molecular regulation is 
accomplished through an intricate network arranged by different 
genes and molecule inducers of EMT (28–30). AXL, a receptor 

tyrosine kinase belonging to the TAM family, and its ligand 
GAS6, growth arrest-specific gene 6, have been reported to down-
regulate several oncogenic signaling pathways (31), through 
activation of MAPK/ERK and PI3K/AKT signaling pathways 
(32, 33). Recently, AXL-GAS6 signal axis has been reported to 
have a potential key role in NSCLC tumor progression and may 
be suitable as a prognostic biomarker for identifying high-risk 
NSCLC brain metastasis patients (34). Tumor cell growth in the 
brain microenvironment is the result of genetic predisposition 
and cellular adaptation mechanisms and is largely dependent on 
cross-talk between tumor and brain-resident cells.

Genomic instability and mutations are just two of the cha-
racteristics of cells associated with the transition from a preneo-
plastic lesion to an invasive tumor state and consequent progression 
to metastatic disease. During tumorigenesis, a sequence of genetic 
modifications such as gene deletions, copy number alterations 
(CNAs), and chromosomal rearrangements occur. This review 
focuses on the use of molecular characteristics that are predic-
tive of tumor progression and development of metastatic NSCLC  
brain metastasis in particular.

GeNeTiC aLTeRaTiONS

Due to the recent discoveries of targetable genetic alterations in 
the treatment of NSCLC, patients have been stratified according 
to genetic variations in the primary tumor, including epidermal 
growth factor receptor (EGFR), KRAS, and anaplastic lym-
phoma kinase (ALK) (35). A summary of all genetic alterations 
that will be addressed in this review are presented in Figure 1. 
There are considerable differences in reported incidence and 
time to development of brain metastases for these genetic 
alterations.

ePiDeRMaL GROwTH FaCTOR 
ReCePTOR

In the Caucasian population, EGFR-activating mutations are 
present in 10–15% of adenocarcinomas and in less than 5% 
of squamous cell carcinomas (36). Roughly 90% of all known 
EGFR mutations reside in exon 19 (in-frame deletions) and in 
exon 21 (L858R, point mutation) (37, 38). The prevalence of 
activating EGFR mutations appears to be dependent on gender, 
smoking status and ethnicity. In patients from East-Asia, EGFR 
mutation is reportedly up to five times higher than in Caucasian 
patients (39–41). The relation between EGFR status, brain 
metastasis and survival are complex and not fully understood.  
It has been shown that lung cancer patients suffering from 
tumors with particular EGFR mutations survive longer, prob-
ably due to effective treatment. However, data also suggest that 
brain metastases arise more frequently in patients with primary 
lung tumors bearing EGFR mutations (42, 43) and the develop-
ment of brain metastases is relatively frequent during treatment. 
There are discordance rates of EGFR mutational status between 
primary tumors and their CNS metastases that vary from 0 to 
32% (44–50). In a series of 55 NSCLC primary tumors with 
matched cerebral metastases, EGFR was found to be more 
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FiGURe 1 | Features of primary lung cancer from patients known to develop brain metastasis and potential biomarker candidates. LKB1, liver kinase B1; CN,  
copy number; SNPs, single-nucleotide polymorphisms; CNAs, CN alterations; miRNAs, microRNAs; lncRNAs, long non-coding RNAs; *in EGFR-mutant patients.
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frequently amplified in the metastatic adenocarcinomas than 
corresponding primary tumors, with 30 and 10%, respectively 
(50). Discrepancies regarding the response of the brain metas-
tases may well be due to the timing of administering adjuvant 
chemotherapy for the primary tumors relative to the occurrence 
of the brain metastases. The choice of the agents is currently 
based on the molecular characteristics of the primary, not the 
metastatic, tumors. Paradoxically, prolonging survival times 
due to successful response of the primary tumors would create 
more time for brain metastases to develop as late complication  
(51, 52). Similar to EGFR, the KRAS status may also be discordant  
between primary and metastatic tissues (44) and a KRAS muta-
tion in a small subset of tumor cells may confer resistance to 
EGFR tyrosine kinase inhibitors (TKIs) therapy.

KRaS

Epidermal growth factor receptor and KRAS mutations are gene-
rally mutually exclusive (53, 54), but cases of EGFR and KRAS 
co-mutations have been identified (55–57). Roughly 15–30% of 
NSCLCs harbor activating mutations in codons 12 and 13 of the 
KRAS gene (58). KRAS mutations are associated with advanced 
tumor progression and clinical aggressiveness (59), forming a 
persistent risk of lung adenocarcinoma and implying to be an 
early event in the tumorigenesis process (53). The correlation of 
the presence of KRAS mutations with a smoking history (60) sug-
gests that KRAS mutations are a sequel of the actions of carcino-
gens of tobacco products (53). However, in a cohort of 482 lung 
adenocarcinomas, it was demonstrated that KRAS mutations do 
occur in patients with lung adenocarcinomas without a smoking 
history (61), but the mutations are different. Significantly more 
transition mutations (G>A) are being found in non-smokers than 
the transversion mutations (G>T or G>C, p < 0.0001) that occur 
in former- or current smokers (61). This observation supports the 
idea that the distinct transition profile – replacement of a purine 

for a purine or a pyrimidine for a pyrimidine (62) – of never 
smokers is very unlikely to be caused by passive tobacco vulner-
ability. No specific KRAS targeting treatment has so far shown 
efficacy. There is little available data on the KRAS mutational 
status in primary lung cancers as compared to that in their brain 
metastases (44, 57). In a relatively small series, Munfus-McCray 
et al. found 23.5% of brain metastatic lung adenocarcinomas with 
KRAS mutation exclusively in patients with a smoking history 
(p < 0.01) (59).

aNaPLaSTiC LYMPHOMa KiNaSe

Anaplastic lymphoma kinase rearrangements occur in 2–7% 
of all NSCLC, with predominance in non- or light smokers, 
younger age, and adenocarcinomas (63, 64). Fusion between 
EML4 (echinoderm microtubule-associated protein-like 4) and 
ALK yields at least 15 molecular variants with different biological 
behaviors and affected signaling pathways and consequences for 
therapy choice (65). ALK testing is particularly recommended 
for non-squamous lung cancers in the absence of EGFR muta-
tion, of patients with non- or light smoking history (66). The 
recommended method for testing the presence of ALK transloca-
tion is fluorescent in situ hybridization (FISH) and immunohis-
tochemistry (IHC) as confirmation (67, 68). In a large Western 
cohort, functional ALK rearrangements appeared to be mutually 
exclusive with EGFR and KRAS mutations (69). Although ALK 
translocations seem to be similar in primary tumors and their 
brain metastases, ALK amplifications are found more frequently 
in CNS metastasis with discordance rates of only 12.5% (70). 
Similar to EGFR, ALK rearrangements are predictive of response 
to TKIs, but the development of brain metastasis in patients with 
ALK translocations receiving ALK directed TKI is a major clini-
cal problem (71, 72). Recently, second-generation TKI alectinib 
has shown to delay the development of brain metastases com-
pared to first-generation TKI and also demonstrated promising 
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efficacy in the CNS for crizotinib-resistant ALK-positive NSCLC 
patients (73, 74). Similar to EGFR and KRAS mutations and ALK 
rearrangements, several other molecules such as liver kinase B1 
(LKB1, also known as STK11), proto-oncogene tyrosine-protein 
kinase ROS1, and C-MET that encodes the hepatocyte growth 
factor receptor were found to be implicated in the development of 
lung cancer (75–79). However, the connection of these molecules 
with the development of brain metastases is still under investiga-
tion and not yet implicated in clinical decision making. KRAS 
aberrations have a synergistic effect with LKB1 inactivation 
on lung cancer development and distant metastasis formation  
(80, 81). In a cohort of 154 NSCLC patients, Zhao et al. demon-
strated that a lower LKB1 copy number (CN), along with KRAS 
mutation, were significantly associated with a higher number of 
brain metastasis. Moreover, the odds ratio of brain metastasis 
was ~20 times higher in patients with one decrease in LKB1 CN 
values (82). LKB1 is observed to be inactivated in ~30% of all 
NSCLCs (83).

OTHeR MUTaTiONS

Although several potential targets may not regularly be 
expressed in a high number of lung cancer brain metastasis, 
their potential use for personalized treatment of selected lung 
cancer patients harboring actionable mutations should not 
be discarded. In a cohort of 874 brain metastases samples, of 
which 295 NSCLC, Capper et al. showed that, although a total 
of 51/874 samples harbored a BRAF V600E mutation, only 
1/295 NSCLC brain metastases (~0.3%) was BRAF mutant (84). 
Despite this low frequency of BRAF mutations in lung brain 
metastasis, regression of both visceral and brain metastases by 
BRAF inhibitor vemurafenib was reported in a patient with a 
BRAF V600E-mutated NSCLC (85). While 3% of primary lung 
cancers harbor ROS1 alterations, only 1/99 adenocarcinomas 
bore ROS1 translocations and 1/11 squamous cell carcinomas 
showed ROS1 amplifications (86).

Activating mutations in EGFR are associated with sensitiv-
ity to TKI therapy, but nearly 30% of EGFR positive patients 
show primary resistance to EGFR inhibitor therapy (87). While 
C-MET amplification is one of the factors commonly associ-
ated with disease progression (88), Benedettini et al., in a first 
cohort of 23 NSCLC samples of patients harboring an EGFR 
activating mutation, showed that both C-MET phosphorylation 
and expression were significantly associated with shorter time 
to progression, correlating with de novo resistance to EGFR 
TKI. In a second cohort of 40 patients, englobing 18 primary 
NSCLC from patients who later developed brain metastases and 
22 NSCLC from patients that did not develop brain metastases, 
Benedettini et  al. demonstrated that both C-MET expres sion 
and phosphorylation, but not C-MET amplification, were sig-
nificantly higher in the tumors from patients who developed 
brain metastasis. In 18 matched brain metastasis, amplification 
was demonstrated (89). In addition, in a cohort of 196 NSCLC 
brain metastasis samples, Presseur et  al. found C-MET gene 
amplification and overexpression in 21.6 and 44.4%, respectively, 
confirming that C-MET is commonly activated in brain metas-
tasis manifestation (90). Furthermore, a significant correlation 

between C-MET and ALK amplification status was observed 
(p = 0.039). In another study, these authors demonstrated that 
fibroblast growth factor receptor 1 (FGFR1) amplification in 
brain metastases of adenocarcinomas – but not squamous cell 
carcinomas, is fivefold more frequent than reported for primary 
tumors (~3%). Similar to C-MET, a positive correlation of ALK 
and FGFR1 amplification status in brain metastasis was reported 
as significant (p < 0.001) (91). In a recent study, Keap1, Nrf2, and 
P300, key genes of the Keap1–Nrf2–ARE survival pathway, were 
found to be mutated in brain metastatic tissue of progressive 
NSCLC patients (92). Moreover, mutations in Keap1-Nrf2-ARE 
pathway were found in circulating tumor cells (CTCs), suggest-
ing a role in the ability of CTCs to bear the rough environment 
in blood-circulation and attain distant organs (92).

CiRCULaTiNG TUMOR DNa (ctDNa)

An adequate characterization of somatic genetic modifications 
in human cancers is critical for an optimal diagnosis and sub-
sequent therapy. In brain metastatic tissue, as for all other brain 
malignancies, repeated biopsies are not a feasible approach to 
portray the tumor clonal diversity. Several studies have shown 
that cell-free ctDNA in the plasma could serve to characterize 
and monitor tumors (93–95). Nevertheless, ctDNA analysis of 
plasma from patients with brain malignancies has disclosed 
very low levels of tumor DNA (96). Recently, ctDNA analysis 
from cerebrospinal fluid (CSF) has been shown promising 
for brain cancer patients (97–99) and brain metastatic cancer 
patients (100, 101). CSF is in direct contact with the brain 
and, therefore, with tumor cells of brain cancer patients. In a 
comparative study of ctDNA derived from plasma and from CSF 
of patients with primary or metastatic brain tumors, De Mattos-
Arruda et al. showed ctDNA levels of brain malignancies to be 
more abundantly present in the CSF than in the plasma (100). 
Moreover, ctDNA from CSF appeared to recapitulate the brain 
metastasis-specific mutations – private mutations, absent in 
extracranial tumors of a patient with Her2-positive metastatic 
breast cancer (100). In addition, the CSF ctDNA proficiency to 
monitor responses to systemic therapy and brain tumor progres-
sion (98, 100), i.e., the capacity of the CSF ctDNA to recapitulate 
the modulation of mutant allele frequency over time in the brain 
tumor burden, suggests that genomic CSF analysis may be use-
ful not only in facilitating diagnosis of tumor in the CNS or as 
guidance to second-line agents choice, but also in pinpointing 
pathways’ intimate related with cancer spread to the CNS and 
predictive of brain metastases (98).

SiNGLe-NUCLeOTiDe POLYMORPHiSMS 
(SNPs) aSSOCiaTeD wiTH BRaiN 
MeTaSTaSeS

Studying SNPs in signaling pathways that regulate cell prolifera-
tion and migration and assessing the relationship between multi-
ple SNPs can be used to estimate the risk of brain metastasis. The 
PI3K–PTEN–AKT–mTOR pathway, important in the control of 
cell growth, tumorigenesis, and cell invasion, has been shown 
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to be abnormally activated in several cancer types, including 
NSCLC (102, 103). In a study of genetic variations in the PI3K–
AKT–mTOR pathway to predict brain metastasis in NSCLC 
patients, Quianxia et al. identified three SNPs that appeared to 
be exclusively associated with higher risk of brain metastasis: the 
GT/GG (p = 0.006) and CT/TT (p = 0.002) genotypes of AKT1, 
variant alleles rs2498804 and rs2494732, respectively, and AG/AA  
(p = 0.010) genotype of PIK3CA, variant allele rs2699887 (103). 
Furthermore, patients carrying at least one variant allele in 
PIK3CA had roughly twice the risk of brain metastasis as those 
without those variants (103). Multiple mechanisms of PI3K 
activation may be responsible for activation of the PI3K pathway 
(104), and increased PI3K activity would result in increased 
metastases. In concordance, Paik et  al. reported that patients 
with aberrant PI3K squamous lung carcinomas (n  =  9) had 
worse survival (median OS: 8.6 vs 19.1 months, p < 0.001), higher 
metastatic burden (>3 organs, 18 vs 3%, p = 0.025), and higher 
incidence of brain metastases (27 vs 0%, p < 0.001) (105). Similar 
to PIK3K–AKT–mTOR pathway, it was hypothesized that com-
mon genetic variants in the TGF-β pathway would be associated 
with the risk of brain metastasis (106). TGF-β pathway has been 
demonstrated to suppress early-stage tumor development and to 
stimulate tumor cell growth and invasiveness at later stages of 
tumorigenesis (107). Quianxia et al. found the GG genotype of 
SMAD6: rs12913975 (p = 0.014) and the TT genotype of INHBC: 
rs4750259 (p = 0.024) to be associated with risk of brain metas-
tasis in a cohort of 161 blood samples from NSCLC patients. 
Furthermore, de combination of both genetic variants was shown 
to be higher for prediction of brain metastasis (p = 0.001) (106).

CNas aSSOCiaTeD wiTH BRaiN 
MeTaSTaSiS

Activation or inhibition of a gene occurs through a variety of 
mechanisms such as, for example, activating mutations and 
deletions. Gene deletion can be evaluated by CNA. Animal 
models have given clear evidence that LKB1 haploinsufficiency 
stimulates KRAS driven lung cancer in mice (81), and a single 
copy inactivation of LKB1 can considerably ease brain recurrence 
(82). Although EGFR CN status is still controversial and some 
of the available data do not support EGFR CN as a prognostic 
factor (108, 109), Bonanno et  al. have shown, despite the less 
predictive accuracy of FISH analysis compared to EGFR muta-
tion analysis, that patients with EGFR-FISH-positive tumors 
have better outcomes (median OS: 177 vs 57 weeks, p = 0.048) 
(110). Considering that primary lung adenocarcinomas with 
early development of brain metastasis would contain more CNAs 
predictive of metastatic potential, Lee et  al. compared the CN 
changes of four lung adenocarcinomas with coexistent brain 
metastasis with 8 lung adenocarcinomas with metachronous 
brain metastasis (111). Amplification in 5q35.1-2 and 17q23.3-
24.1 was detected in 100% and that in 10q23.31 and 17q24.1 was 
detected in 75% of the cases with synchronous brain metastasis. 
On the other hand, and in a less frequent ratio, only 5q35.1-2 and 
17q24.1 amplification status was found in 12.5% of the metachro-
nous brain metastasis. Moreover, gained regions specific for early 

(simultaneous) brain metastasis were found to contain ACTA2, 
FAS, RGS9, and ICAM2 as putative metastasis promoting genes, 
the latter being most significant (p = 0.002) (111). In the same 
line, another study compared CNAs of primary NSCLC tumor 
and matched brain metastasis from one single patient (112). Brain 
metastatic tissue exhibited a higher degree of genetic heterogeneity  
when compared with the primary tumor with common regions 
of gain including 7p, 7q, and 19q and common regions of loss 
including 20q13 (112). In a stage IV SQCLCs study, four brain 
metastases and matched archived FFPE primary cancers were 
shown to have complete loss of PTEN by IHC and whole exome 
sequencing (105). In an early-stage NSCLC report, 30 (24%) of 
the total of 125 specimens analyzed for PTEN-IHC showed a lack 
of staining (113). Although genetic alterations of the PTEN gene 
are unusual in NSCLC, loss of PTEN protein is not a unique event 
in early-stage NSCLC and Soria et al. demonstrated that besides 
being a reversible event, PTEN loss may be partially explained 
by promotor methylation, in addition to point mutations and 
homozygous deletions (113).

MiCRORNas (miRNas) aSSOCiaTeD 
wiTH BRaiN MeTaSTaSiS

Recently, molecular studies have stressed the role of miRNAs 
which are small non-coding endogenous RNAs containing 
18–24 nucleotides that regulate gene expression at the post- 
transcriptional level thereby acting as negative regulators of 
mRNA translation and/or stability (114). miRNAs appear to 
regulate several hundred genes and could serve as a better clas-
sifier than gene expression profiling (115). miRNAs are known 
to play a crucial role in normal development, proliferation, 
differentiation, and apoptosis, and dysregulation of miRNAs  
has been linked to various pathological conditions, including 
cancer (116). The role of miRNAs in the development of brain 
metastases has been recently explored (117, 118).

Several studies have addressed the miRNA expression as 
biomarkers to predict the occurrence of brain metastases in lung 
cancer. miRNA-328 appeared to be significantly overexpressed in 
both primary tumor samples and cerebral metastases of patients 
with NSCLC, when compared with NSCLC patients without 
brain metastasis. Moreover, miRNA-328 overexpression has been 
found to promote migration and subsequent brain metastasis 
formation of NSCLC cells through PRKCA deregulation (119). 
PRKCA mediates the expression of urokinase plasminogen acti-
vator, leading to the migration of the tumor cells (120). Similar to 
miRNA-328, miRNA-378 has also been demonstrated as a poten-
tial biomarker to assist clinicians in stratifying patients for high-
risk of brain metastasis, because miRNA-378 was also found to 
be overexpressed in NSCLC primary tumor samples and matched 
brain metastasis of NSCLC patients (121). Also, miRNA-378 pro-
motes cell migration, invasion, tumor growth, and angiogenesis, 
in vitro and in vivo (121). Recently, Remon et al. have identified 
miRNA-197 and miRNA-184 as two significantly overexpressed 
miRNAs in EGFR-mutant patients with brain metastases, when 
compared with EGFR-mutant patients with no brain metastasis 
(122). However, because of lack of patients with EGFR wild-type 
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(EGFRwt) tumors without BM, no comparison between patients 
with EGFRwt tumors, with and without BM, could be made. 
Therefore, the effects of these miRNAs, irrespective of the EGFR 
status, need further scrutiny.

MicroRNAs’ expression status varies according to their 
targeted genes. Zhao et  al. have reported the significant up- 
regulation of miRNA-1471 and miRNA-9 and down-regulation 
of miRNA-214 and miRNA-145 in 11 brain metastatic lung can-
cer samples, when compared with 40 primary lung adenocarci-
nomas (p < 0.001 for all four miRNAs) (123). The up-regulation 
of miRNA-145 in primary lung adenocarcinomas was shown 
to suppress proliferation of tumor cells (123), consistent with 
other reports that show inhibition of cell proliferation in human 
lung adenocarcinomas through miRNA-145 targeting c-Myc, 
EGFR and NUDT1 (124, 125). Subramani et al. have shown the 
miRNA-768-3p to be underexpressed in several brain metastases, 
compared to matched primary tumors (126). miRNA-768-3p 
was found to be underexpressed in in vitro lung cancer cells after 
co-culture with astrocytes, driving to increased KRAS protein 
and downstream effectors ERK1/2 and BRAF, thereby boosting 
tumor cell viability and promoting metastasis. From various 
studies, it appears that miRNAs regulate the growth of metastases 
either by under- or overexpression, within the tumor tissue or 
in the tumor environment. The brain microenvironment nega-
tively regulates miRNA-768-3p to enhance KRAS expression 
that promotes the propagation of lung cancer brain metastasis 
(126). miRNA-146 was shown to be significantly up-regulated 
in NSCLC tissue when compared to healthy adjacent lung tissue 
(p < 0.05) (127). In another study, miRNA-146a expression in 
primary NSCLC was correlated with advanced clinical TNM 
stages and distant metastasis (p  <  0.05). The patients with a 
high miRNA-146a expression showed longer progression-free-
survival times than those with a low expression of miRNA-146a 
(25.6 and 4.8 weeks, respectively, p < 0.05) (128). In the same 
line with these findings, in a xenograft model, Hwang et  al. 
showed high expression of miRNA-146a in parental cells, while 
diminished expression in the brain-seeking cells. Moreover, 
miRNA-146a overexpression in the brain-seeking cancer cells 
suppressed their metastatic potential, which was correlated to 
the up-regulation of β-catenin and down-regulation of hetero-
geneous nuclear ribonucleoprotein C1/C2 (129). Taken together, 
these findings suggest that miRNA-146a serve as a valid clinical 
biomarker for prediction of brain metastasis in lung cancer 
patients. However, validation of miRNA-146a expression levels 
in a large cohort of human matched primary and brain meta-
static lung tumors is essential to confirm this finding. Similar to 
miRNA-146a, overexpression of miRNA-95-3p suppresses brain 
metastasis of lung adenocarcinoma through down-regulation of 
cyclin D1 (130). miRNA-95-3p is decreased in brain metastases 
of lung cancers as compared to the primary tumors and higher 
cyclin D1 expression correlates with poorer prognoses (130).  
In a recent study, Chen et al. reported miRNA-375 deregulation 
to be associated with NSCLC brain metastasis (131). miRNA-375 
is another miRNA documented to be down-regulated in primary 
tumors of NSCLC patients with brain metastasis. miRNA-375 
expression was significantly decreased in matched brain meta-
static NSCLC tissues (p < 0.05) and significantly correlates with 

total number of brain metastasis (p < 0.001). In addition, VEGF 
and MMP9 – which roles have been extensively studied in the 
development of brain metastasis – were over-expressed in down-
regulated miRNA-375 tumors (131).

MicroRNAs are linked with several molecular pathways. 
Several studies have correlated the overexpression of ADAM9 
in NSCLC patients with brain metastases (4, 132). ADAM9 has 
been demonstrated to enhance the ability of tissue plasminogen 
activator to cleave and stimulate the function of CUB domain 
containing protein 1 (CDCP1) – promigratory protein, to 
promote brain metastasis (4). Recently, Chiu et al. reported that 
ADAM9 down-regulates miRNA-1 via EGFR signaling pathways 
activation, enhancing CDCP1 expression to promote lung cancer 
progression (133). miRNA-1 expression was shown to be down-
regulated in primary lung tumors but increased in ADAM9-
knockdown lung cancer cells. Moreover, miRNA-1 negatively 
correlates with CDCP1 expression and with migration ability of 
lung cancer cells (133). Another study has identified miRNA-21 
as a target of signal transducers and activators of transcription 
3 (STAT3) pathway activity in lung-derived brain metastasis 
initiating cells (134). STAT3 is admitted as a central regulator in 
the metastatic process (135), and STAT3-knockdown has been 
demonstrated to reduce expression of known downstream targets 
of miRNA-21, while STAT3 and miRNA-21 act as cooperative 
regulators of stemness, migration and tumor initiation in lung-
derived brain metastasis (134). miRNAs appear very promising 
as diagnostics, prognostics and therapeutics to improve cancer 
patient outcome; however, the clinical use of miRNA therapeu-
tics to treat brain metastases has yet to be achieved. Advances 
in pre-clinical and translational studies to identify miRNAs that 
change after growth in the brain microenvironment have been 
made, but validation of large cohorts from patient tumor samples 
is required.

LONG NON-CODiNG RNas (lncRNas) 
aSSOCiaTeD wiTH BRaiN MeTaSTaSiS

Long non-coding RNAs have been recently identified as effective 
players in tumorigenesis. lncRNAs represent a class of non-
protein coding transcripts longer than 200 nucleotides (136) 
that covers a broad spectrum of physiological and pathological 
functions by implementing different modes of action (137). 
Similar to miRNAs that regulate several hundred genes, lncRNAs 
are involved in the regulation of multiple miRNAs, impacting 
the expression of thousands of genes (136). Besides performing 
a single function, some lncRNAs act at multiple functional levels 
in different types of cells. Metastasis-associated lung adenocar-
cinoma transcript 1 (MALAT1), localized in nuclear speckles 
and highly conserved among mammals, regulates alternative 
splicing (138) and gene expression through additional splicing-
independent mechanisms in lung cancer metastasis (139). In a 
recent study, Shen et  al. have shown lncRNA-MALAT1 levels 
to be significantly higher in primary NSCLC from patients 
who developed brain metastasis when compared with primary 
NSCLC from patients without brain metastasis (p < 0.001) (140). 
Additional in vitro functional studies showed overexpression of 
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vimentin in a highly invasive subline of brain metastasis lung 
cancer cells overexpressing MALAT1, while overexpression of 
E-cadherin was observed when MALAT1 was silenced, indicat-
ing that MALAT1 overexpression promotes lung cancer brain 
metastasis by inducing EMT (140). Accordingly, RNAi-mediated 
suppression of MALAT1-RNA, negatively influenced migration 
and clonogenic growth in established human NSCLC cell lines. 
Forced expression of MALAT1 in mouse NIH 3T3 fibroblasts 
significantly increased migration (141). Concordantly, long non-
coding MALAT1 expression was found to enhance cell motility 
through transcriptional and post-transcriptional regulation of 
motility related gene expression (142), displaying the strongest 
association with genes involved in cancer, like cellular growth, 
movement, proliferation, signaling and immune regulation 
genes (141). MALAT1 and thymosin β4 expression levels were 
identified as prognostic parameters for patient survival in stage 
I NSCLC that are at high risk to develop metastasis (p =  0.04 
and p = 0.01, respectively) (143). Tumorigenesis and metastases 
may be driven by tumor suppressive and oncogenic pathways 
deregulation through aberrant expression of cancer metastasis- 
associated lncRNA (144). In a recent in vitro study, the lncRNA 
brain cytoplasmatic RNA 1 (BCYRN1) was found up-regulated 
and targeted by c-MYC in human NSCLC cell lines (145). c-MYC 
is a commonly inhibited oncogene and becomes activated in onco-
genic pathways, and correlates with metastasis of NSCLC (146).  
Besides demonstrating that IncRNA BCYRN1 is essential in 
the c-MYC-regulated cell migration and invasion, BCYRN1 
positively correlates with the expression levels of MMP9 and 

MMP13 (145). MMP9 and MMP13, two members of the matrixin 
subfamily of the metzincin superfamily of Zn-dependent meta-
lloproteinases (147), are extracellular matrix degrading proteins 
proven to induce migration and invasion of tumor cells (147, 148), 
thereby regulating cancer cell metastasis (149).

CONCLUDiNG ReMaRKS

Lung adenocarcinoma establishes distant clinical detectable 
metastasis within months of initial diagnosis (26, 150). This short 
abeyance indicates that metastatic ability would arise from early 
oncogenic events that stimulate primary tumor growth rather 
than late-arising, scarce genomic alterations specific for metas-
tasis (151). Thus, monitoring persistent chromosomal changes 
in the primary NSCLC alongside with prospective multicenter 
studies of patient-matched primary and CNS metastatic lesions 
could help identify targetable approaches for brain metastasis-
specific signatures.
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