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Diffuse intrinsic pontine gliomas (DIPGs) are incurable childhood brain tumors, whereby 
the standard of care is focal radiation, a treatment that provides temporary relief for 
most patients. Surprisingly, decades of clinical trials have failed to identify additional 
therapies that can prolong survival in this disease. In this conference manuscript, we 
discuss how genetic engineered mouse modeling techniques with the use of a retroviral 
gene delivery system can help dissect the complex pathophysiology of this disease. 
With this approach, autochthonous murine DIPG models can be readily induced to  
(1) help interrogate the function of novel genetic alterations in tumorigenesis, (2) identify 
candidate cells of origin for this disease, (3) address how region-specific differences in 
the central nervous system influence the process of gliomagenesis, and (4) evaluate 
novel therapeutics in an immunocompetent model.
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iNTRODUCTiON TO DiFFUSe iNTRiNSiC PONTiNe GLiOMA 
(DiPG)

Pediatric brain tumors are now the leading cause of cancer-related death in children (1). Of the 
various types of pediatric brain tumors, diffuse intrinsic pontine glioma or DIPG stands out as one 
of the childhood brain tumors with the worse survival with an annual incidence in the United States 
at 250 cases per year, and a median overall survival of approximately 11 months (2). Children with 
DIPG usually present at the age of 6–7 years of age, and clinical presentation usually includes the 
triad of ataxia, cranial nerve palsies, and long tract signs (3, 4). On magnetic resonance imaging 
or MRI, there is a characteristic T2 hyper intense lesion that is primarily localized in the pons, 
while T1 with gadolinium imaging demonstrates minimal contrast enhancement. This tumor is 
highly infiltrative as autopsy examination of the central nervous system of children who succumb 
to DIPG demonstrates leptomeningeal dissemination in approximately 40% (5). This publication 
associated with the Alicia Pueyo DIPG workshop that was held in Barcelona on March 12–13, 2018 
will review efforts to better understand the pathogenesis of DIPG using genetic mouse modeling 
techniques. More specifically, we will describe the use of retroviruses to deliver oncogenes or delete 
tumor suppressors to specific cell populations of the murine neonatal brainstem to induce brainstem 
gliomagenesis (6). Furthermore, we will describe the application of these brainstem glioma models 
for functional genomics studies, for investigations of region-specific differences in gliomagenesis 
within the central nervous system, and for the evaluation of new therapeutics.
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FiGURe 1 | Common genetic alterations in human diffuse intrinsic pontine gliomas (DIPGs) and a schematic illustrating how the RCAS/tumor virus A (TVA) system is 
used to induce murine DIPGs.
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GeNeTiC ALTeRATiONS

Historically, DIPGs were thought to harbor genetic alterations 
that are identical to those in adult gliomas, justifying using adult 
preclinical models to guide the development of novel therapeu-
tics for children with DIPG. With the advent of next-generation 
sequencing technologies, analysis of DIPGs unraveled new 
somatic nucleotide variants or SNVs that clearly demonstrate 
that DIPGs harbor genetic alterations that differ not only from 
pediatric high-grade gliomas that arise in other parts of the brain, 
particularly from pediatric high-grade gliomas that arise in the 
cerebral cortex, but also from adult high-grade gliomas. The 
SNV discovered in DIPG that has received the most attention 
so far is the K27M mutation in histone 3 (H3), due to its high 
prevalence in DIPGs at approximately 80% (and midline gliomas 
in general) and it being the first time that a cancer-associated 
SNV was identified in a histone gene itself (7–9). Other SNVs 
with high prevalence in DIPG (>20%) include activin A receptor, 
type I (ACVR1), a cell surface receptor in the bone morphoge-
netic protein pathway, and p53 mutations (10–13). There are also 
numerous SNVs that have a lower prevalence, such as activating 
mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit alpha (PIK3CA) or truncating mutations in 
protein phosphatase 1D (PPM1D) (14, 15). It is outside the scope 
of this review to list all SNVs that have been identified in DIPG 
and readers are referred to a more comprehensive recent analysis 
published in Cancer Cell (16). Besides SNVs, DIPG tumor cells 
also commonly harbor copy number losses and gains with 
platelet-derived growth factor receptor A (PDGFRA) being one 
of the most commonly gained receptor tyrosine kinase and cell 

cycle regulatory genes harboring focal amplifications in 30% of 
DIPGs (17, 18). There are also larger genomic alterations, such as 
whole chromosome arms that are gained or lost in DIPG tumor 
cells, and the significant of most of these broader genetic changes 
is less clear as they typically include a large number of genes. 
Importantly, the H3 K27M mutation, and the ACVR1 mutations 
are mostly specific to pediatric high-grade gliomas, while muta-
tions in p53, PPM1D, and PIK3CA, as well as PDGFRA gains can 
also be found in adult high-grade gliomas. Figure 1 lists some 
of the common genetic alterations that have been identified in 
human DIPGs.

GeNeTiC MOUSe MODeLiNG

In this review, we are focusing on the use of the RCAS/tumor 
virus A (TVA) system to induce murine DIPGs (Figure 1) but 
it is worth noting that this system has been successful in mod-
eling many other types of cancer including medulloblastomas, 
sarcomas, and melanomas (19–21). The development of DIPG 
xenograft models is a great advance that has led to important 
insights regarding DIPG biology and has been described in 
detail elsewhere (22, 23). A complementary approach is the 
development of genetically engineered mouse models which can 
allow one to investigate questions such as (1) what is the likely 
cell of origin for DIPG, (2) what is the role of specific onco-
gene or tumor suppressor in tumorigenesis, and (3) whether a 
particular genetic event is necessary or sufficient for brainstem 
gliomagenesis. Before, next-generation sequencing unraveled 
the presence of H3 mutations in the majority of human DIPGs, 
there was limited knowledge regarding the genetic alterations 
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FiGURe 2 | Murine diffuse intrinsic pontine glioma (DIPG) induced by PDGF-A; H3.1K27M; p53 loss. Low (top) and high (bottom) magnification images of a murine 
DIPG induced with the RCAS/tumor virus A (TVA) system using Nestin TVA; p53 floxed/floxed mice. Neonatal mouse was infected postnatally with DF1 expressing 
RCAS vectors expressing PDGF-A, H3.1 K27M, and Cre (to delete p53) at a ratio of 1:1:1, and euthanized 43 days’ post-infection. Images from left to right: H&E, 
Ki-67, HA (tag for H3.1K27M), and Olig2 immunohistochemistry. Note the infiltration into the cerebellum (best seen on low magnification HA and Olig2 
immunohistochemistry images).
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in DIPG. We successfully developed a genetic model of DIPG 
using the RCAS (replication-competent avian sarcoma-leucosis 
virus long-terminal repeat with splice acceptor)/TVA modeling 
system by expressing a potent glioma driver, platelet-derived 
growth factor-B (PDGF-B), specifically in the brainstem (6, 24).  
By infecting nestin progenitors of the neonatal brainstem with 
PDGF-B, a ligand that signals through both PDGFRA and 
PDGFRB, we were able to induce grade II brainstem gliomas that 
are histopathologically similar to human DIPGs (6). To get higher 
grade tumors (grades III and IV), we had to combine PDGF-B 
with either Ink4a-ARF loss or p53 loss (6, 25). In this early study, 
we demonstrated using immunohistochemistry that PDGFRA 
is expressed in 67% of human DIPGs. It is worth noting that it 
is not known whether PDGFB and PDGFRB are expressed in 
human DIPGs. We have recently observed that we can substitute 
PDGF-A for PDGF-B with the RCAS/TVA system to induce 
murine DIPGs (Figure 2) in a similar manner to what has been 
done to model glioblastomas that arise in adults (26).

Diffuse intrinsic pontine gliomas arises in a unique part of 
the brain, the pons, a part of the brainstem that harbors critical 
neurons regulating basic functions such as respiration, heart rate, 
and blood pressure. This is why surgical resection is not an option 
for DIPG. One application of genetic mouse models using ret-
roviruses is to interrogate region-specific differences within the 
central nervous system by generating age- and strain-matched 
murine gliomas induced by the same genetic events and compar-
ing their differences and similarities using expression profiling. 
We performed one such experiment with our initial DIPG model 
driven by PDGF-B and Ink4a-ARF loss. By comparing the 
expression profile of brainstem gliomas and gliomas induced in 
the cerebral cortex that were initiated with the same two genetic 
alterations, we identified a small number of significantly differen-
tially expressed genes. We focused on one such gene, paired box 
protein 3 or Pax3, a transcription factor that we observed to be 

upregulated in brainstem gliomas relative to gliomas arising in 
the cerebral cortex and relative to normal brainstem. Additional 
experiments demonstrated that pax3 is expressed in tumor cells, 
that it cooperates with PDGF-B in promoting gliomagenesis, and 
that a distinct subset of human DIPGs, approximately 40%, also 
have high expression of pax3 (27).

Accurate genetic mouse modeling of DIPG requires introduc-
tion of the genetic alterations to the correct cell of origin during 
the development of the pons. One challenge is that it is difficult 
to be certain of the correct cell of origin of the human disease 
as DIPG is often diagnosed once patients develop sign and 
symptoms, a relatively late time-point in the natural history of 
the disease, where the tumor occupies the majority of the pons. 
With this caveat in mind, there have been a few studies using 
human postmortem pontine tissue to investigate candidate cell of 
origin for DIPG. In one study, candidate cells of origin for DIPG 
were identified as a Nestin+/Vimentin+/Olig2+ cell population 
located in the ventral pons during middle childhood as this cell 
population mirrors the age-specific incidence of DIPG (22). In a 
second study, oligodendrocyte progenitor cells (Olig2+/Sox2+/
APC−) were identified as the most proliferative population in 
the postnatal pons and thus likely cells of origin as proliferating 
cells are more likely to acquire new mutations during cell division 
than non-dividing cells, initiating DIPG pathogenesis (28). The 
RCAS/TVA system allows for investigations into the cell of origin 
by investigating whether a particular cell of origin can give rise 
to DIPG when specific genetic alterations are introduced. Thus, 
far we have induced murine DIPGs in two cells of origin popula-
tion, namely, nestin-expressing progenitors and pax3-expressing 
progenitors. While expression of the two markers does overlap 
in the midbrain and dorsal pons, they have limited overlap in 
the ventral pons although both are present. In our early work 
targeting nestin-expressing progenitors, we identified nestin-
expressing progenitors lining the floor of the fourth ventricle as 
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putative cells of origin for DIPG (6). However, as the majority of 
human DIPGs are thought to arise from the ventral pons and it 
is unclear whether nestin-expressing progenitors lining the floor 
of the fourth ventricle can give rise to cells in the ventral pons, 
we also investigated whether pax3 can serve as a cell of origin for 
DIPG and were successful in generating murine DIPGs, includ-
ing ones that arise in the ventral pons (29).

One important aspect of DIPG from a therapeutic perspective 
is its relatively intact blood–brain barrier which is most evident 
on MRI imaging as DIPGs rarely enhance with gadolinium on 
T1 sequences. A detailed discussion of the composition of the 
blood–brain barrier is outside the scope of this communication, 
but in brief, two main components of the blood–brain barrier are 
the tight junctions between endothelial cells and efflux pumps 
such as ABCB1 and ABCG2 that are expressed by endothelial 
cells and efflux drugs back to the bloodstream. As it is unclear 
whether it is the tumor location, or its genetic alterations that 
most contribute to the relatively intact blood–brain barrier of 
DIPG, we investigated whether the brainstem location or the 
histone mutation or both that contributes to the relatively intact 
blood–brain barrier in DIPG. Using the RCAS/TVA genetic mouse 
modeling approach, we generated murine DIPGs with and with-
out H3.3K27M in both the cerebral cortex and the brainstem, and 
measured the relative openness of the blood–brain barrier with 
dynamic contrast-enhanced MRI. Interestingly, we observed that 
blood–brain barrier permeability was 67% significantly higher in 
PDGF-B driven gliomas that were induced in the cerebral cortex 
vs. those that were induced in the brainstem while H3.3K27M did 
not significantly impact the openness of the blood–brain barrier 
(30). These results suggest that it is the brainstem location that 
at least partially contributes to the relatively intact blood–brain 
barrier of DIPGs but additional studies are required to interro-
gate whether additional genetic events besides H3.3K27M may 
contribute to the relatively closed blood–brain barrier in DIPGs.

THeRAPeUTiCS (CDK4/6 AS A STRATeGY 
FOR TARGeTiNG H3K27M)

When the K27M H3 mutations in DIPG were first discovered 
in 2012, we investigated whether their expression in nestin 
progenitors of the neonatal brainstem would be sufficient to 
drive gliomagenesis in a similar manner to PDGF-B. As 20% of 
human DIPGs do not harbor the H3 mutations but are clinically 
indistinguishable, it is likely that H3 mutations are not neces-
sary for DIPG formation. Perhaps not surprisingly, expressing 
the mutant histone alone (H3.3K27M) in nestin progenitors of 
the neonatal brainstem did not induce tumors by 12  weeks of 
age. Interestingly, expressing H3.3K27M with p53 loss in nestin 
progenitors of the neonatal brainstem resulted in the develop-
ment of ectopic proliferating cell clusters in approximately 
70% of the mice by 12 weeks of age but no overt tumors were 
observed (31). As PDGFRA copy number gains are associated 
with H3.3K27M, we combined H3.3K27M with PDGF-B, and 
observed cooperation between the two genetic events. Infection 
of the nestin-expressing brainstem progenitors with PDGF-B and 
H3.3K27M resulted in half-of-the-mice developing grade III/IV 

tumors while similar infections with the combination of PDGF-B 
with either an empty vector or H3.3 wild-type (WT) resulted in 
the generation of only grade II tumors (32). In addition, measure-
ment of the proliferation rate of tumors initiated with PDGF-B 
and H3.3K27M vs. PDGF-B and H3.3 WT or PDGF-B and empty 
vector demonstrates that H3.3K27M significantly increases the 
proliferation rate of PDGF-B driven brainstem gliomas. These 
results suggest that the H3.3K27M requires oncogenic partners 
to exert its pro-tumorigenic effects in this experimental system.

These results are consistent with experiments performed with 
neural progenitors derived from human embryonic stem cells 
where PDGFRA activation was required in combination with 
H3.3K27M and p53 loss to induce gliomas (33). By contrast, in 
a more recent study, an in utero electroporation using piggyBac 
transposon-based vectors of H3.3K27M and p53 deletion using 
CRISPR did succeed in inducing gliomas with these two genetic 
events suggesting that these two genetic events may be sufficient 
to drive gliomagenesis in certain settings (34). Surprisingly, 
the same authors also observed that H3.3K27M expression 
under the regulation of either the nestin or GFAP promot-
ers in combination with p53 loss was not sufficient to drive  
gliomagenesis (34).

Going back to the RCAS/TVA system, to address the mecha-
nism by which H3.3K27M increases the proliferation rate of 
the tumor cells in this model, we performed RNA sequencing 
(RNAseq) of PDGF-B; H3.3K27M; p53-deficient tumors and 
PDGF-B; p53-deficient tumors and compared their transcriptome. 
It is worth noting that we did observe significantly reduced global 
H3K27me3 in the PDGF-B; H3.3K27M; p53-deficient tumors 
relative to PDGF-B; p53-deficient tumors in a similar fashion to 
the reduced global H3K27me3 observed in human DIPGs with 
K27M H3 mutations (31, 35, 36). We observed approximately 200 
differentially expressed genes between the two tumor genotypes. 
As expected the majority of differentially expressed genes were 
upregulated in the PDGF-B; H3.3K27M; p53-deficient model 
relative to the PDGF-B; p53-deficient tumor as the H3.3K27M 
mutation is thought to contribute to tumor formation through 
inhibition of the polycomb repressive complex 2 or PRC2, an 
H3K27 methylase complex that is associated with gene repres-
sion. Surprisingly, the RNAseq analysis also identified a short 
list of transcripts that were repressed by H3.3K27M and some of 
these were known PRC2 target genes. We chose to focus on one 
gene in that short list, namely, p16 or ink4a, as it is an endog-
enous inhibitor of cyclin-dependent kinase 4 and 6 or CDK4/6, 
two enzymes that regulate the G1 to S cell cycle transition. 
Through a series of additional experiments, including chromatin 
immunoprecipitation, we demonstrated that, paradoxically, 
there is a stronger H3K27me3 signal at the p16 promoter and 
that pro-tumorigenic mechanism of the H3.3K27M is no longer 
present when the CDKN2A locus, which codes for both p16 and 
p19, is deleted. The mechanism for this focal gain in H3K27me3 
at the p16 promoter is unclear but has been observed by others 
including in human DIPG cells (37, 38). Therefore, H3.3K27M 
represses p16, an endogenous CDK4/6 inhibitor, which suggests 
that inhibition of CDK4/6 would be a good target to evaluate in 
H3.3K27M mutant tumor cells, and indeed in in vitro studies we 
observed that PDGF-B; H3.3K27M; p53-deficient cells are more 
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sensitive than PDGF-B; H3.3WT; p53-deficient cells to CDK4/6 
inhibition (32).

THeRAPeUTiCS (PDGFRA)

As PDGF signaling is a potent driver of brainstem gliomagenesis 
in myriad DIPG model systems, it is worthwhile to address 
whether it is a good therapeutic target for DIPG. There have been 
two early phase clinical trials that enrolled children with DIPG 
and reported their results regarding the evaluation of small 
molecule inhibitors targeting PDGFRA and neither inhibitor 
(imatinib and dasatinib) significantly prolonged survival (39, 
40). It would be difficult to determine exactly why neither drugs 
proved efficacious against DIPG in those two trials as neither 
studies included a pharmacodynamics assessment in the tumors 
to determine if the target was inhibited. This is partly due to the 
delicate location of the tumor in the brainstem making biopsies, 
a procedure with significant risk to the patient. So unfortunately, 
these clinical trial failures did not teach us as much as they 
should. It is definitely possible that the blood–brain barrier 
played a role in preventing sufficient drug from reaching the 
tumors with both agents, although there are many other plau-
sible explanations (tumor heterogeneity, feedback loops, etc.). 
Using our preclinical model, we evaluated dasatinib in vivo in 
the PDGF-B; p53-deficient DIPG model and observed a mod-
est prolongation of survival. Interestingly, the survival benefit 
with dasatinib was more substantial when we treated PDGF-B; 
p53-deficient DIPG-bearing mice that were deficient for ABCG2 
and ABCB1 (25). Evaluation of dasatinib in human DIPG cell 
lines in vitro have also demonstrated efficacy and as a result there 
is an ongoing clinical trial in France evaluating the efficacy of 
dasatinib in DIPG patients (41).

CONCLUSiON

Genetic mouse modeling of DIPG with the RCAS/TVA system 
provides a complementary approach to studying human DIPGs 

to better understand its complex biology with the ultimate goal 
of developing improved therapies. Increased research efforts 
focusing on DIPG in the past decade have ushered in new 
insights regarding DIPG pathogenesis as well as the develop-
ment of improved DIPG models, both patient-derived and 
genetic models. Of course, there are many, many questions 
that remain to be addressed. Is the relatively intact blood–brain 
barrier the reason for the failure thus far to identify a single 
drug that can significantly prolong survival in this disease? Is the 
K27M histone mutation required for tumor maintenance and is 
it an important therapeutic target? Are some of the epigenetic 
changes it induces irreversible as has recently been shown for 
the IDH mutation (42)? Can we harness the immune system to 
treat DIPG? Would epigenetic drugs show efficacy in children 
with DIPG as has been suggested in preclinical studies using 
DIPG xenograft models (23, 43–45)? Ultimately, the accel-
eration in our understanding of cancer in general and DIPG in 
particular, together with the availability of new research tools, 
and increasing neurosurgical expertise in the procurement of 
tumor biopsies as well as newer approaches such as localized 
therapy will eventually translate into improved therapies in the 
not-so-distant future.
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