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Heme oxygenase 1 (HO-1) is crucially involved in cell adaptation to oxidative stress and 
has been demonstrated to play an important role in cancer progression and resistance 
to therapies. We recently highlighted that undifferentiated neuroblastoma (NB) cells 
are prone to counteract oxidative stress through the induction of HO-1. Conversely, 
differentiated NB cells were more sensitive to oxidative stress since HO-1 was scarcely 
upregulated. In this work, we investigated the role played by miR-494, which has been 
proved to be involved in cancer biology and in the modulation of oxidative stress, in 
the upregulation of HO-1. We showed that NB differentiation downregulates miR-494 
level. In addition, endogenous miR-494 inhibition in undifferentiated cells impairs HO-1 
induction in response to exposure to 500 µM H2O2, reducing the number of viable cells. 
The analysis of Bach1 expression did not reveal any significant modifications in any 
experimental conditions tested, proving that the impairment of HO-1 induction observed 
in cells treated with miR-494 inhibitor and exposed to H2O2 is independent from Bach1. 
Our results underline the role played by miR-494 in favoring HO-1 induction and cell 
adaptation to oxidative stress and contribute to the discovery of new potential pharma-
cological targets to improve anticancer therapies.

Keywords: heme oxygenase 1, neuroblastoma, mir-494, oxidative stress, Bach1

iNtroDUctioN

Heme oxygenase 1 (HO-1) is a 32-kDa inducible enzyme belonging to the HO system, which 
catalyzes the degradation of the iron-containing molecule heme, leading to the generation of free 
iron (Fe2+), carbon monoxide (CO), and biliverdin. Biliverdin reductase converts biliverdin into 
bilirubin (1) and ferritin quenches free iron (2). Overall, ferritin, CO, and bilirubin exert strong 
antioxidant, anti-apoptotic, and anti-inflammatory effects (3). Different activators are involved 
in HO-1 induction and the nuclear factor erythroid 2-related factor 2 (Nrf2) is considered the 
most important (4, 5). Moreover, Keap1 by favoring Nrf2 proteasomal degradation, and Bach1 by 
preventing Nrf2 binding to the promoter region of HO-1, work as HO-1 repressors (6–8).

A sustained HO-1 expression in cancer correlates with a high degree of malignancy (e.g., aggres-
siveness, metastatic, and angiogenetic potential), although the pro-tumorigenic role of HO-1 seems 
to be tumor specific and tissue specific (9, 10). In the treatment of highly aggressive neuroblastoma 
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(NB), the upregulation of HO-1 limits the efficacy of bortezomib 
(11, 12) suggesting HO-1 inhibition may represent a molecular 
target in the clinical strategies against NB (13, 14).

By modulating the expression of many different proteins, 
microRNAs (miRs) supervise and integrate numerous signaling 
pathways and their involvement has been postulated in various 
physiological and pathophysiological processes, from differen-
tiation to senescence or oncogenesis (15–17). Strong evidence 
supports the notion that miRs can behave as oncogenes or 
tumor suppressor genes (18), and given the important role of 
oxidative stress response in tumorigenesis, understanding miR 
regulation in this condition is of major interest. Since a role 
played by miR-494 in the modulation of oxidative stress has 
been demonstrated in other contexts (19, 20), but no studies 
have been conducted in NB cells so far. In this work, we aimed 
at investigating the functional role of miR-494 in NB  cell 
response to oxidative stress, focusing on its involvement in 
HO-1 induction.

MateriaLs aND MethoDs

cell culture and Differentiation
SH-SY5Y and SK-N-BE(2C) NB cells were cultured in RPMI 1640 
medium (Euroclone, Italy) supplemented with 10% fetal bovine 
serum (Euroclone), 2 mM glutamine (Sigma-Aldrich, Italy), 1% 
amphotericin B (Sigma-Aldrich), and 1% penicillin/streptomy-
cin (Sigma-Aldrich). Cells were differentiated by growth in the 
same medium supplemented with 10 µM all-trans retinoic acid 
(ATRA) (Sigma-Aldrich) for 4 days, up to 8 days. Differentiation 
was monitored by checking morphological changes such as 
neurite elongation and biochemical markers such as MAP2 and 
NeuroD1 expression (21, 22).

rNa extraction and microrNa  
Level evaluation
Total RNA was extracted using TRIZOL reagent (Life Tech-
nologies, Carlsbad, CA, USA) according to the manufacturer’s 
instructions. The cDNA templates for evaluation of mature miR 
levels were obtained from input RNAs (10 ng) using TaqMan™ 
Advanced miR cDNA Synthesis Kit (Thermo Fisher Scientific, 
USA, Cat. No. A28007) following the manufacturer’s protocol. 
Real-time quantitative PCR for hsa-miR-494, hsa-miR-128, hsa-
miR-425-5p, and hsa-let7g-5p was performed in triplicate on 
diluted cDNA templates (1:10) by using the TaqMan® Advanced 
miR Assays (Thermo Fisher Scientific, Cat. No. A25576). hsa-
miR-425-5p and hsa-let7g-5p were used as endogenous refer-
ence miRs. Relative quantification of miR expression levels was 
performed according to the ΔΔCt method.

transfection of microrNa inhibitors
SH-SY5Y cells were transiently transfected with 100 pmol of 
miR-494 inhibitor (miRCURY LNA miR inhibitor—hsa-miR-
494-3p, QIAGEN, Hilder, Germany) and miR inhibitor Control 
(mirCURY LNA miR inhibitor Control—negative Control A, 
QIAGEN) by using Lipofectamine 2000 (Life Technologies) 

following the manufacturer’s instruction. 96 h after transfection, 
cells were treated with 500  µM H2O2 for further 6  h to assess 
Bach1 levels, or for further 24 h to assess HO-1 levels and cell 
viability.

cell Viability assay
Cell viability was evaluated by Trypan blue assay as previously 
described (12).

reactive oxygen species (ros) 
evaluation
Evaluation of ROS was performed by using 2′,7′-dichlorofluo-
rescein diacetate (DCFH-DA; Sigma-Aldrich) assay. After treat-
ments, cells stained with 5 µM DCFH-DA for 30 min at 37°C were 
analyzed by FACS (Attune™ Acoustic Focusing Flow Cytometer, 
Thermo Fisher Scientific). Values are expressed as arbitrary units 
of fluorescence.

immunoblotting
Total protein lysates, prepared by using RIPA buffer (13), 
were subjected to electrophoresis on SDS-polyacrylamide gel 
(Mini protean precast TGX gel, Bio-Rad, Milan, Italy) (22). 
Immunodetection was performed using mouse anti-hnRNPQ 
(1:1,000, Santa Cruz), rabbit anti-PTEN (1:1,000, Cell Signaling 
Technology, MA, USA), rabbit anti-Bach1 (1:4,000, Bethyl 
Lab, Montgomery, TX, USA), and rabbit anti-HO-1 (1:2,000, 
Origene, Herford, Germany) and specific secondary antibod-
ies (GE Healthcare). The membranes were re-probed with the 
loading control antibodies, rabbit anti-GAPDH (1:1,000, Santa 
Cruz) or mouse anti-tubulin (1:2,000, AbCam). The bands were 
detected by means of an enhanced chemiluminescence system 
(GE Healthcare) and developed films analyzed using a specific 
software (GelDoc, Bio-Rad).

statistical analyses
Statistical analysis of the differences among mean values ± SEM 
from three or more experiments was performed by using t-test to 
compare two groups or one-way ANOVA followed by Dunnett’s 
post-test to compare more groups.

resULts

atra-induced NB cell Differentiation  
is associated With reduced Levels  
of mir-494
The analysis of miR-494 expression, performed after 4-day 
exposure to 10 µM ATRA, showed a significant reduction in both 
SH-SY5Y and SK-N-BE(2C) cell lines (Figure 1A). SH-SY5Y cells 
increase the expression of differentiation markers already after 
4-day exposure to ATRA, as widely proved (21–23). However, 
since SK-N-BE(2C) need more time to complete ATRA-induced 
differentiation (24), miR evaluation was also performed after 
6- and 8-day exposure to 10 µM ATRA on SK-N-BE(2C) cells. 
In these conditions, only a small further decrease of miR-494 
expression has been observed (Figure S1a in Supplementary 
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figUre 1 | miR-494 downregulation occurs in neuroblastoma (NB) differentiation and modify cell response to H2O2. (a) Expression levels of mature miR-494 in 
undifferentiated or all-trans retinoic acid (ATRA)-differentiated SH-SY5Y and SK-N-BE(2C) NB cells. hsa-miR-425-5p and hsa-let7g-5p were used as endogenous 
reference miRs. Results are reported as relative to the values obtained in untreated control cells, which was set equal to 1. Statistical analysis: n = 3; *p < 0.05 vs 
undifferentiated. (B) Expression levels of mature miR-128 in undifferentiated or ATRA-differentiated SH-SY5Y and SK-N-BE(2C) NB cells. hsa-miR-425-5p and 
hsa-let7g-5p were used as endogenous reference miRs. Results are reported as relative to the values obtained in untreated control cells, which was set equal to  
1. Statistical analysis: n = 3. No significant differences. (c) WB analysis of PTEN. GAPDH expression has been used as loading control. 40 µg of protein has been 
loaded. The bands show the most representative experiment. Statistical analysis: n = 3; *p < 0.05 vs NegC. (D) WB analysis of hnRNPQ. GAPDH expression has 
been used as loading control. 40 µg of protein has been loaded. The bands show the most representative experiment. Statistical analysis: n = 2; *p < 0.05 vs 
NegC. (e) Percentage of viable cells (Trypan blue analysis) after miR-494 inhibition and 24 h exposure to 500 µM H2O2. Statistical analysis: n = 4; *p < 0.05 vs  
NegC and miRNA 494 inhibitor.
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Material). The expression of miR-128 has been also analyzed due 
to its involvement in stress response and differentiation (25, 26), 
but no changes were observed in both cell lines after differentia-
tion (Figure 1B). The following experiments have been carried 
out on SH-SY5Y NB cells which strongly downregulated miR-494 
(−10-folds vs undifferentiated) in the shortest experimental time 
(4 days).

mir-494 inhibition Modifies cell 
responses to oxidative stress
To evaluate whether the reduction of endogenous miR-494 
could modify NB  cell sensitivity to oxidative stress, cells were 
transfected with a specific miR-494 inhibitor and then exposed 
to 500  µM H2O2. The effectiveness of miR-494 inhibition was 
checked by evaluating the protein levels of two miR-494 targets, 
namely, PTEN and hnRNPQ that resulted upregulated of about 
50% (Figures  1C,D). The analysis of viable cells revealed no 
changes induced by miR-494 inhibition itself, in comparison to 
cells transfected with a NegC. Conversely, miR-494 inhibition 
significantly decreased the percentage of viable cells after the 
exposure to 500 µM H2O2 (Figure 1E). The analysis of markers 
of apoptosis such as BAX and PARP did not show any changes 
(Figures S1b and S1c in Supplementary Material) and this led us 
to rule out the occurrence of apoptosis. These results indicate that 
the expression of miR-494 in undifferentiated NB cells favors cell 
adaptation/response to oxidative stress.

mir-494 inhibition impairs ho-1 induction 
in response to oxidative stress
To investigate whether a reduced expression of miR-494 influ-
ences oxidative stress response, NB cells transfected with miR-
494 inhibitor or NegC were treated with H2O2 and ROS levels 
and HO-1 expression were evaluated. ROS levels were increased 
only in cells treated with miR-494 inhibitor and exposed to 
H2O2 (Figure 2A). In this experimental condition, no significant 
induction of HO-1 has been observed (Figure 2B). Conversely, 
in NB cells transfected with NegC, the exposure to H2O2 was able 
to significantly increase the expression of HO-1, and the level of 
ROS was not significantly modified.

The ubiquitination pattern was also analyzed but no changes 
were detected in any experimental conditions (Figure S1d in 
Supplementary Material).

In silico analyses predicted Bach1 as a target of miR-494 with 
two putative sites within its 3′UTR (Figure 2C). Thus, we checked 
the protein levels of Bach1. WB analysis showed that miR-494 
inhibition did not modify Bach1 expression after H2O2 exposure 
(Figure  2D). Different Bach1 post-translational modifications 
have also been analyzed; ubiquitination and sumoylation were 
not detected and Bach1 acetylation was not modified in any 
experimental conditions (Figure S1e in Supplementary Material). 
These results show no involvement of Bach1 in the miR-494 
dependent HO-1 regulation.

Furthermore, Keap1 levels have been also checked but no 
changes were detected in any experimental conditions (Figure S1f 
in Supplementary Material), proving no involvement of Nrf2 in 
this context.

DiscUssioN

In this work, we pointed out the involvement of miR-494 in the 
upregulation of HO-1 in NB cell response to oxidative stress. We 
took into consideration two miRs, such as miR-128 and miR-494. 
Indeed, miR-128 has been demonstrated to be involved in NB dif-
ferentiation (26) and response to oxidative stress (25) but we did 
not observe any modification of miR-128 levels in the different 
experimental conditions we tested. Thus, we evaluated miR-494 
which, from bioinformatics analyses, was predicted to have two 
putative binding sites on Bach1 3′UTR, the main repressor of 
HO-1 transcription.

In numerous contexts, miR-494 functions as tumor sup-
pressor gene and has been linked to the induction of senescent 
phenotype in normal cells (19, 27) but in other contexts it 
correlates with tumor aggressiveness and progression (28). To 
the best of our knowledge, there has been no evidence of miR-
494 expression in NB so far. We demonstrated that miR-494 is 
expressed in two undifferentiated NB cell lines and undergoes a 
significant downregulation after ATRA-induced differentiation. 
The reduction is dramatic for SH-SY5Y cells that easily differen-
tiate in response to ATRA and minor but always significant in 
SK-N-BE(2C) which shown medium sensitivity to ATRA (24). 
There is only a paper in literature showing that the expression of 
miR-494 is upregulated by ATRA in the acute myeloid leukemia 
cell line HL-60 (29), and this lets us hypothesize that there may 
be a cell-type-specific regulation for miR-494. Thus, we further 
analyzed SH-SY5Y cells which, from our previous works, have 
been proved to increase their sensitivity to oxidative stress after 
differentiation (22, 30), investigating a possible correlation with 
the miR-494 downregulation. We observed that miR-494 inhibi-
tion in undifferentiated cells significantly reduced the number 
of viable cells after exposure to H2O2. The role of miR-494 in 
cell survival is controversial, depending on the cellular context 
where miR operates and on the accessibility of its targets. As 
also shown in our work, miR-494 inhibition is able to increase 
PTEN expression and, potentially, to antagonize the AKT sur-
vival pathway, as proved in other contexts (31, 32). However, the 
modulation of miR-494-PTEN signaling under stress condition 
has not yet been investigated.

Next, we provided evidence that endogenous miR-494 
inhibition impairs HO-1 upregulation in response to oxidative 
stress, similar to what we have already shown in differenti-
ated cells exposed to H2O2 (22). In addition, we showed that 
the lack of HO-1 upregulation correlates with higher ROS 
levels, highlighting the importance of HO-1 induction in 
quenching ROS. However, the analysis of Bach1 expression 
revealed that there are no significant modifications in the 
level of Bach1 in response to H2O2 in NB  cells treated with 
miR-494 inhibitor compared with cells transfected with NegC. 
Moreover, there are no changes in Bach1 ubiquitination, 
sumoylation, and acetylation in any experimental condi-
tions examined. Thus, miR-494 could contribute through a 
Bach1-independent mechanism to modulate HO-1 expression 
under stress response. It has been already demonstrated that 
HO-1 transcription can be controlled via Bach1 turnover in 
the absence or presence of oxidative stress and can also be 
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figUre 2 | miR-494 inhibition impairs heme oxygenase 1 (HO-1) induction in response to H2O2 in Bach1-independent way. (a) Positivity to DCFH-DA has been 
measured by cytofluorimetric analyses after miR-494 inhibition and 6 h exposure to 500 µM H2O2. Statistical analysis: n = 2; *p < 0.05 vs NegC. (B) WB analysis  
of HO-1 expression. Tubulin expression has been used as loading control. 30 µg of protein has been loaded. The bands show the most representative experiment. 
Statistical analysis: n = 3; *p < 0.05 vs NegC. #p < 0.05 vs NegC + H2O2. (c) The human Bach1 3′UTR contains two seed sites for miR-494. The sequence 
alignments were predicted using TargetScan. (D) WB analysis of Bach1 expression. GAPDH expression has been used as loading control. 30 µg of protein has 
been loaded. The bands show the most representative experiment. Statistical analysis: n = 4; *p < 0.05 vs NegC.
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insensitive to Bach1-mediated repression (33). Moreover, 
AKT-dependent HO-1 induction has been already proved (34), 
and miR-494-PTEN might crucially modulate it. To validate  
this hypothesis, further analyses are needed.
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and hsa-let7g-5p have been used as endogenous reference miRs. Results are 
reported as relative to the values obtained in untreated undifferentiated cells which 
was set equal to 1. Statistical analysis: n = 3; *p < 0.05 vs undifferentiated. (B) WB 
analysis of BAX in SH-SY5Y cells treated with miR-494 inhibitor and exposed to 
500mM H2O2, as indicated. GAPDH expression has been used as loading control. 
10 mg of proteins was loaded. The blots show one representative experiment. 
Statistical analysis:  n = 3; no significant differences. (c) WB analysis of PARP in 

SH-SY5Y cells treated with miR-494 inhibitor and exposed to 500mM H2O2, as 
indicated. GAPDH expression has been used as loading control. 50 mg of proteins 
was loaded. The blots show one representative experiment. Statistical analysis:  
n = 2; no significant differences. (D) WB analysis of ubiquitination in SH-SY5Y 
cells treated with miR-494 inhibitor and exposed to 500mM H2O2, as indicated.  
20 mg of proteins was loaded. The blot shows one representative experiment.  
(e) Analysis of Bach1 post-translational modifications in SH-SY5Y cells treated 
with miR-494 inhibitor and exposed to 500mM H2O2 for 6 h. 300 mg of protein 
lysate was immunoprecipitated using anti Bach1 and loaded in electrophoresis 
(ip). An aliquot of supernatant collected after the first step of immunoprecipitation 
was loaded in electrophoresis (sn). WB detection was performed as indicated. 
The blots show the most representative experiment. (f) WB analysis of Keap1 
in SH-SY5Y cells treated with miR-494 inhibitor and exposed to 500mM H2O2 as 
indicated. GAPDH expression has been used as loading control. 40 mg of proteins 
was loaded. The blots show one representative experiment. Statistical analysis:  
n = 3; no significant differences.
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