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Autophagy and the Keap1–Nrf2 system are major cellular defense mechanisms against 
metabolic and oxidative stress. These two systems are linked via phosphorylation of 
the ubiquitin binding autophagy receptor protein p62/SQSTM1 in the p62–Keap1–Nrf2 
pathway. The p62–Keap1–Nrf2 pathway plays a protective role in normal cells; however, 
recent studies indicate that this pathway induces tumorigenesis of pre-malignant cells, 
and promotes the growth and drug resistance of tumor cells via metabolic reprogram-
ming mediated by Nrf2 activation. These findings suggest that impairment of autophagy 
is involved in the acquisition of malignancy and maintenance of tumors, and furthermore, 
that p62/SQSTM1 could be a potential target for chemotherapy in cancers that harbor 
excess p62.

Keywords: selective autophagy, p62/SQSTM1, Keap1–nuclear factor erythroid 2-related factor 2 system, metabolic 
reprogramming, cancer

iNTRODUCTiON

Autophagy is a bulk degradation process in which cytoplasmic components are sequestered in a 
double-membrane structure to form an autophagosome. The contents of the autophagosome are 
subsequently degraded after fusion with a lysosome (Figure 1) (1). Under starvation conditions, 
autophagy provides amino acids essential for protein synthesis in response to metabolic stress. 
Basal autophagy, on the other hand, removes specific substrates, including protein aggregates, dam-
aged organelles, and invading bacteria. This selective pathway uses autophagic receptor proteins 
for efficient degradation. Autophagic receptors are typically categorized into two different types: 
ubiquitin binding proteins and organelle membrane proteins. Ubiquitin binding receptors include 
p62/SQSTM1, neighbor of BRCA1 gene (NBR1), optineurin, nuclear dot protein 52 kDa/calcium 
binding and coiled-coil domain2 (CALCOCO2), Tax1 binding protein 1, and toll-interacting 
protein; membrane binding receptors include BCL2/adenovirus E1B 19  kDa interacting protein 
3-like (NIX/BNIP3L), BNIP3, FUN14 domain containing 1, and family with sequence similarity 
134, member B (FAM134B) (2). These receptors recognize and sort substrates, and recruit core 
autophagic machinery to the target at existing autophagosome formation sites.

Conserved among metazoans, the ubiquitin binding autophagy receptor p62/SQSTM1 (hereafter 
referred to as p62) acts as a hub protein in various cellular signaling pathways, including NF-κB, 
mechanistic target of rapamycin (mTOR), Caspase 8, and nuclear factor erythroid 2-related factor 
2 (Nrf2) (3–7). p62 mediates the autophagic degradation of polyubiquitinated substrates via direct 
interaction with microtubule-associated protein light chain 3 (LC3) on the autophagosome (2) 
(Figure 1). p62 forms aggregates by self-oligomerization of its N-terminal Phox and Bem1 (PB1) 
domain, and associates with ubiquitin through its C-terminal ubiquitin-associated (UBA) domain 
(Figure 2). NBR1 has a remarkable similarity with p62 in the domain architecture, which consists 
of PB1, zinc finger, LC3-interacting region (LIR), and UBA domains (8). PB1 domain of p62 forms 
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FigURe 2 | Schematic domain of p62. p62 forms a self-oligomer through its Phox and Bem1 (PB1) domain. The zinc finger (ZZ) and TRAF6-binding domains (TB) 
interact with RIP1 and TRAF6, respectively, to regulate NF-κB signaling. Raptor interacts with the unidentified region between ZZ and TB to activate mechanistic 
target of rapamycin complex 1. Light chain 3-interacting region and the C-terminal ubiquitin-associated domain (UBA) are essential for the sequestration of 
ubiquitinated substrates into the autophagosome. Phosphorylation of serine 403 and serine 407 residues in the UBA domain facilitates the interaction with ubiquitin. 
Phosphorylation of Keap1-interacting region at serine 349 enhances the interaction with Keap1. The UBA domain interacts with ubiquitinated caspase8 to induce 
apoptosis. Ubiquitination of the PB1 domain at lysine 7 abrogates p62 oligomerization. Ubiquitination of the UBA domain at lysine 420 disrupts the interaction with 
the ubiquitin chain.

FigURe 1 | p62-mediated selective autophagy. p62 interacts with ubiquitinated proteins through its C-terminal ubiquitin-associated (UBA) domain, and forms 
aggregates through its N-terminal Phox and Bem1 domain. The resulting protein aggregates are tethered to the autophagosome by direct interaction of p62 and 
light chain 3 localized on the isolation membrane. The isolation membrane elongates and sequesters p62 and ubiquitin into the autophagosome. The 
autophagosome fuses with lysosome to form an autolysosome.
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self-oligomer or hetero-oligomer with other PB1 proteins includ-
ing NBR1, while PB1 domain of NBR1 forms hetero-oligomer 
only. Thus, NBR1 self-interacts through their coiled-coil domain, 
and cooperates with p62 oligomer in selective autophagy of 
ubiquitinated substrates (9). There are several examples of post-
translational modifications of p62 for selective autophagy. For 
example, phosphorylation of the p62 UBA domain at serine 407 by 
unc-51-like kinase 1 (ULK1) destabilizes the UBA dimer of p62, 
while sequential phosphorylation of serine 403 by casein kinase 
2 (CK2), TANK-binding kinase 1 (TBK1), or ULK1 increases the 
affinity of UBA for ubiquitin chains (10–12). Ubiquitination of 
p62 at lysine 420 by the Keap1/Cul3 E3 ligase complex inhibits 
the dimerization of the UBA domain (13), while ubiquitination 
at lysine 7 in the PB1 domain by the E3 ligase TRIM21 suppresses 
the oligomerization of p62 (14).

Upon various cellular stress conditions, p62 functions as 
a signaling hub via characteristic domains, such as the zinc 
finger (ZZ) domain, TRAF6 binding (TB) domain, LIR, and 
Keap1-interacting region (KIR), which interacts with RIP 
kinase, TRAF6, Raptor, LC3, and Keap1, respectively (Figure 2). 
Transcription of p62 is activated by cellular stresses, such as 

oxidative, metabolic, and pathogenic conditions, and aberrant 
expression of p62 or defective autophagy causes appearance 
of large number of p62 aggregates into the cytoplasm (15, 16). 
Importantly, the aggregate of p62 has been found in a common 
hallmark in some of serious diseases, such as cancer, alcoholic 
hepatitis, and neurodegenerative disease (17). The aforemen-
tioned diseases are thought to result from loss or dysfunction of 
p62-regulated cell signaling.

PATHOPHYSiOLOgiCAL ROLe  
OF AUTOPHAgY iN CANCeR

Early research has indicated a role of autophagy in tumor sup-
pression. Beclin 1, the mammalian ortholog of yeast Atg6, was 
reported as autophagy-related protein involved in tumorigen-
esis (18). Specifically, beclin 1 heterozygous-deficient mice were 
shown to exhibit increased frequency of spontaneous tumorigen-
esis in the liver, lung, and lymphomas (19, 20). Because systemic 
knockout of Atg genes in mice exhibit neonatal lethality due to 
deprivation of amino acids in plasma and tissue (21), conditional 
knockouts of Atg genes in mice have been used as a physiological 
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FigURe 3 | Schematic model of nuclear factor erythroid 2-related factor 2 (Nrf2) activation by phospho-p62 (A). In normal cells, the ETGE and DLGex motifs of Nrf2 
bind to the Keap1DC domain, which promotes ubiquitination of Nrf2 followed by its proteasomal degradation. (B) In human hepatocellular carcinoma cells, 
phospho-p62 (pS349) competitively interacts with the DLGex site on Keap1DC, resulting in the translocation of Nrf2 into nucleus. (C) K67 binds to Keap1DC at 
higher affinity than phosphor-p62, whereas the DLGex motif of Nrf2 binds to Keap1DC with covering K67. Nrf2 is eventually ubiquitinated and degraded by the 
proteasome.
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model of autophagy. Intriguingly, mosaic knockouts of Atg5 or 
liver-specific knockouts of Atg7 in mice have demonstrated that 
autophagy deficiency generates benign tumors in the liver in 
an age-dependent manner (22, 23). Impairment of autophagy 
results in accumulation of damaged mitochondria, which are 
major sources of reactive oxygen species (ROS) resulting in DNA 
damage, thus contributing to malignant progression (24). Other 
studies report that reduction of autophagy results in growth 
suppression of various cancers, such as hepatocyte, pancreatic 
cancer, lung cancer, breast cancer, colon cancer driven by K-Ras 
or BRAF mutations (25). On the other hand, studies have found 
that overexpression of transcription factor EB, a critical regulator 
of autophagy, promotes cancer growth (26, 27). Autophagy-
deficient tumors re-growth and form large tumors in allograft, 
suggesting that growth arrest of autophagy-deficient tumors is 
canceled through nutrient-generating autophagy in an ectopic 
environment (28). It has been reported recently that oxidation of 
p62 promotes its oligomerization via disulfide-linked conjugates, 
followed by activation of autophagy (29). In this pathway, p62 
senses the ROS and induces autophagy for cellular homeostasis 
and cell survival even under the oxidative stress conditions in 
aging or cancer. Moreover, increased p62 in autophagy-defective 
cells inhibits RNF168, an E3 ligase for histone H2A activated 
in response to DNA damage (30). These findings suggest that 
autophagy-deficient cells abolish DNA repair activity thereby 

resulting in tumorigenesis. Autophagy plays a complex role in 
cancer, and its function can be dependent on the stage, envi-
ronment, or type of cancer. Taken together, the above findings 
indicate that while autophagy plays a role in the inhibition of 
tumorigenesis, it could also facilitate the tumor growth once 
established, at least in mouse models.

Keap1–Nrf2 PATHwAY

Keap1–Nrf2 pathway is a critical cytoprotective response 
mediated by the activation of transcription factor Nrf2 during 
oxidative or electrophilic stress. Under normal conditions, 
Nrf2 is constitutively degraded in ubiquitin-proteasome sys-
tem via the interaction with the E3 ubiquitin ligase adaptor 
protein Kelch-like erythroid cell-derived protein with CNC 
homology [ECH]-associated protein 1 (Keap1) (31). Keap1 
binds to Nrf2 through direct interaction between the double 
glycine repeat or Kelch repeat (DGR) and the C-terminal 
region (CTR) of Keap1 (Keap1DC), and the ETGE and DLGex 
motifs of Nrf2. Known as the hinge and latch model (32–34), 
Keap1 forms a homodimer with its N-terminal BTB domain 
in which one protein interacts with high affinity to ETGE and 
the other with low affinity to DLGex (Figure 3A). Oxidative 
stress or electrophiles trigger a conformational change of 
Keap1 by modification of certain cysteine residues in Keap1, 
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FigURe 4 | Metabolic reprogramming of cancer cells harboring phospho-p62. Accumulated p62 and ubiquitinated substrates form cytoplasmic protein aggregates 
in established tumor cells (1). The p62 localized in the protein aggregates are phosphorylated at serine 349 (2). Then, DLGex of nuclear factor erythroid 2-related 
factor 2 (Nrf2) is competitively displaced by phosphop-p62, which causes the dissociation of Nrf2 from Keap1. Nrf2 translocates to the nucleus and activates 
Nrf2-mediated gene expression (3), while the resulting p62–Keap1 complex is removed by p62-dependent selective autophagy (4). Increased p62 positively 
regulates c-Myc activity via the activation of mechanistic target of rapamycin complex 1 (5). Persistent activation of Nrf2 occurs due to the positive feedback loop of 
Nrf2 in cancer cells (6). Nrf2 activation induces metabolic reprogramming, including the glucuronate pathway (7) and glutathione synthesis (8), while c-Myc enhances 
glucose and glutamine metabolism (9). The activation of multiple metabolic pathways permits the drug resistance and cell proliferation of cancer.

4

Ichimura and Komatsu The p62–Keap1–Nrf2 Pathway Mediates Cancer

Frontiers in Oncology | www.frontiersin.org June 2018 | Volume 8 | Article 210

which leads to its dissociation from Nrf2 (35). The released 
Nrf2 translocates into the nucleus to induce the transcription 
of antioxidant-responsive element-regulated genes, such as 
the cytoprotective or metabolic-related genes NQO1, HO-1, 
GCLC, GSTm, which help to protect the cells from oxidative 
and metabolic stress.

p62–Keap1–Nrf2 PATHwAY

In previous reports, we demonstrated that phosphorylation 
of p62 at serine 349 results in Nrf2 activation (6). p62 also 
has a KIR motif (349-STGE-352) (36), which allows binding 
to Keap1DC, but its affinity to Keap1 is significantly lower 
compared to the ETGE motif of Nrf2. During selective 
autophagy, p62 is translocated to ubiquitinated targets, such 
as protein aggregates, depolarized mitochondria, and patho-
gens, through the phosphorylation of the p62 UBA domain 
at serine 403 and serine 407 by CK2 and/or TBK1 (10, 11). 
Subsequently, mTOR complex 1 (mTORC1) phosphorylates 
p62 at serine 349, which dramatically enhances its interaction 
with Keap1, since the Keap1 binding affinity of phospho-p62 

is higher than that of DLGex motif of Nrf2 (Figure  3B). 
Finally, the DLGex of Nrf2 is competitively displaced by 
phospho-p62, which results in the dissociation of Nrf2 from 
Keap1 and robust activation of Nrf2 (p62–Keap1–Nrf2 path-
way) (Figure  3B) (6). p62–Keap1 and ubiquitinated cargos 
are eventually removed by selective autophagy. These results 
indicate that p62-mediated selective autophagy is coupled 
with the Keap1-Nrf2 system in normal cells. In p62–Keap1–
Nrf2 pathway, the cytoprotective effects of Nrf2 activation 
could be enhanced in concert with the selective degradation 
of phosphorylated p62 and Keap1 complex.

DYSRegULATiON OF THe p62–Keap1–Nrf 
2 PATHwAY iN CANCeR

Notably, persistent phosphorylation of mouse p62 at serine 351 
(corresponding to serine 349 in human p62) has been found in 
hepatic adenoma in autophagy-deficient livers and in hepatitis C 
virus-positive human hepatocellular carcinoma (HCC) (22, 37). 
Knockout of p62 in an HCC cell line markedly abrogates tumor 
growth, whereas forced expression of a phosphorylation-mimic 
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allele of p62, but not a phosphorylation defective mutant, 
resulted in recovery of the growth defect (6, 22). These results 
indicate that the persistent activation of Nrf2 through phos-
phorylation of p62 is involved in the development of HCC. 
Importantly, Nrf2 also induces p62 expression, resulting in the 
persistent activation of Nrf2 via a positive feedback loop in the 
p62–Nrf2–Keap1 pathway (16). Consistently, an amplified copy 
number of p62 on chromosome 5q has been identified in renal 
cancer, suggesting that p62 is an oncogene. Furthermore, accu-
mulating evidence demonstrates that the abnormal expression 
of p62 is associated with malignancy in various cancers, includ-
ing liver (22, 37), kidney (38, 39), lung (40), breast (41, 42),  
pancreatic (43), prostate (44, 45), head and neck (46, 47), 
ovarian (48, 49), oral (50, 51), colon (52, 53), endometrial (54), 
skin (55, 56), and gastric cancers (57). Indeed, accumulation 
of phosphorylated p62 has been observed in about half of 
HCC patients in our studies (6). Somatic mutations of Nrf2 
and Keap1 have also been found in cancers at high frequency 
(58–60); these mutations could cause persistent activation of 
Nrf2 via disrupting the interaction between Nrf2 and Keap1. 
The above-mentioned lines of evidence suggest that dys-
regulation of p62–Keap1–Nrf2 pathway is involved in cancer 
development.

MeTABOLiC RePROgRAMMiNg  
BY THe p62–Keap1–Nrf2 PATHwAY

Nuclear factor erythroid 2-related factor 2 has been shown to 
regulate the expression of antioxidant proteins, detoxification 
enzymes, proteasome subunits, and autophagy-related proteins 
for oxidative stress response and proteostasis (protein homeo-
stasis) in normal cells. Recent studies demonstrate that Nrf2 

increases the expression of multiple enzymes involved in the 
pentose phosphate pathway, purine nucleotide synthesis, as well 
as glutathione synthesis, and glutaminolysis in lung cancer, which 
activates the phosphatidylinositol 3-kinase-Akt pathway (61). 
In support of these findings, we also found that Nrf2 activation 
provided metabolic reprogramming of glucose and glutamine 
through the activation of Nrf2 in HCC harboring phosphoryl-
ated p62 (p-S349) (Figure  3B), which led to increased cell 
proliferation and resistance to anti-cancer agents of HCC (37) 
(Figure 4). Taken together, these findings suggest that molecu-
lar targeting of p62 represents a potential chemotherapeutic  
approach against HCC.

By chemical screening, we have identified an inhibitor for the 
Keap1-phosphorylated p62 (p-S349) protein–protein interaction— 
the acetonyl naphthalene derivative K67 (37) (Figure  3C). 
Structural analysis demonstrated that K67 binds to a Keap1DC 
pocket, which is the binding site of phosphorylated p62, Nrf2-
ETGE, and Nrf2-DLGex. Treatment of HCC with K67 suppressed 
proliferation and reduced tolerance to cisplatin or sorafenib (37). 
Levels of p62 accumulation and c-Myc expression are reportedly 
associated with high risk for tumor recurrence and poor prog-
nosis of HCC patients (62). Further, it has been demonstrated 
that high p62 expression in non-tumor tissue is required for 
transformation to HCC, which was caused by the activation of 
Nrf2, mTORC1, and c-Myc (62) (Figure  4). These results are 
consistent with the anti-proliferative and anti-malignant effects 
found in autophagy-deficient tumor cells (63). More recently, 
Karin and colleagues reported that p62-mediated activation 
of Nrf2 triggers mouse double minute 2 homolog (MDM2) 
expression in premalignant pancreatic intraepithelial neoplasia 
1, resulting in development and malignancy of pancreatic ductal 
adenocarcinoma (43) (Figure 5).

FigURe 5 | Tumorigenesis of cancer cells harboring phospho-p62. Accumulated p62 and ubiquitinated substrates form cytoplasmic protein aggregates in 
pre-malignant tumor cells (1). p62 is phosphorylated (2), and subsequently nuclear factor erythroid 2-related factor 2 (Nrf2) is activated (3). Mouse double minute 2 
homolog (MDM2) induced by Nrf2 results in the increase of Notch signaling (4) and the reduction of p53, followed by cell malignancy (5). Abbreviations: PanIN, 
premalignant pancreatic intraepithelial neoplasia; PDAC, pancreatic ductal adenocarcinoma.
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CONCLUSiON AND FUTURe 
PeRSPeCTiveS

In recent years, there are many reports showing that p62–
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vates p62–Keap1–Nrf2-mediated antioxidant response during 
oxidative stress (67). Meanwhile, persistent activation of p62–
Keap1–Nrf2 pathway has been shown to be involved in liver 
tumorigenesis in mice (6, 22). More recently, we demonstrated 
that overexpression of a p62 variant lacking KIR mitigates 
Nrf2 activation (68). These results suggest that phopsho-p62 
could be a novel target for cancer therapy as described in  

Ref. (37). Many kinase inhibitors have been used in cancer 
therapy. However, the protein kinases responsible for the 
phosphorylation of p62 in tumor have not yet been identified. 
Further studies are required to identify the regulatory factors 
involved in the p62–Keap1–Nrf2 pathway.
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