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Activation of the tumor and stromal cell-driven angiogenic program is one of the first 
requirements in the tumor ecosystem for growth and dissemination. The understanding 
of the dynamic angiogenic tumor ecosystem has rapidly evolved over the last decades. 
Beginning with the canonical sprouting angiogenesis, followed by vasculogenesis and 
intussusception, and finishing with vasculogenic mimicry, the need for different neovas-
cularization mechanisms is further explored. In addition, an overview of the orchestration 
of angiogenesis within the tumor ecosystem cellular and molecular components is pro-
vided. Clinical evidence has demonstrated the effectiveness of traditional vessel-directed 
antiangiogenics, stressing on the important role of angiogenesis in tumor establishment, 
dissemination, and growth. Particular focus is placed on the interaction between tumor 
cells and their surrounding ecosystem, which is now regarded as a promising target for 
the development of new antiangiogenics.

Keywords: angiogenesis, angiogenic tumor ecosystem, sprouting angiogenesis, vasculogenesis, vasculogenic 
mimicry, intussusception, antiangiogenics

FOUNDATiONS OF THe TUMOR STROMAL eCOSYSTeM

The simplistic view of a tumor as a conundrum of just mutant cells engaged in clonal expansion is 
currently evolving into a more holistic approach where tumors are regarded as organ-like structures 
(1, 2). Genetic deletion, overexpression, mutation, and translocation events certainly lead to the 
transformation of a normal cell into a malignant cell which will then undergo sustained proliferation. 
However, for neoplastic cell expansion and growth, the ability to handle the surrounding stroma to 
create a favorable ecosystem becomes imperative (3). Hence, the information enclosed in the rich 
and ever-changing tumor microenvironment is crucial for the understanding of antitumor drug 
sensitivity.

The tumor microenvironment is formed by a tangled combination of both tumor and stromal 
cells, extracellular matrix (ECM), and secreted factors, thus perfectly fitting in the definition of 
an ecosystem (4, 5). Alteration of the gene expression of tumor cells provokes a disruption in the 
normal tissue homeostasis, favoring the secretion of certain molecules (cytokines, growth factors, 
etc.) that recruit stromal cells. Cells composing the tumor stroma are cancer-associated fibroblasts 
(CAFs), endothelial cells, pericytes, adipocytes, and immune cells, including monocytes, mac-
rophages, lymphocytes, and dendritic cells (DCs), among others (Figure 1). These cells are enclosed 
in heterogeneously deposited ECMs and are affected by changing biophysical parameters including 
oxygenation and pH (6–9).

The insight into the dynamic action of the tumor ecosystem has improved exponentially over  
the last years, regarding the stroma as an integral part of tumor initiation, progression, and malig-
nization. Stromal elements hold the key for prognostic and response predictive information. As 
such, therapeutic targeting of stroma-related processes are continually described. Tumor cells 
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FigURe 1 | Cellular and molecular components of the tumor ecosystem that shape the tumor angiogenic landscape. The cellular components primarily consist of 
tumor and normal cells, together with the vascular endothelial and pericyte cells and the stromal fibroblasts [cancer-associated fibroblasts (CAFs)]. The immune cell 
compartment comprises mainly tumor-infiltrating macrophages, dendritic cells (DCs), and lymphocytes. Figure was created using Servier Medical Art according to a 
Creative Commons Attribution 3.0 Unported License guidelines 3.0 (https://creativecommons.org/licenses/by/3.0/). Simplification and color changes were made to 
the original cartoons.
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dwell in symbiosis with the rest of the body, mimicking and 
coopting several normal physiological processes on behalf of 
their surrounding stroma. Together with sustained proliferation 
and recruitment of immune cells, angiogenesis is one of the 
acknowledged promoters of tumor growth and survival (6, 10).  
In fact, tumor-associated vessels also contribute to dissemina-
tion of tumor cells by abetting their entry into the circulatory 
system and aiding in the generation of the pre-metastatic niche. 
In this review, we will further explore the role of angiogenesis  
as a key modulator inside the tumor ecosystem. To do so, we will 
first describe the different mechanisms responsible for tumor 
angiogenesis and we will focus later on the action of antiangio-
genic drugs upon the stroma.

iNSigHT iNTO THe ANgiOgeNiC  
TUMOR eCOSYSTeM

To grow beyond a limited size, all solid tissues require a proper 
vasculature that grants oxygen, nutrients, and waste disposal. 
Since neoplasms are no exception to this rule, early activation 
of angiogenic processes is mandatory to sustain the deregulated 
proliferation of tumor cells. Apart from serving as nutrient, 
oxygen, and waste transport providers, vessels also facilitate 

dissemination of tumor cells to distant sites, promoting metas-
tasis. Tumor angiogenesis is thus defined as the process of blood 
vessel creation, penetration, and growth in the tumor ecosystem.

The angiogenic program is switched on in response to hyp-
oxia, which, together with the lack of nutrients, bolsters the 
expression of inflammatory signals and cytokines that recruit 
vascular cells for the tumor vessel plexus formation (11, 12). 
Early during tumor progression, hypoxia triggers the transcrip-
tion of several genes that are key mediators of the angiogenic 
process, such as VEGF and PDGF (13). Mechanistically, activa-
tion of the angiogenic process involves the breakdown of the 
vascular ECM at different levels for subsequent endothelial 
cell invasion and tube formation (14). Apart from the role of 
tumor cells as principal secretors of endothelial cell promoters, 
the interplay with other stromal cells such as pericytes is also 
needed for neovessel stability.

For studying tumor angiogenesis, different approaches exist. 
A compilation of the currently used in vivo, ex vivo, and in vitro 
bioassays has been recently published as a collaborative work of 
some of the main experts in the angiogenesis field (15). Briefly, 
in  vivo experimental models allow the study of mechanisms, 
kinetics, and dynamics in the context of a complex organism. The 
chorioallantoic membrane of a chicken embryo is used without 
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FigURe 2 | Mechanisms implicated in blood vessel formation. In the tumor ecosystem, blood vessels grow by sprouting angiogenesis (A). In addition, less frequent 
neovascularization mechanisms include recruitment of bone marrow-derived endothelial progenitor cells (EPCs) (B), intussusceptive microvascular growth  
(C), and vasculogenic mimicry (D). Figure was created using Servier Medical Art according to a Creative Commons Attribution 3.0 Unported License  
guidelines 3.0 (https://creativecommons.org/licenses/by/3.0/). Simplification and color changes were made to the original cartoons.
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graft rejection, making it easy and low cost to complete a drug 
testing assay (16, 17). However, vessel formation is difficult to 
assess in this model. Besides, zebrafish embryo model also has 
the translationality for tumor angiogenesis study. Due to its 
transparency, it allows easy imaging of the tumor angiogenic 
process (18). Among the existing animal models, mouse models 
are the ones that better mimic the complexity of human cancer 
as an evolutionary process while, at the same time, allow easy 
and cheap monitoring of the process. Even though subcutaneous 
xenograft induced angiogenesis is easy to visualize, orthotopic 
transplantation is better regarded as it considers the role of the 
tumor ecosystem. Currently used mouse models for are reviewed 
in Gengenbacher et al. (19).

Recently, outstanding advances in the in  vitro and in  silico 
development of tumor angiogenesis models have been made. In 
vitro approaches include the use of microfluidic cancer vascula-
ture on-chip systems, whereas in  silico models comprise math-
ematical processes that address tumor growth dynamics. Their 
progress and challenges are extensively reviewed by Soleimani 
and colleagues (20).

MeCHANiSMS iNvOLveD iN TUMOR 
veSSeL geNeRATiON

Nearly 40  years after the studies that laid the foundations in 
the field (21), research in tumor angiogenesis has extensively 
matured, permitting the gathering of detailed knowledge over the 
processes that govern pathological vessel proliferation. Vessels  

are ordered tubular networks that permit transportation of 
nutrients, cells, and gases. Apart from providing nutrients, ves-
sels function as carriers of instructive trophic signals needed  
for organ morphogenesis (22). Different types of vessels, includ-
ing arteries, veins, and capillaries, are formed by a luminal side 
surrounded by a monolayer of endothelial cells. On the outside, 
following the basement membrane, vessels are covered by a layer 
of mural accessory cells composed of pericytes and vascular 
smooth muscle cells.

Archetypal mechanisms for neovascularization include vascu-
logenesis and sprouting angiogenesis (Figures 2A,B). Critical for 
the formation and remodeling of vessels during development, 
both mechanisms are reactivated during tumor progression. 
Vasculogenesis is defined as the de novo formation of blood ves-
sels as a consequence of vascular progenitor cell differentiation, 
whereas sprouting angiogenesis stands for the formation of new 
vascular structures from a preexisting vessel network. Recently, 
the role of other less frequent vascular formation mechanisms 
during tumor growth has been described, including vasculogenic 
mimicry (VM) and intussusception (Figures  2C,D). Usually, 
neither of the mechanisms are mutually exclusive and even seem 
to act simultaneously in pathological neovascularization.

Sprouting Angiogenesis
By far, sprouting angiogenesis is the best known angiogenesis-
promoting mechanism used by tumor cells to induce their own 
vascularization from preexisting host capillaries (Figure 2A).  
A thorough interplay between ECM components, cells, and soluble 
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factors, together with a sequence of well-defined steps, define 
sprouting angiogenesis (23). Destabilization of the endothelial–
pericyte contacts, crucial for vessel integrity and maintenance of 
quiescence, initiates the process. Once the basement membrane 
that protects endothelial cells is destabilized, these cells undergo 
an endothelial–mesenchymal transition that triggers their pro-
liferative, migratory, and invasive capabilities. Such activation 
further enhances the release of several proteases that induce ECM 
and basement membrane degradation, leading to guided migra-
tion and proliferation of vascular cells. The polarization of the 
moving endothelial cells eventually constitutes the vessel lumen, 
forming an immature blood vessel (24). An opposite mesenchy-
mal–endothelial transition program is then activated to reverse 
the endothelial cells to their previous quiescent state. This latter 
step, known as vessel maturation, is characterized by the absence 
of angiogenesis, the recruitment of pericyte and mural cells, and 
the synthesis of a new basement membrane (25).

To engage the angiogenic process, endothelial cells need to 
follow a multistep specialization, which involves their plasticity 
in the angiogenic sprout and their following vascular guidance 
cue, that control the extension of the nascent vessel. The ini-
tiation of these morphogenetic events is marked by VEGF and 
Notch signaling pathways (26). Upon proangiogenic stimuli, 
sprouting endothelial cells change their phenotype toward an 
invasive and motile behavior, while activating protease secretion, 
cell–cell contact remodeling, and polarity reversal. The leading 
endothelial cells during the sprouting process are known as “tip 
cells.” Their response to VEGF signaling includes extending 
large filopodia that will allow guidance and sensing of the newly 
formed vessel, as well as the release of molecular signals that 
recruit stromal cells for vessel stabilization. On the other hand, 
endothelial cells can also evolve into highly proliferative cells 
located at the stalk of the angiogenic sprout. These “stalk cells” 
are responsible for tube and branch formation, thus assuring the 
expansion of the vascular structure in response to VEGF-A (27). 
Stalk cells also collaborate in the basement membrane deposi-
tion and establish junctions with adjacent cells to strengthen the 
integrity of the novel sprout (28).

By anastomosing with cells form adjoining sprouts, tips cells 
interconnect in vessel loops until their leading phenotype is 
switched off. The process ends with the reestablishment of qui-
escence, when proangiogenic signals decrease, a new basement 
membrane is formed, and VEGF levels dampen (29). During the 
transition between both states, endothelial cells gain a “phalanx”-
like phenotype, becoming non-proliferative and immobile (30). 
Vessel stabilization and maturity are accomplished with lumen 
generation and pericyte recruitment along the new basement 
membrane, which leads to blood flow and perfusion initiation.

The functionality, correct extension, and morphology of the  
new vessels depend on the balance between stalk cell prolifera-
tion and tip cell guidance. Phenotypic specialization of endo-
thelial cells in each of those types depends, in turn, on the balance 
between proangiogenic factors and endothelial proliferation 
suppressors (31). Inside the tumor ecosystem, this balance is 
shifted in favor of a proangiogenic milieu, thus generating a 
sustained sprouting angiogenic process that produces abnormal 
vascular structures.

vasculogenesis
The term “vasculogenesis” was conceived by Werner Risau, to 
define the physiological formation of the vascular plexus from 
the mesoderm as a consequence of angioblast differentiation (32). 
During tumor vasculogenesis, endothelial progenitor cells (EPCs) 
are mobilized and recruited in response to several chemokines, 
cytokines, and growth factors produced by tumor and stromal 
cells (Figure 2B). In particular, tumor cells produce a plethora  
of cytokines and proangiogenic factors, such as VEGF, that 
recruit bone marrow-derived DCs and induce their proliferation 
and differentiation (33). In hypoxic conditions, HIF is able to 
activate the transcription of VEGF, PDGF, stromal-derived factor 
1 (SDF-1), and C-X-C chemokine receptor type 4 (CXCR4) (34). 
Studies with loss of function of HIF demonstrated an inhibition 
of EPC proliferation and differentiation. The contribution of 
vasculogenesis to tumor progression has also been demonstrated 
by knockout studies where some initiator molecules, such as 
inhibitors of differentiation factors, were genetically ablated. 
This approach provoked a disruption of tumor vascularization, 
angiogenesis blockade, and tumor growth impairment that was 
rescued by the restoration of the mobilization factors after bone 
marrow transplantation (35).

The first step of EPCs mobilization starts with the proangio-
genic factor-mediated activation of the matrix metalloprotease 
9 (MMP9) in the osteoblastic zone. Activated MMP9 proteo-
lytically processes the membrane bound Kit ligand to its active 
soluble conformation. Kit is a stem cell-active migratory cytokine 
that induces migration and release of EPCs into the circulatory 
system (36). Once homed, EPCs are either incorporated into 
angiogenic sprouts or into the endothelial cell monolayer, aided 
by selectins and integrins (37). Endothelial cell maturation is  
substantially mediated by VEGF, which also contributes to vessel 
size establishment. Besides, EPCs share a paracrine mechanism 
that also triggers tumor angiogenesis by the release of proangio-
genic molecules at the sites of neovascularization (38).

Depending on the experimental cancer model and the type of 
the tumor, vasculogenesis contributes to tumor vessel formation 
processes ranging from 0.1 to 50% of all vessels. As an example, 
the tumor ecosystem of hematopoietic and lymphoid tissues 
is more dependent on EPCs. Besides its role in primary tumor 
growth, vasculogenesis is also involved in dissemination and 
metastasis. SDF-1 produced by immune cells might attract EPCs 
to distant sites and once there spontaneously induce SDF-1 pro-
duction, generating a gradient of this molecule that will serve as 
a chemoattractant of tumor cells. The interaction between SDF-1, 
secreted by EPCs, and its CXCR4 receptor, mainly expressed by 
tumor cells, would promote extravasation and development of 
the pre-metastatic niche (39). Moreover, the activation of MMP9 
by EPCs is also related to an increase in tumor cell migration 
and invasion, confirming the role of vasculogenesis in metastatic 
niche formation (40).

vasculogenic Mimicry
Vasculogenic mimicry refers to the ability of some malignant 
cells to start the dedifferentiation process to adopt multiple 
cellular phenotypes, including endothelial-like properties (41) 
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(Figure  2C). Those cells finally converge in de novo vasculo-
genic-like networks composed of red blood cells that are able to 
contribute to circulation (42). In this way, cells undergoing VM 
are able to reproduce the pattern of an early embryonic vascular 
plexus, providing the tumor ecosystem with an additional circu-
latory system independent of angiogenesis.

The process of VM was observed in highly invasive melanoma 
cells, whose phenotype reverted to an embryonic-like state and 
increased cell plasticity, including expression of endothelium-
associated genes such as Ephrin-A2 and VE-cadherin (43).  
Release of ECM components, hypoxia, and activation of trans-
membrane metalloproteinases has been described as VM promo-
ters (44). Although the occurrence of VM is relatively infrequent 
within tumors, it has been related to aggressive tumors, an 
increased risk of metastasis and poor prognosis (45).

intussusception
Vessel intussusception or intussusceptive microvascular growth 
(IMG) is defined as a developmental intravascular growth mech-
anism consisting of the splitting of preexisting vessels into two 
new vascular structures. This was first described in postnatal 
remodeling of lung capillaries (46) (Figure 2D). During intus-
susception, endothelial cell proliferation is not required, which 
ultimately makes it a rapid process that occurs within hours or 
minutes if compared with sprouting angiogenesis. Furthermore, 
IMG does not rely on endothelial cell proliferation, but it is rather 
a remodeling process of the endothelial cells that happens as a 
consequence of both their narrowing and volume increase. IMG 
is described to occur after sprouting angiogenesis or vasculo-
genesis, as a mean of expanding the capillary plexus without the 
need of a high-metabolic demand (47).

The “touching spot” between endothelial cells from opposite 
walls initiates the IMG process. To reinforce the transendothelial 
cell bridge, the endothelial bilayer is formed with cell–cell junc-
tions and the interstitial pillar is formed. Pericytes and other 
mural cells are recruited to cover the interstitial wall, which is 
later widened, allowing endothelial cell retraction and the crea-
tion of two independent vessels (47). By using this mechanism, 
a large vessel is able to split into many smaller functional vessels. 
Although the precise mechanism underlying IMG is not fully 
described, alterations in blood flow dynamics, wall stress over 
pericytes, changes in shear stress on endothelial cells sensed by 
absence of CD31 and VEGF are some of the possible events that 
result in IMG initiation (48).

Intussusceptive microvascular growth has been reported in 
mammary, colorectal, and melanoma tumors (49). In human 
melanomas, a correlation between VEGF and intussusceptive  
angiogenesis was found, together with a higher number of intra-
luminal tissue folds (50). This scenario suggests that sprouting 
angiogenesis inhibition could stimulate IMG. Taking into  
account that intussusceptive angiogenesis only occurs in preexis-
ting vascular structures, its most important contribution to 
tumor malignization is its ability to augment the number and 
complexity of tumor microvessel networks already created by 
other angiogenic mechanisms. Ultimately, the creation of new 
vessel structures also provides additional surface for further 
activation of sprouting angiogenesis.

ROLe OF TUMOR eCOSYSTeM  
iN PROMOTiNg ANgiOgeNeSiS

Inside the tumor ecosystem, tumor cells are the main producers 
of the proangiogenic molecules that switch on the angiogenic 
program. Among the molecules that regulate this process, PDGF, 
HGF, FGF, and, particularly, VEGF and its cognate receptors 
(VEGFRs) are the driving force, owing to their specific expression 
on tumor and endothelial cells. Nevertheless, other cells compo-
sing the tumor ecosystem also contribute to tumor angiogenesis 
and their role must be considered throughout an integrative 
approach (Figure 1).

Cancer-Associated Fibroblasts
Cancer-associated fibroblasts normally originate from tumor or 
resident stroma, even though they can also differentiate from bone 
marrow precursors. While CAF-mediated secretion of proteases 
contributes to ECM degradation, CAFs also produce and deposit 
ECM, remarking a dual role for these cells in ECM remodeling. 
Besides, CAFs also secrete multiple angiogenic cues, participat-
ing in tumor growth and progression (51). Due to their primary 
localization at the leading edge of the tumor, where expanded 
vessel supply is demanded, the contribution to angiogenesis by 
stromal fibroblasts becomes crucial (52, 53).

One of the most important molecules secreted by stromal 
CAFs is VEGF-A, which was found to be induced in the stroma  
of both spontaneously arising and implanted tumors of geneti-
cally engineered mice with a reporter for VEGF-A (54). Actually, 
in ovarian carcinomas, most angiogenic growth factors are 
provided by CAFs rather than by malignant cells (55). CAFs also 
supply other factors such as angiopoietin-1 and -2, which are 
needed for neovascular stabilization (56).

immune Cells
The tumor ecosystem constitutes a crucible of heterogenous 
immune cell populations, resulting in tangled interactions bet-
ween tumor cells and stroma. Immune cells have a remarkable 
role during the regulation of different aspects of tumor growth, 
such as modulation of angiogenesis and immune system evasion 
(57). Particularly, the contribution of macrophages, DCs, and 
mast cells is further explored in this section.

Tumor-associated macrophages (TAMs) represent one of the 
most abundant leukocyte population in the tumor ecosystem 
and their presence correlates with a reduction in survival in 
most tumor types (58). Regarding their phenotype, macrophages 
can be classified into the classically activated M1 and alterna-
tive activated M2 subsets. Whereas M2 macrophages show a 
proangiogenic phenotype, M1 macrophages have been described 
as antitumor effectors (59). TAMs often shift toward the M2 
phenotype, becoming an important supplier of angiogenic 
cyto kines and ECM remodeling molecules (60–62). Indeed, in 
different types of tumors, macrophage presence has been cor-
related with high vascularity (63, 64). Apart from the canonical 
signaling pathways, alternative proangiogenic molecules such as 
semaphorins and plexins have been also described as mediators 
of the macrophage–endothelial cell cross talk (65).
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Dendritic cells, due to their potent antigen-presenting abil-
ity, are considered a critical factor in antitumor immunity (66). 
Nevertheless, defective myelopoiesis inside the tumor ecosystems 
renders DCs incompetent (67). A role for DCs in tumor angio-
genesis has been described after the finding that immature DCs 
increased neovascularization in implanted tumor models, while 
depletion of DCs revoked angiogenesis (68).

Mast cells were found more than 30 years ago to be accumu-
lated in tumors before the onset of angiogenesis, residing in close 
proximity to blood vessels (69). Those granulocytes participate 
in tumor rejection by IL1, IL4, IL6, and TNF-α production. 
However, mast cells also promote tumor growth by increasing  
the angiogenic supply, degradation of the ECM and immuno-
suppression (70). In detail, mast cells release angiogenic cyto-
kines, such as VEGF, FGF-2, and TGF-β, among others (71).

vascular-Associated Components
Even though endothelial cells are the main players of the angio-
genic tumor ecosystem, other components of the vascular system, 
such as platelets and pericytes, are also necessary for the proan-
giogenic switch. For instance, platelets, best known for their role 
in assisting the blood clotting process, have also been described  
as proangiogenic cells. Upon interaction with tumor cells, plate-
lets are able to release VEGF from α granules (72, 73).

The contractile cells that surround the basement membrane 
of vessels are known as pericytes. In absence of angiogenesis, 
pericytes commonly express proteins such as PDGFRβ, NG2, and 
desmin and lack expression of α-SMA. Upon the activation of 
angiogenic signaling via PDGF, TGF-β, angiopoietin, and Notch, 
tumor pericytes loosen their attachment to the vessel, leading 
to a higher permeability of blood vessels (74, 75). Particularly, 
the recruitment of pericytes to the tumors highly depends on 
PDGF-B ligand production by endothelial cells (76, 77).

Nevertheless, the ultimate outcome of pericyte-derived signal-
ing remains to be fully elucidated, since it seems to be context 
dependent. On the one hand, ectopic expression of PDGF-B in 
a mouse melanoma model increased tumor growth, indicating 
that a more stable and functional neovasculature was achieved 
through pericytes (78, 79). On the other hand, PDGF-B trans-
fection into colorectal and pancreatic tumor cell lines inhibited 
tumor growth as a consequence of the angiostatic effect of 
recruited pericytes (80). Pericytes are also involved in the control 
of the metastatic spread of tumor cells (81). In fact, an increased 
rate of metastasis was described in a pancreatic neuroendocrine 
tumor mouse model genetically designed to be pericyte-poor.  
It remains to be elucidated whether their protective effect against 
metastasis is due to their active participation or as a consequence 
of their passive role as a physical barrier to extravasation.

eCM and the vascular eCM
The organization and composition of the matrix that supports 
the cells of the tumor ecosystem is essential for the regulation 
of angiogenesis. In fact, mice bearing alterations in ECM mol-
ecules such as collagen, laminin, and fibronectin exhibit vascular 
abnormalities (82). Vessel ECM is constituted by the basement 
membrane BM, which is mainly composed of collagen IV and 
laminin (83) and provides a broad binding surface for other 

ECM proteins, integrin receptors, and growth factors. Those 
interactions lead to the activation of many signaling pathways, 
such as PI3K, AKT, and MAPK, which are involved in adhe-
sion, migration, invasion, and proliferation, thus contributing to 
tumor angiogenesis (84).

The interstitial matrix that surrounds the BM, which com-
prises collagen I, II, and III, as well as fibronectin and fibrinogen, 
also contributes to tumor angiogenesis. It primarily functions as 
a reservoir of regulatory molecules, such as angiogenic growth 
factors, cytokines, and proteolytic enzymes (85). Moreover, 
binding of VEGF to fibronectin has been found to enhance the 
activity of VEGF. Concomitantly, tumor and stromal cells pro-
duce proteolytic enzymes, such as MMPs, that release fragments 
with promigratory and proangiogenic properties (86), besides  
the activation of ECM-sequestered growth factors (87).

THe ANgiOgeNiC SwiTCH  
iN TUMORigeNeSiS

In the absence of new vasculature, during the avascular phase, 
tumor growth is normally limited to no more than 1–2  mm3. 
Tumors obtain nutrients and oxygen from nearby blood ves-
sels and angiogenic processes are not observed. The avascular 
tumors reach a stable state characterized by a balance between 
proliferation and apoptosis. To grow beyond the restricted size  
and sustain unlimited proliferation, tumors require their vas-
cular network to be extended. This transition from this avascular 
state to the angiogenic phase is commonly known as “angiogenic 
switch” and occurs early during tumor progression (88). In 
pursuance of angiogenic activation, tumor cells need to undergo 
numerous genetic and epigenetic rearrangements that grant 
them the angiogenic potential for both tumor growth and latter 
metastasis. Indeed, a plethora of experiments have shown that 
the lack of a functional vascular network leads to tumor apopto-
sis or necrosis, reinforcing the importance of tumor vasculature 
for tumor thriving (89).

The angiogenic switch depends on a dynamic balance bet-
ween positive (proangiogenic) and negative (antiangiogenic) 
factors controlling vascular homeostasis (90). Under physiologi-
cal conditions, this balance is shifted toward negative regulation 
of angiogenic processes, thus maintaining the quiescence of the 
vasculature. Once tumor progression is started, different mech-
anisms, such as the loss of tumor suppressor genes and oncogene 
upregulation, revert this balance. During the first steps of tumo-
rigenesis, high levels of strong angiogenic inducers, such as VEGF 
and FGF, are released to the tumor ecosystem. VEGF is regarded 
as the canonical angiogenesis initiator and has been found to be 
expressed in most types of cancer in response to different stimuli. 
Besides hypoxia, hypoglycemia, and growth factors, overexpres-
sion of the oncogene Myc produces a 10-fold increase in VEGF 
levels (91). Apart from VEGF, other proangiogenic molecules 
upregulated for the engagement of tumor angiogenesis are PDGF, 
EGF, TGF-β, FGF, MMPs, and angiopoietins.

Aiming at evading the ECM-associated endogenous inhibi-
tors, tumor cells are able to further upregulate proangiogenic 
factors and even lose the expression of tumor suppressor genes 
such as p53 (92, 93). Moreover, tumor cell metabolism shifts 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


7

Zuazo-Gaztelu and Casanovas Angiogenesis in the Tumor Ecosystem

Frontiers in Oncology | www.frontiersin.org July 2018 | Volume 8 | Article 248

and becomes highly acidic, as a consequence of the Warburg 
effect (94). The net increase in glucose consumption produces 
an abnormal lactic acid release that turns lowers extracellular 
pH (95). High levels of lactate have been correlated with EMT, 
dissemination, and metastases of several types of human can-
cer, such as melanoma and Lewis lung carcinoma (96–98). In 
detail, acidification further promotes angiogenesis through the 
increased expression of VEGF (99).

The Hypoxic Tumor ecosystem
Lack of oxygen inside the tumor occurs as an inevitable conse-
quence of the rapid expansion of the tumor mass. Neoplasms have 
been generally described as highly hypoxic structures, bearing 
distorted, and abnormal vascular networks, inefficient in oxygen 
transportation (100). Hypoxia is known to upregulate proangio-
genic inducers and endothelial–pericyte destabilizing molecules 
(Ang-2) and downregulate inhibitors. Furthermore, mobiliza-
tion of bone marrow-derived precursor cells and recruitment of 
immune cells to the tumor ecosystem is also positively controlled 
by hypoxia (101). By changing the cytokine milieu, hypoxia can 
also induce an immunosuppressive microenvironment, allowing 
immune system evasion by cancer cells (102).

Hypoxia also produces a metabolic switch to apoptosis inhi-
bition, anaerobic metabolism, increased invasiveness, EMT, and 
metastasis (103). A stem-like phenotype is induced concomi-
tantly with the release of cytokines like IL-6. Consistently, 
hypoxia-driven expression of VEGF, MMPs, and ANGPTL4 is 
crucial for intravasation (104). In detail, ANGPTL4 expression 
disrupts vascular endothelial tight junctions and augments per-
meability, thereby altering transendothelial barriers (105).

CONTRiBUTiON OF ANgiOgeNeSiS  
TO MeTASTASiS AND iNvASiON

Aside from the role in primary tumor ecosystem maintenance, 
tumor angiogenesis enables tumor cell invasion and dissemina-
tion and favors the creation of new secondary tumor ecosystems 
at metastasized sites. VEGF-mediated stimulation of blood and 
lymphatic endothelial cells provides a wide vascular area for 
intravasation of tumor cells, apart from increasing vascular per-
meability. In tumor endothelial cells, VEGF upregulates protease 
secretion, contributing to basement membrane degradation, and 
increasing the expression of molecules that mediate in tumor–
endothelial cell interactions (106).

Other stromal cells also participate in the angiogenic-driven 
metastasis process. Pericytes covering tumor vessels are more 
loosely attached to endothelial cells, affecting endothelial cell 
survival, and increasing the number of intercellular gaps that 
permit easy access for tumor cell intravasation (81, 107). As a 
consequence of the increased vascular leakiness, passive escape 
of tumor cells is highly induced (108).

BLOCKiNg veSSeLS iN THe eCOSYSTeM

Fighting neovascularization to halt tumor progression has become  
a critical step of the long-established theory of angiogenic 

activation for tumor growth. In fact, more than 40  years have 
passed since tumor angiogenesis inhibition was first introduced 
as a potential therapeutic strategy (21, 109). Since then, many 
drugs targeting tumor vascularization have proven successful in 
the treatment of different tumors. Such is the case for the first 
FDA-approved angiogenesis inhibitors sunitinib (Sutent®) and 
bevacizumab (Avastin®), which demonstrated promising results 
in the treatment of kidney and colorectal cancers (110, 111).

Currently, using standard chemotherapy alone for cancer 
treatment has proven inefficient due to low selectivity of tumor 
cells, producing toxicity in normal tissues with high-proliferation 
rates (e.g., bone marrow, hair follicles, and gastrointestinal tract). 
Besides, tumor cells become resistant, whereas the abnormality 
of tumor vasculature impairs efficient drug delivery (112). On 
the contrary, with thousands of people being treated with VEGF 
inhibitors around the world, antiangiogenic targeting surely 
serves as an example of specific tumor ecosystem disruption for 
efficient cancer treatment.

There are different reasons underlying the success of tumor 
vascular targeting, involving both tumor and stromal cell inter-
play. First, the concept that tumors are dependent on multiple 
factors extrinsic to themselves, so rendering them without a 
functional vasculature that delivers oxygen and nutrients should 
kill them. Second, stromal cells, unlike neoplastic cells, are 
genetically more stable, being less likely to develop resistance 
to therapy. This makes angiogenesis a really attractive target for 
drug development. Third, tumors have always been described  
as highly vascular structures, meaning that anti-vascular target-
ing could be aimed at the treatment of a wide range of solid 
tumors (113, 114).

Taking into account the abundance of mechanisms involved 
in tumor angiogenesis, blood vessel formation processes can be 
inhibited at many different levels (Figure  3). Actually, distinct 
types of compounds, such as antibodies and small molecules, 
have been developed as antiangiogenic drugs. Production of anti-
bodies presents some disadvantages for the pharma companies 
regarding the expensive requirement of mammalian cell produc-
tion systems, dependence on disulfide bonds for stability, over-
coming the tendency to aggregation, and low expression yields. 
Consequently, other promising molecules such as small globular 
proteins, aptamers, and peptides are currently being investigated 
(115). Noteworthy, not all antiangiogenic compounds have the 
same cellular effects nor the same therapeutic relevance. The 
main effects of angiogenic inhibitors can be classified according  
to their effects on: inhibition, regression, or normalization of 
tumor blood vessels. In this section, some of the main mecha-
nisms to inhibit vascular malignization will be highlighted.

Direct vessel Signaling inhibition
Endothelial cell activation is commonly initiated upon stimula-
tion of tyrosine kinase (TK) receptors by growth factors. As 
previously stated, VEGF is the most important growth factor 
involved in tumor angiogenesis, and its inhibition influences 
endothelial cell survival, growth, migration, blood flow, and 
stromal cell recruitment (116, 117). Some of the VEGF-inhibiting 
approaches imply neutralization of the ligand or the receptor by 
specific antibodies, soluble receptors, small-molecule inhibitors 
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of TK phosphorylation, and the direct inhibition of its intracel-
lular signaling pathway (Figure 3). Thus far, 10 molecules that 
target VEGF or VEGFR have been approved for the treatment of 
vari ous malignancies (118).

Since TK receptors are expressed both in tumor and vascular 
cells, TK inhibitors (TKIs) are regarded as a useful drugging 
stra tegy for their potentially dual effect (Figure  3). They are 
capable of blocking tumor cell proliferation and proangiogenic 
signaling simultaneously (119). However, the efficacy of TKIs 
varies depending on the different expression levels of the tar-
geted ligands and effectors depending on the tumor type. Some 
strategies include compounds that block the binding site of the 
ATP in the TK receptor, causing the blockade of the receptor. 
Other TKIs aim at preventing the binding of the TK ligand with 
antibodies that block the growth factor or the binding site of the 
receptor (120).

The best known TKIs that block VEGFR and PDGF signaling 
are sorafenib, sunitinib, and pazopanib. Sorafenib is a synthetic 
compound that inhibits both Raf signaling, involved in cell divi-
sion and proliferation, and VEGFR-2 and PDGFRβ signaling, 
modulators of angiogenesis (121). Its use is approved in the 
treatment of hepatocellular, thyroid, and renal cell carcinomas. 
Similarly, sunitinib is a TKI that, apart from blocking VEGFR-2 
and PDGFRβ, is able to inhibit c-kit. The FDA approved 
the use of sunitinib for the treatment of imatinib-resistant 

gastrointestinal stromal tumor and renal cell carcinoma (122). 
Recently, anti-VEGFR2 antibody ramucirumab has received the 
FDA approval for second-line gastric cancer treatment (123). 
Another example includes pazopanib, a VEGFR-1, -2, -3, c-kit, 
and PDGFR inhibitor, approved for renal cell carcinoma and 
soft tissue sarcoma (124).

Novel Antiangiogenic Approaches
Vascular Ecosystem Inhibition
Considering the contribution of EPCs to tumor angiogenesis  
and metastasis, blocking of EPC recruitment is a recently 
explored strategy for new blood vessel and metastatic niche 
abrogation (125) (Figure 3). To achieve so, specific targeting of 
molecules involved in EPC homing and recruitment from the 
bone marrow is an interesting approach. SDF-1/CXCR4 signal-
ing axis is the main regulator of EPC mobilization and, as such, 
antagonists and antibodies against CXCR4 have been proposed 
(126). The action of these compounds is based on their ability 
to prevent the chemokine gradient that permits the homing 
of EPCs to the tumor ecosystem. Besides, VEGF is also a key 
modulator of EPC recruitment and preclinical studies have 
shown that VEGF blockade negatively modulates EPC-driven 
vasculogenesis (127).

Given that interactions between cells composing the tumor eco-
system and their surrounding ECM are crucial for angiogenesis  
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regulation, modifying the structural and biochemical properties 
of the stroma should also impair vessel growth (128) (Figure 3). 
Among all the molecules that compose the ECM, MMPs are 
critically relevant for angiogenesis and tumor invasion, as 
demonstrated by genetic ablation studies where their absence 
impeded angiogenic tumor growth (129). In this context, tissue 
inhibitors of MMPs, together with synthetic inhibitors of serine 
proteases, such as urokinase type plasminogen activator, are 
regarded as potential antiangiogenics (130). Importantly, there 
are many endogenous angiogenesis inhibitors composing the 
ECM that are inactivated during the angiogenic switch. Many 
laboratories are trying to reproduce these natural angiogenesis 
inhibitors that act through binding αvβ3 and β1 integrins in 
endothelial cells. Some examples include arrestin, canstatin, and 
tumstatin (131).

Since the combination of immune checkpoint inhibitors 
with VEGF targeted agents shows a strong preclinical rationale, 
several undergoing studies are exploring its potential clinical 
exploitance [as reviewed in Ref. (132)]. As an example, a study 
combining bevacizumab with anti-CTLA4 in melanoma patients 
showed an increased infiltration of immune cells and extensive 
morphological changes of CD31 + endothelial cells (133). In a 
recent study, the use of axitinib, a multireceptor inhibitor that 
targets VEGFR, PDGF, and c-kit, demonstrated a depletion of 
mast cells together with an improved T-cell response, pivotal for 
the therapeutic efficacy (134).

Vessel Normalization
In comparison with physiologic tissue vasculature, tumor vas-
culature is characterized by aberrant, dilated, disorganized, and 
tortuous blood vessels. Lack of pericyte association and vas cular 
immaturity produce excessive permeability, increased hypoxia, 
and poor perfusion, resulting in decreased antitumor treatment 
efficacy. For instance, chemotherapeutic drugs and immuno-
therapies are not able to reach all regions of the tumor (135, 136).  
To overcome this challenge, combination of antitumor treat-
ments and low doses of vascular targeting agents are used. 
Careful dosage of antiangiogenics are able to restore normal 
levels of angiogenic signals in different types of tumors, provo-
king decreased permeability by recruiting pericytes and tightening 
cell–cell junctions (137). This phenomenon is known as “vascular 
normalization.”

Benefits of vascular normalization have been observed in 
different types of tumors. The combination of bevacizumab, 
together with chemotherapy, produced a positive outcome in a 
subset of breast cancer patients (138). Furthermore, combined 
inhibition of VEGFR and angiopoietin-2 improves survival of 
mouse glioblastoma tumor models, by increasing vessel norma-
lization and reprogramming TAMs (139). Another example of 
the benefits of vessel normalization include the use of trebananib, 
a fusion protein that inhibits angiogenesis by blocking binding 
of angiopoietin-1 and -2 to Tie 2 receptor. In a recent study, 
combination of trebananib and chemotherapy demonstrated 
benefits in progression-free survival in epithelial ovarian cancer 
patients (140).

CONCLUSiON

Far ahead from the traditional idea that neoplasms are merely 
characterized by the tumor cells, tumors are now regarded as a 
heterogeneous association of both tumor and stromal cells that 
contribute in an interconnected fashion to malignant progres-
sion. The tumor ecosystem remains a bustling interchange of 
tumor cells, secreted molecules, and native tissue elements that, 
acting together, control the balance toward a proangiogenic 
program activation. In this way, the correct interaction between 
the components of the tumor ecosystem is critical for the success 
of the malignant lesion. Tumor stroma acts as a co-director for 
the development of vascularized growing mass, becoming the 
rationale driving the development of new antitumor therapies 
with antiangiogenic drugs.

Several years after the establishment of tumor angiogenesis 
as a cancer hallmark, the clinical exploitation of antiangiogenic 
therapies has reached a certain level of maturity (6). From the 
archetypal sprouting angiogenesis to describing less known 
mechanisms such as VM, the understanding of angiogenic 
mech anisms has become imperative for successful therapeutic 
targeting. The focus on the importance of these processes and 
the achievements in the clinical setting are reflected in the 
increasing number of drugs available to target angiogenesis 
mediators.

Undoubtedly, the normalization of the tumor ecosystem is 
an important new aspect for cancer treatment. Even though 
the tumor microenvironment holds many different cell types 
and components, the severity of the disease can be reduced by 
using a single effective drug, as demonstrated with antiangio-
genics. Based on this observation, the combination of different 
therapies targeting different stromal components, together 
with traditional antitumor agents, could hold the key to impair 
cancer progression. Despite the rapid progress achieved in 
tumor ecosystem targeting, only a modest clinical success has 
been so far observed (141). Ongoing studies in the field which 
focus on studying the tumor ecosystem from an integrative 
point of view bear the potential to significantly control tumor 
angiogenesis and broaden the spectrum of current anticancer 
treatments.
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