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Technologies for genomic analyses have revealed more details in cancer biology and 
have changed standard treatments for cancer, including the introduction of targeted 
gene-specific therapy. Currently, liquid biopsies are increasingly being utilized in clinical 
trials and research settings to analyze circulating tumor DNA (ctDNA) from peripheral 
blood. Several studies have shown the potential of ctDNA in the screening, prognosti-
cation, molecular profiling, and monitoring of gastrointestinal malignancies. Although 
limitations continue to exist in the use of ctDNA, such as method standardization, 
the sensitivity, concordance with tumor tissue, and regulatory issues, this field offers 
promising benefits for cancer treatment. A deeper understanding of tumor biology via 
ctDNA analyses and ctDNA-guided clinical trials will lead to the increasing use of ctDNA 
in clinical practice in the near future; this development will result in the improvement of 
outcomes among patients with gastrointestinal malignancies.
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iNTRODUCTiON

Over several decades, the gold standard in the diagnosis and screening of tumors has been tissue 
biopsy (1). However, conventional tissue biopsies are invasive, painful, and carry a risk of complica­
tions such as bleeding, local infection, and damage to neighboring tissues. Moreover, a tissue biopsy 
cannot always reflect tumor dynamics or response to treatment. The recent era of precision medicine, 
which represents a paradigm shift in cancer, has challenged the gold standard in diagnosis by intro­
ducing a transition from tissue biopsy to liquid biopsy. Compared with tissue biopsies, liquid biopsies 
carry minimal potential risk and can be repeatedly performed in routine practice during cancer 
treatment by using peripheral blood. Furthermore, liquid biopsies have the potential to provide more 
complete information regarding the biology of whole tumors despite tumor heterogeneity. Liquid 
biopsies include the testing of soluble factors, such as circulating tumor DNA (ctDNA) and circula­
ting cell­free DNA (cfDNA), as well as proteins and tumor markers (2). cfDNA is highly fragmented 
DNA that is released from necrotic or apoptotic cells into the bloodstream (3–5). cfDNA consists 
of DNA from healthy cells and tumor cells, whereas ctDNA is defined as DNA that is derived only 
from primary or metastatic tumor cells.

Since Mandel and Metais (6) reported fragmented DNA in blood for the first time in 1948, technolo­
gies for cfDNA quantification have changed over 70 years from quantitative polymerase chain reaction 
to complex BEAMing and deep next­generation sequencing (NGS), thus achieving improvements in 
the sensitivity and specificity of cfDNA detection. With the development of sensitive techniques that 
can detect rare mutations, the heterogeneous landscape of tumors can be determined using blood 
samples. In fact, National Comprehensive Cancer Network guideline for non­small cell lung cancer 
(version 4. 2018) states that plasma biopsy should be considered if repeat biopsy is not feasible (7).
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TAbLe 1 | Available assays of detection of circulating tumor DNA (12, 24).

Characteristic PCR assays Next-generation sequencing (NGS) assays

Allele-specific PCR emulsion PCR Amplicon-based targeted NGS Capture-based targeted NGS

Variants potentially 
detected

Known recurring 
mutations

Known recurring mutations Any exonic mutations, copy number gains Exonic mutations, intronic gene  
fusions, copy number gains

Quantitation Semiquantitative Absolute or relative 
quantitation, wide dynamic 
range

Quantitation of relative AF, but  
vulnerable to PCR amplification bias

Quantitation of relative AF

Speed Rapid Rapid Slower Slower

Examples Cobas (Roche),  
therascreen (Qiagen)

Droplet digital PCR (Biorad), 
BEAMing (Sysmex Inostics)

Tam-seq (Inivata) Guardant360 (Guardant), cancerselect 
(personal genome diagnostics)
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Here, we review ctDNA in gastrointestinal malignancies by 
focusing on clinical utility and future perspectives.

ctDNA AND ReLATeD TeCHNOLOGieS

The presence of cfDNA in the blood is a well­established fact, 
and DNA fragments are released from dying cells because of cel­
lular turnover or other types of cell death (2). In cancer patients,  
a fraction of cfDNA is tumor derived and is termed ctDNA. 
ctDNA originates from primary tumors, metastatic tumor cells, 
or circulating tumor cells. ctDNA molecules are shorter than 
non­mutant cfDNA molecules in plasma, as demonstrated by 
PCR (8, 9) and sequencing (10, 11).

Representative approaches for analyzing ctDNA are sum­
marized in Table 1 (12). Mutation­specific real­time or endpoint 
PCR has been used for the detection of point mutations in ctDNA 
(13–17). More recently, digital PCR methods such as BEAMing 
and droplet digital PCR have been developed to improve the 
identification of genomic alterations in ctDNA (18–20). The 
recent implementation of NGS has allowed the direct sequence­
based detection of chromosomal alterations in plasma DNA 
(21–23); however, it is necessary to distinguish the relatively 
few somatic alterations in ctDNA from the larger numbers of 
structural variants present in the germline cells of all individuals. 
Bioinformatics­based filters that enrich high­confidence somatic 
structural alterations while eliminating germline and artifactual 
changes have been developed (12). In addition, importantly, 
amplification in ctDNA can be depend on both the amount of 
ctDNA in the plasma due to high tumor burden and high copy 
number of specific gene. Commercially available kits for the NGS 
assays of ctDNA are summarized in Table 2.

eARLY DeTeCTiON OF CANCeR

The early detection of cancer is one of the most important issues 
in reducing cancer­related deaths. In many cases, gastrointestinal 
cancer is detected via endoscopy or CT scans conducted for symp­
toms such as anorexia, abdominal pain, or constipation. ctDNA 
may have a potential role in the noninvasive early diagnosis 
and screening of gastrointestinal cancer. Even localized cancers 
shed DNA into circulation; therefore, ctDNA can be detected 
in patients with localized cancers, in addition to patients with 
advanced or metastatic cancers.

In a study across several early and late­stage cancers, ctDNA 
was detected in 73, 57, and 48% of patients with colorectal cancer 
(CRC), gastroesophageal cancer, and pancreatic cancer, respec­
tively (25). The use of several biomarkers in ctDNA including 
the levels of overall ctDNA, ALU247 fragment concentration 
(26), KRAS mutations (27, 28), TP53 mutations (29, 30), BRAF 
mutations (28), and septin 9 (SEPT9) methylation (31–34) have 
been demonstrated for the diagnosis of CRC. Also, detection of 
methylated SEPT9 DNA in plasma is US FDA approved as a blood 
test for CRC screening. Compared with biomarkers for CRC, bio­
markers for the diagnosis of gastric cancer (GC) and esophageal 
cancer have been assessed in a relatively small number of cohorts 
(25, 35). For the early detection or screening of cancers including 
CRC, GC, and esophageal cancer, the sensitivity of ctDNA analy­
sis needs to be improved. Analysis that can be performed using 
a few milliliters of blood would be suitable for cancer screening; 
however, increasing the analytical sensitivity beyond 0.1% may 
not provide clinical benefits because it also leads to difficulties 
in distinguishing oncological mutations and sampling noise. In 
fact, cancer­associated genomic alterations have been found in 
plasma from healthy individuals (36). In addition, because many 
cancers share common gene mutations such as TP53 mutations 
and KRAS mutations, ctDNA presents challenges in the detec­
tion of the specific organ sites of malignancies. To overcome 
these issues in ctDNA, the methylation profiling of cfDNA has 
been investigated in cancer diagnosis. Methylation haplotyping 
in plasma is a promising strategy for the early detection of a 
tumor and its primary growth site (37). Studies have reported the 
utility of methylation scores from over 9,000 CpG sites in cfDNA 
for cancer detection, with 76.3% accuracy for the prediction of 
cancer type (38).

Despite the above hurdles to the use of ctDNA in cancer 
screening, it is expected that the clinical use of ctDNA is less than 
a decade away because of its utility and convenience in cancer 
screening (Figure 1).

PROGNOSiS AND DeTeCTiON OF 
ReSiDUAL DiSeASe

Following curative therapy for gastrointestinal malignancies, 
ctDNA may be a potential biomarker for minimal residual disease.  
The detection of ctDNA even in the absence of any other clinical 
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TAbLe 2 | Commercially available circulating tumor DNA next-generation 
sequencing assays.

Panel Company Gene 
number

Assays

Guardant360 Guardant Health 73 Capture-based
PlasmaSELECT-R64 Personal Genome 

Diagnostics
64 + MSI Capture-based

FoundationACT Foundation Medicine 62 Capture-based
Oncomine Colon 
cfDNA Assay

Thermo Fisher Scientific 14 Amplicon-based

FiGURe 1 | Clinical applications of circulating tumor DNA (ctDNA) in gastrointestinal malignancies. 
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evidence of disease may mean that the patient has higher risk of 
relapse. In a cohort of 230 patients with stage II CRC, the assess­
ment of ctDNA using the Safe­SeqS NGS method at the first visit 
after surgery indicated that recurrence­free survival at 3  years 
was 0% in a ctDNA­positive group and 90% in a ctDNA­negative 
group (39). Other studies have also demonstrated that the per­
sistent detection of ctDNA after local therapy (surgery or radical 
radiotherapy) predicts a high risk of relapse in patients with colon 
cancer (40, 41). In addition, methylated BCAT1/IKZF1 have been 
evaluated as biomarkers for CRC (42, 43). Of 397 patients with 
CRC who underwent primary tumor resection, odds ratio of a 
positive CEA test for recurrence was 6.9 (95% CI 2–22) compared 
to 14.4 (5–23, 25–40) for BCAT1/IKZF1.

In a meta­analysis of 16 studies including 1,193 patients with 
GC, the presence of ctDNA was significantly associated with 
the shorter disease­free survival (HR 4.36, 95% CI 3.08–6.16, 
p  <  0.001) and overall survival (HR 1.77, 95% CI 1.38–2.28, 
p  <  0.001) of GC patients, with high specificity (0.95, 95% CI 

0.93–0.96) and relatively moderate sensitivity (0.62, 95% CI 
0.59–0.65) (44). Another study demonstrated that the level of 
ctDNA was associated with tumor recurrence in patients who 
underwent curative surgery for GC (45). Similarly, several studies 
have reported the tumor­associated mutations in ctDNA and the 
prognosis of patients with esophageal cancer (46, 47); however, 
these studies included a limited number of patients, and further 
investigations are warranted. Almost all of these studies followed 
a retrospective design and provided limited validation for clinical 
use in gastrointestinal malignancies. One of the ideal applications 
of ctDNA is in the early detection of residual disease or recurrence 
compared with CT imaging and tumor markers. A more attrac­
tive idea is patient­specific ctDNA panels in patients who have 
undergone curative surgery (41, 48). Individual surgical tumor 
samples may provide a great opportunity to obtain tumor DNA 
from each patient to guide the design of patient­specific ctDNA 
panels from peripheral blood samples. Despite hurdles such as 
tumor heterogeneity, validation, regulatory issues, and quality 
control of individual panels, patient­specific ctDNA panels are 
potential biomarkers for postoperative monitoring.

biOMARKeRS OF CHeMOTHeRAPY 
ReSPONSe AND ReSiSTANCe iN 
MeTASTATiC DiSeASe

Another clinical potential of ctDNA is in the determination of 
systemic chemotherapy regimens, the prediction of response to 
chemotherapy, and the identification of resistance mechanisms. 
The short half­life of ctDNA enables the real­time monitoring 
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of cancer burden, in contrast to radiological imaging or tumor 
markers. Indeed, a prospective study of 53 patients with metastatic 
CRC demonstrated that early changes in ctDNA during first­line 
chemotherapy predicted later radiologic response. Significant 
reductions in ctDNA levels were observed before cycle 2 and 
were correlated with CT response at 8–10 weeks (odds ratio 5.25 
with a 10­fold ctDNA reduction; p = 0.016) (49). Blood­based 
monitoring is an ideal strategy during cancer treatment because 
of its minimal invasiveness and avoidance of radiation exposure.

RAS Mutations in Metastatic CRC
The assessment of RAS status has been mandatory in patients 
with metastatic CRC to predict the response of cetuximab and 
panitumumab to anti­EGFR antibodies (50–55). A double­
blinded prospective study of 106 patients with mCRC has been 
performed to compare the KRAS mutation status assessed using 
tumor tissue via routine gold­standard methods to that assessed 
using plasma DNA via qPCR­based methods; the resultant speci­
ficity and sensitivity for the detection of KRAS point mutations 
were 98 and 92%, respectively, resulting in 96% concordance (28). 
In addition, the retrospective exploratory analysis in a biomarker 
subgroup of the CORRECT trial, which was a phase III trial 
investigating the efficacy and safety of regorafenib in patients 
with mCRC, confirmed the utility of detecting KRAS, BRAF, 
and PIK3CA mutations in ctDNA. Plasma DNA detected with 
BEAMing in 503 patients demonstrated that mutation status in 
ctDNA changed dynamically during chemotherapy and differed 
from that in pretreatment archival tissue (56). Currently, the 
OncoBEAM RAS CRC assay is the only European committee 
in vitro diagnostic test for RAS mutations in ctDNA. This assay 
is a qualitative PCR­based test and allows for the detection of 
34 mutations within exons 2, 3, and 4 of KRAS and NRAS genes 
from a single blood sample. Four large cohort studies have been 
reported to achieve high concordance of approximately >90% 
(range, 89.7–93.3%) between OncoBEAM using plasma ctDNA 
and tumor tissue analysis in patients with CRC (57–60).

Acquired resistance to anti­EGFR antibody therapy has also 
been found by using ctDNA analyses. ctDNA from 28 patients 
receiving panitumumab monotherapy was assessed using qPCR, 
and 9 out of 24 (38%) patients whose tumors were initially KRAS 
wild­type showed KRAS mutations in ctDNA after panitumumab 
treatment (61). This study suggested that the emergence of KRAS 
mutations is a mechanism of resistance to anti­EGFR therapy and 
that these mutations may be detected in ctDNA as a more sensi­
tive monitoring tool than radiological imaging. More recently, 
other studies have also demonstrated mutations associated with 
the resistance and decline of mutant KRAS clones after the with­
drawal of anti­EGFR therapy (62, 63).

bRAF Mutations in Metastatic CRC
BRAF mutations have been confirmed to be associated with poor 
prognosis in patients with metastatic CRC; moreover, the limited 
efficacy of anti­EGFR therapy in patients with BRAF­mutant 
metastatic CRC has been shown in several studies (64–66). The 
analysis of BRAF mutations in ctDNA by using qPCR­based 
methods has shown specificity and sensitivity of 100% (28). 
Based on preclinical studies (67, 68), the clinical trials of dual 

EGFR and MAPK signaling pathway inhibition in patients 
with BRAF­mutant metastatic CRC is ongoing. In a phase Ib 
study of a combination therapy of dabrafenib, trametinib, and 
panitumumab, BRAF V600E mutant burden in ctDNA was more 
markedly reduced in responders than in nonresponders, and the 
emergence of RAS mutations was seen with disease progression 
in 9 of 22 patients (41%) (69). This exploratory analysis sug­
gested that the monitoring of BRAF V600E mutant fraction in 
ctDNA could effectively predict response to combination therapy 
including a BRAF inhibitor and that overcoming the emergence 
of RAS­mutant subclones is important in combating resistance to 
this combination therapy.

Other Alterations in Metastatic CRC
HER2 or MET amplification is also known as a mechanism of 
resistance to anti­EGFR therapy in patients with metastatic 
CRC. The patient­derived xenograft models of HER2­amplified 
CRC showed resistance to anti­EGFR therapy (70, 71). In 
addition, the frequency of HER2 amplifications increased from 
approximately 3% in treatment­naïve patients to over 10% 
in patients who were administered anti­EGFR therapy (72). 
Although there are few studies regarding the concordance of 
HER2 status between ctDNA and tissue samples, 4 of 18 (22%) 
patients exhibited HER2 amplification in ctDNA by digital 
PCR after cetuximab therapy despite being negative for HER2 
amplification prior to anti­EGFR therapy (73). The promising 
results of trastuzumab and T­DM1 combination therapy in the 
HERACLES trial (71) have encouraged clinical trials in patients 
with HER2­positive metastatic CRC such as the MyPathway trial 
(74) and the TRIUMPH trial (75); notably, the TRIUMPH trial 
includes patients with HER2 amplification detected using not 
only tissue samples but also ctDNA analysis using an NGS­based 
method.

Another important alteration that causes resistance to anti­
EGFR therapy is MET amplification. A preclinical model of MET­
amplified CRC also showed resistance to anti­EGFR therapy (76). 
In fact, MET amplification in ctDNA was detected using NGS 
in 12 of 53 (22.6%) patients who showed disease progression 
with anti­EGFR therapy; no such amplification was detected in 
patients before cetuximab therapy. Furthermore, MET amplifica­
tion in ctDNA was not detected in patients with RAS mutations 
after cetuximab therapy, thus suggesting that MET amplification 
is one of the mechanisms (other than RAS mutations) that cause 
resistance to anti­EGFR therapy (77). In a phase Ib trial of cabo­
zantinib and panitumumab combination therapy, the preliminary 
evidence of efficacy in patients with MET­amplified metastatic 
CRC was reported (78).

HeR2 Amplification in GC
The amplification of the HER2 gene or overexpression of the 
HER2 protein, which contributes to cancer progression, has 
been reported in approximately 20% of patients with advanced 
GC (79, 80). According to the results of the ToGA trial, HER2 
is a key biomarker of HER2­targeted therapy using trastuzumab 
for advanced GC (79). The gold­standard diagnostic method for 
detecting HER2 positivity and suitability for trastuzumab therapy 
is an immunohistochemistry score of 3+ or 2+ with a positive 
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result in fluorescence in situ hybridization. A retrospective study 
of 52 patients with advanced GC and 40 healthy volunteers 
demonstrated that the plasma HER2–RPPH1 ratio (with RPPH1 
as a reference gene) was significantly higher in patients with 
HER2­positive tumors than those with HER2­negative tumors 
(81). More recently, the droplet digital PCR of HER2 copy 
number in ctDNA has been reported. In a study of 60 patients 
with GC, including 17 patients who developed recurrence and 
30 healthy volunteers, preoperative plasma HER2 ratio correlated 
with tumor HER2 status; postoperative plasma HER2 ratios were 
high during the recurrence of tumors, which were diagnosed as 
HER2­negative tumors in surgery samples (82). Considering 
that HER2 status may be altered after recurrence, the HER2 copy 
number analysis in ctDNA enables the real­time evaluation of 
HER2 status and leads to more effective treatment choices with 
HER2­targeted agents.

FUTURe PeRSPeCTiveS

Overall, the data generated in all studies discussed above support 
the potential role of ctDNA in the diagnosis and treatment of 
patients with gastrointestinal malignancies. Despite a few limi­
tations, including the standardization of detection and ctDNA 
quantification, the sensitivity, and concordance between ctDNA 
and tissue biopsies that currently hinder the routine use of 
ctDNA in clinical trials and clinical practice, its use would allow a  
deeper understanding of cancer biology and enable better cancer 
treatment, thus leading to improvements in patient survival.

In the context of clinical trials for metastatic disease treatment, 
several studies are ongoing or have been conducted using eligibility 
criteria based on gene alterations in ctDNA. A prospective study 
on the comprehensive ctDNA­guided treatment of advanced GC 
and lung cancers is ongoing in Korea (83). Another trial called 
the Targeted Agent and Profiling Utilization Registry, which is a 
large basket/umbrella trial sponsored by the American Society of 
Clinical Oncology, is accepting patient selection on the basis of 
ctDNA analysis (NCT02693535). In addition, an umbrella trial in 

patients with mCRC based on the molecular profiling of ctDNA, 
including the status of HER2, BRAF V600E, BRAF non­V600E, 
MET, or high tumor mutation burden, is ongoing in Japan. If 
promising results are obtained in these clinical trials, ctDNA will 
be used in routine clinical practice and in clinical trials in the 
near future.

Economic and regulatory issues still hinder the practical use of 
ctDNA. Although most guidelines recommend that comprehen­
sive molecular profiling should be conducted, the substantial costs 
of NGS assays lead many community oncologists to rely on PCR 
tissue tests and do not understand the added benefit of a com­
prehensive genomic test. In addition, emerging ctDNA­guided 
clinical trials are essential to obtain approval for the use of ctDNA 
in clinical practice. These barriers need to be challenged, perhaps 
initially in patients with CRC, which is one of the most prevalent 
gastrointestinal malignancies worldwide. Simultaneously, further 
studies are needed on other gastrointestinal malignancies such as 
esophageal cancer and GC to identify the best gene biomarkers 
that are detectable in ctDNA for the diagnosis, prognosis, and 
prediction of therapy response.

CONCLUDiNG ReMARKS

The potential role of ctDNA in gastrointestinal malignancies has 
been shown in basic studies, retrospective studies, and limited 
prospective studies. A paradigm shift in cancer diagnosis and 
treatment in ctDNA­based clinical trials and clinical practice 
will occur in the near future, thus leading to the availability of 
more DNA sequence information compared with that in the past 
decade. Although some limitations continue to exist on the use 
of ctDNA in clinical practice and clinical trials, ctDNA­based 
personalized therapy promises to improve patient outcomes and 
quality of life.
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