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Drug resistance is a major cause for therapeutic failure in non-small cell lung cancer 
(NSCLC) leading to tumor recurrence and disease progression. Cell intrinsic mecha-
nisms of resistance include changes in the expression of drug transporters, activation of 
pro-survival, and anti-apoptotic pathways, as well as non-intrinsic influences of the tumor 
microenvironment. It has become evident that tumors are composed of a heterogeneous 
population of cells with different genetic, epigenetic, and phenotypic characteristics that 
result in diverse responses to therapy, and underlies the emergence of resistant clones. 
This tumor heterogeneity is driven by subpopulations of tumor cells termed cancer stem 
cells (CSCs) that have tumor-initiating capabilities, are highly self-renewing, and retain 
the ability for multi-lineage differentiation. CSCs have been identified in NSCLC and 
have been associated with chemo- and radiotherapy resistance. Stem cell pathways are 
frequently deregulated in cancer and are implicated in recurrence after treatment. Here, 
we focus on the NOTCH signaling pathway, which has a role in stem cell maintenance in 
non-squamous non-small lung cancer, and we critically assess the potential for targeting 
the NOTCH pathway to overcome resistance to chemotherapeutic and targeted agents 
using both preclinical and clinical evidence.

Keywords: non-small cell lung cancer, treatment resistance, NOTCH/gamma-secretase inhibitor, chemotherapy, 
targeted therapy

LUNG CANCeR AND STANDARD OF CARe

According to the World Health Organization, in 2015, every 3.5 s a person died of cancer and one 
out of five deaths was due to lung cancer. Lung cancer is the second most commonly diagnosed type 
of cancer and the leading cause of cancer-related mortality. More than two thirds of lung cancer 
patients are diagnosed at an advance stage (III–IV). The lack of early diagnostic techniques and the 
intrinsic and/or acquired treatment resistance leading to relapse are major obstacles in finding a 
cure for lung cancer.

Lung cancer can be divided into two main categories: non-small cell lung cancer (NSCLC) account-
ing for 85% of lung cancers, and small cell lung cancer (~15%). NSCLC can be further categorized 
into, generally, adenocarcinoma (AC 40%), squamous cell carcinoma (SQCC 25–30%), large cell 
undifferentiated carcinoma (10–15%), mixed subtypes (adenosquamous), and the far less common 
sarcomatoid carcinoma. Treatment for NSCLC consists of surgical resection, chemotherapy, radia-
tion, targeted therapy, immune therapy, and/or combinations thereof. Standard first-line treatment 
for inoperable locally advanced stage NSCLC is concurrent polychemotherapy with fractionated 
radiation (60 Gy in 2 Gy fractions) (1). Studies show that chemoradiotherapy (using paclitaxel) as 
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opposed to radiotherapy alone, delivered after induction chemo-
therapy (carboplatin and paclitaxel), is feasible and improves time 
to progression and overall survival (OS) of inoperable stage III 
NSCLC (2).

Polychemotherapy for NSCLC often involves the combination 
of a platinum-based agent (e.g., cisplatin or carboplatin) and other 
drugs with a different mechanism of action. Cisplatin or carboplatin 
covalently binds DNA, activates the DNA-damage response, and 
induces cell cycle arrest and apoptosis. The second chemothera-
peutic agent can be a topoisomerase II inhibitor (e.g., etoposide), 
a DNA damaging agent preventing replication such as a taxane 
(e.g., paclitaxel or docetaxel) or a vinca alkaloid (e.g., vincristine, 
vinorelbine, or vinblastine) which inhibits microtubule assembly 
and blocks mitosis, an altered DNA base that gets incorporated in 
the DNA but cannot be repaired (e.g., gemcitabine), or an inhibi-
tor of folate metabolism (e.g., pemetrexed). There are studies that 
suggest that the selection of the chemotherapeutic agent should 
consider the subtype of NSCLC. Second-line paclitaxel treatment 
for cisplatin-treated lung cancer patients benefits clinical outcome 
(response rate plus stable disease) in non-squamous cell carci-
nomas preferentially (3). Adenocarcinoma seems to have better 
OS rates for both gemcitabine-platinum and taxane-platinum 
regimens, where the first, results in better objective response rates 
and shows a tendency to improve median survival time (9.1 versus 
7.4 months in the taxane combination) (4). Squamous cell carci-
noma patients could  benefit more from a cisplatin plus etoposide 
treatment rather than the four-drug combination: cyclophos-
phamide, adriamycin, methotrexate, and procarbazine, where 
the response rate is 44.7 versus 21.6%, respectively (5). Large cell 
neuroendocrine carcinomas and small cell lung carcinomas have 
a similar biological behavior and respond similarly to some treat-
ments including: irinotecan, platinum, and taxanes, which are 
more effective than pemetrexed (6–8). The remaining subtypes of 
large cell carcinomas (non-neuroendocrine), sarcomatoid tumors, 
and mixed carcinomas often do not have well-defined biological 
features, the criteria for diagnosis are not as robust, and hence, 
treatment response has not been properly assessed. Regarding 
targeted agents, several studies suggest that adenocarcinoma 
patients benefit more from epidermal growth factor receptor 
(EGFR)–tyrosine kinase inhibitor (TKI) therapy than squamous 
cell carcinoma patients, both subtypes bearing EGFR mutations, 
where objective response rates, OS, and progression-free survival 
(PFS) are 66–74%, 19–21 months, and 9.4–10 months (9) versus 
25–27%, 13.48  months, and 3–5  months (10, 11), respectively. 
Within the adenocarcinoma subtype, the brochioloalveolar one is 
the most responsive to small molecule tyrosine kinase inhibitors 
(TKI) (e.g., gefitinib) (12). These observations raise the following 
question: “which are the reasons behind these diverse responses 
and outcomes to the same treatments between lung cancer sub-
types and patients?”

THe LUNG CANCeR GeNOMe: 
ACTiONABLe TARGeTS iN NSCLC?

Whole genome sequencing of lung cancers has revealed complex 
patterns of driver mutations with over 200 non-synonymous muta-
tions that distinguish smokers from non-smokers and predict  

patient outcome (13–15). Mutations in KRAS occur in up to 25%  
of NSCLC and despite preclinical efforts, there are no clinically 
approved drugs that effectively target KRAS. In lung adenocar-
cinoma, actionable mutations in the epidermal growth factor 
receptor (EGFR) occur with a 10–15% frequency and can be 
effectively targeted with small molecule first- and second-
generation tyrosine kinase inhibitors (TKI) (e.g., erlotinib, 
gefitinib, and afatinib) and monoclonal antibodies (mAbs) (e.g., 
cetuximab). TKIs that target translocations in the anaplastic 
lymphoma kinase (e.g., EML4-ALK) occurring with a 5% fre-
quency in adenocarcinomas, are also available (e.g., ceritinib, 
alectinib, and crizotinib). Other actionable driver mutations 
(~15–20%) that occur less commonly are ROS1 rearrangements, 
BRAF mutations, RET rearrangements, NTRK1 rearrangements, 
MET amplifications, and HER2 mutations. In about 40% of lung 
adenocarcinomas however, there are no common driver genes 
yet identified (16). High response rates (60–70%) are achieved 
with the EGFR TKIs in EGFR-mutated cancers (9) and ~60% 
of partial/complete responses with anaplastic lymphoma kinase 
(ALK) inhibitors (e.g., crizotinib) in patients with ALK translo-
cations (17). However, resistance to pharmacological inhibitors, 
for example, TKIs, seems inevitable. Mechanisms of resistance 
include: alteration of the drug target such as resistance mutations, 
alternative splicing, and gene amplification, as well as activation 
of alternative oncogenic pathways. Tumor cells which harbor 
these resistance-creating mutations can be present at the onset 
of treatment (primary resistance) or emerge during treatment 
(secondary resistance). Other mechanisms of resistance, for 
instance inefficient drug delivery, metabolic inactivation and 
drug-interactions, also play a role in therapeutic outcome. The 
most frequent form of acquired resistance in NSCLC is  secondary 
mutations in EGFR (e.g., T790M “gatekeeper”) occurring in 
60% of patients treated with second generation TKIs. Similarly, 
secondary mutations in ALK (e.g., C1156Y, L1196M, G1269A, 
and L1152R) are associated with acquired resistance to first 
generation ALK inhibitors such as crizotinib. In addition, there 
are several pathways that can mediate resistance to TKI which 
include the activation of anti-apoptotic pathways, HER2 and 
MET amplification, or mutations in PIK3CA or BRAF (18).

In the squamous cell carcinoma subtype of non-small cell lung 
cancers (SQCC NSCLC), most tumors carry mutations in TP53, 
RB1, and CDKN2A and in the oxidative pathway genes  
and NFE2L2. EGFR and ALK mutations, common in adenocar-
cinomas, are less frequent in SQCC of the lung and hence, agents 
developed for lung adenocarcinoma are less effective against 
lung SQCC. In adenocarcinoma patients, EGFR–TKI objective 
response rates, OS, and PFS are 66–74%, 19–21 months, and 9.4–
10 months (9) versus 25–27%, 13.48 months, and 3–5 months for 
SQCC (10, 11), respectively. Interestingly, SQCC differentiation 
genes such as SOX2 and TP63 (TP53 homolog) are commonly 
altered and mutually exclusive with loss-of-function mutations 
in NOTCH1 and NOTCH2. Other alterations include amplifi-
cation of EGFR, FGFR1, and PI3K pathways (19). Alternative 
approaches that target the tumor microenvironment using anti-
angiogenic therapies such as antibodies or small molecule inhi-
bitors aimed at the vascular endothelial growth factor (VEGF)  
or its receptor (VEGFR), were the first targeted agents to yield 
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a significant improvement in OS when combined with first-line 
chemotherapy for metastatic NSCLC. Anti-angiogenic treat-
ment however, also resulted in strong normal tissue toxi cities 
(20). Importantly, anti-angiogenesis inhibition combined with 
platinum chemotherapy does not improve outcome for squa-
mous NSCLC (21).

Remarkable PFS rates have been observed in advanced NSCLC 
using immune checkpoint inhibitors (e.g., nivolumab and ipili-
mumab) as first-line treatment, superior to chemotherapy in both 
squamous and non-squamous NSCLC (22). Checkpoint inhibi-
tors that target PD-L1/PD-1 and CTL-A4 receptors expressed on 
immune and tumor cells, block the antitumor adaptive immune 
response by suppressing the cytotoxic T-cell response. mAbs that 
block the interaction between PD-L1 and PD-1 (e.g., durvalumab) 
improve PFS [16.8 versus 5.6  months (placebo)], the response 
rate, and its duration (72.8 versus 46.8% 18-month response) in 
stage III unresectable NSCLC pre-treated with platinum-based 
chemotherapy (23, 24). There are still many factors that remain 
uncertain that would enable clinicians to determine the response 
to checkpoint inhibitors but a high mutation load creates 
immunogenic tumors and is strongly associated with response to 
checkpoint inhibitors (25). Unfortunately, most NSCLC patients 
do not respond to such immunotherapies despite expressing 
PD-L1, and the disease progresses, indicative of resistance to 
checkpoint inhibitors (26).

Better and more holistic approaches have been proposed 
showing that a “cancer mutation signature” is more predictive for 
treatment response than the individual mutation status (27). In 
KRAS-driven NSCLC, the signature—FOXRED2, KRAS, TOP1, 
PEX3, and ABL2—was more predictive for prognosis than the 
single mutation status of KRAS (28). An RNA-sequence-based 
prognostic model built with four genes (RHOV, CD109, FRRS1, 
and LINC00941) was statistically associated with worse OS and 
metastasis-free survival, and is able to stratify patients bearing 
KRAS or EGFR mutations versus their wild-type counterparts in 
OS outcome (29). Because lung cancer is a highly heterogene-
ous disease on the genetic, epigenetic and metabolic levels, it is 
perhaps not so surprising that personalized medical approaches 
targeting only one driver mutation improves OS but cannot 
increase cure rates.

LUNG CANCeR HeTeROGeNeiTY

Cancers are composed of mixed cell populations with diverse 
genotypic, epigenetic, phenotypic, and morphological char-
acteristics. Tumor heterogeneity is observed among different 
patients with the same tumor subtype (interpatient heteroge-
neity), among tumor cells within one host organ (intratumor 
heterogeneity), between the primary and the metastatic tumors 
(intermetastatic heterogeneity), and among tumor cells within 
the metastatic site (intrametastatic heterogeneity) (30). It was 
first exemplified in renal cancer that biopsies from primary 
and metastatic sites from the same patient showed extensive 
divergent and convergent evolution of driver mutations, copy 
number variations, and chromosome aneuploidy (31). It has 
been proposed for a long time now that these subclonal tumor 
populations, present at low frequency, contain clones with 

invasive and metastatic properties (32), and are able to escape 
the effect of systemic and targeted treatments, thus affecting 
clinical outcome. It is well understood that heterogeneity is not 
only determined by cell intrinsic mechanisms but also by the 
dynamic tumor microenvironment (e.g., angiogenesis, immune 
system, fibroblasts) (33). Lung cancer is also highly heterogene-
ous with respect to metabolic activity and blood perfusion at the 
macro-level as well as at the single-cell level (34, 35). Genome 
sequencing in NSCLC has identified hundreds of mutations pre-
sent in subclonal fractions that increase with tumor-grade (13, 
36), and in primary tumors, predict early postsurgical relapse 
(37). Smokers have 10-fold more mutations than non-smokers 
and distinct driver mutations (e.g., EGFR versus KRAS) (13, 14). 
Chromosomal instability, which is a driver of intratumor het-
erogeneity, is associated with anti-cancer drug resistance, and is 
associated with poor outcome in NSCLC. Tumor subclones have 
different actionable therapeutic targets explaining the variety of 
responses to targeted therapeutics (38, 39). In addition to the 
genetic and epigenetic heterogeneity, there is a high degree of 
heterogeneity in tumor metabolism which is highly dynamic 
and subject to changes in oxygen, nutrients and other tumor 
microenvironmental factors (35). Taken together, the different 
levels of heterogeneity in tumors are of high clinical relevance 
in tumor progression, treatment response, and relapse. One of 
the main genetic drivers of tumor heterogeneity are cancer stem 
cells which create and maintain a tumor cell hierarchy (40).

LUNG CSCs

Cancer stem cells were first identified in myeloid leukemias by 
Dick and colleagues. CSCs are tumor-initiating cells responsible 
for the cellular hierarchy maintained by means of self-renewal, 
and causing tumor heterogeneity, and are capable of multipotent 
differentiation (41). Tumor heterogeneity may also be due to the 
plasticity of CSCs which enables them to differentiate reversibly 
into different cell types under specific environmental conditions 
(42). Furthermore, differentiated cancer cells may be repro-
grammed to a more stem cell-like state under specific conditions 
(e.g., hypoxia induces OCT4 and NANOG) (43) and hence, 
contribute to recurrence. In addition, chromosomal instability 
together with external environmental factors, may lead to CSC 
heterogeneity and even to metastasis.

Cancer stem cells from NSCLC have the ability to form colonies 
in soft-agar, they are highly tumorigenic in vivo (44), and can be 
identified by virtue of Hoechst dye efflux (the side population, SP) 
using flow cytometric methods. CSCs express multidrug ATP-
binding cassette (ABC)-transporters and are resistant to multiple 
chemotherapeutic agents (45). One of the best characterized CSC 
markers for solid cancer, including NSCLC, is the CD133 cell sur-
face protein. CD133-expressing (CD133+) lung cancer cells are 
self-renewing tumor cells that express markers from embryonic 
stem cells, are present in low numbers in human NSCLC, but are 
highly tumorigenic. Moreover, when CD133+ CSC differentiate, 
their CD133− progeny is no longer tumorigenic (46). It seems 
plausible that combination therapy targeting dually and specifi-
cally stem cells and non-stem cells would be required to be suc-
cessful in, or at least be closer to, eradicating cancer (47). There 
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is now mounting evidence that the normal stem cell pathways 
such as WNT, NOTCH, and HH (Hedgehog) are deregulated and 
mutated in cancer and CSCs (48). NOTCH signaling plays a role 
in the maintenance of CSCs in different cancer types including 
T-cell acute lymphoblastic leukemia (T-ALL) (49), brain (50), 
breast (51), colon (52), and lung cancer (53).

THe CANONiCAL NOTCH SiGNALiNG 
PATHwAY

The NOTCH signaling pathway is a highly conserved cell-to-cell 
communication pathway between cells expressing the single pass 
transmembrane NOTCH receptor and neighboring cells express-
ing a transmembrane NOTCH ligand. It is a major cell fate deter-
mination pathway essential for embryonic development. In adult 
tissues, NOTCH signaling regulates tissue homeostasis through 
cell renewal, differentiation, proliferation, and cell death (54, 
55). The mammalian genome encodes for four NOTCH receptor 
genes (NOTCH 1–4) and five NOTCH ligands (JAGGED1, 2 or 
DELTA1, 3, and 4). NOTCH signaling begins at the cell surface 
and is highly regulated by the proteolytic cleavage of the NOTCH 
receptor. NOTCH receptors are transported to the cell surface as 
furin-cleaved heterodimers and ligand interaction initiates two 
consecutive proteolytic cleavages. The first proteolytic cleavage 
is executed by the ADAM10 metalloprotease, which cleaves the 
NOTCH ectodomain, and is followed by the intramembranous 
and rate-limiting cleavage by the γ-secretase complex (56).  
The γ-secretase liberates the NOTCH intracellular domain 
(NICD) from the cell membrane, and is then translocated to 
the nucleus where it binds to the DNA-bound protein CSL (also 
called RBP-Jk), and together with the Mastermind (MAML) 
co-activators, forms the NOTCH transcriptional complex. In the 
C-terminal end of the NICD, there is a proline/glutamic acid/
serine/threonine-rich motif (PEST) which is a substrate for the 
E3 ubiquitin ligase FBWX7, and targets NICD for proteasomal 
degradation when the signal needs to be shut down.

NOTCH regulates the transcription of genes of the HES and 
HEY family, CD25 and GATA3 (in T cells), negative regulators 
of NOTCH signaling (e.g., NRARP, DELTEX1), oncogenes like 
RAS, CYCLIN D1, P21/WAF1, and C-MYC, among many others 
(57). NOTCH signaling has been found deregulated in multiple 
human diseases, and recently, there is growing evidence support-
ing the role of NOTCH signaling in the development and progres-
sion of cancers (58). Gain-of-function mutations are a hallmark 
in T-ALL (59), but overexpression and mutations in NOTCH 
receptors members are found at lower frequencies in many other 
leukemias and solid cancers. A recent review summarized the 
involvement of NOTCH signaling in all acquired capabilities of 
cancer cells, already defined by Hanahan and Weinberg as the 
hallmarks of cancer (60, 61).

NOTCH iN A PHYSiOLOGiCAL AND 
PATHOLOGiCAL CONTeXT iN THe LUNG

NOTCH receptors and ligands are expressed during early lung 
development and control cell fate specification and branch-
ing along the proximal-distal axis (62, 63). NOTCH blockade 

reduces the number of SOX2 progenitors and alters the balance 
between basal, ciliated, neuroendocrine, and secretory cell 
fates in the airway epithelium (64, 65). In the postnatal lung, 
NOTCH restricts basal cells to the secretory cell fate suppressing 
ciliated differentiation (66). NOTCH signaling is also required 
to maintain the differentiated state of secretory cells in the upper 
airways and blocking NOTCH-JAGGED1/2 signaling leading to 
transdifferentiation of club cells into ciliated cells (67). NOTCH2 
regulates differentiation of lineage-restricted progenitors into 
bronchial club cells and ciliated cells as well as contributing to 
alveolar morphogenesis and integrity of epithelial and smooth 
muscle layers of airways (68, 69). NOTCH1/3 contribute addi-
tively to regulate pulmonary neuroendocrine cell fate (68). While 
NOTCH1 is dispensable for airway epithelial development upon 
lung epithelial injury, NOTCH1 is essential to induce club cell 
regeneration by activating its downstream targets HES5 and 
PAX6 (70).

Deregulation or mutation of NOTCH receptors, ligands, and 
signaling regulators is associated with pathogenesis of many 
hematological and solid tumors including lung cancer (60). In 
T-cell leukemias, NOTCH1 activating mutations occur in 60% of 
cases. Many human lung cancer cell lines (20%), and primary lung 
cancers, harbor missense or non-sense mutations in one of the 
NOTCH receptors (71). Translocations involving NOTCH3 were 
first identified in NSCLC (72), are found overexpressed in 30% of 
NSCLC, and are strongly correlated with EGFR expression (73). 
Gain-of-function mutations in NOTCH1 or loss of the negative 
NOTCH regulator NUMB have been identified in up to 30% of 
adenocarcinomas and are correlated with poor prognosis. Loss 
of NUMB is also correlated with higher NOTCH activity, and in 
tumors with wild-type TP53, NOTCH1 expression was associ-
ated with worse outcome (74). Furthermore, high expression of 
NOTCH1 and NOTCH3 receptors, ligands, and target genes is 
correlated with worse survival in resected NSCLC (53, 75, 76). 
Other studies have shown conflicting data on the role of NOTCH1 
expression and its influence on the outcome in NSCLC (77, 78). It 
must be noted, however, that lung cancers were not sub-classified 
into adenocarcinoma and squamous carcinoma in all studies. A 
meta-analysis confirmed positive correlations of NOTCH1 and 3 
expressions with progression and worse OS in adenocarcinoma 
(but not in lung SQCC) (79). For the NOTCH ligand DLL3 and 
the target gene HES1, significant associations between expression 
and worse OS have been found in adenocarcinoma (53, 76, 79). In 
addition to its oncogenic role, inactivating mutations in NOTCH 
receptors has also been associated with squamous cancers of the 
skin, head and neck, and lung (80). The tumor suppressive role of 
NOTCH in epidermal differentiation was first identified in mice 
with keratinocyte-specific loss of Notch1 which developed skin 
carcinoma (81). More recently, sequencing analysis has identified 
missense and non-sense mutations in SQCC in NOTCH1 or 2 
that suggest a loss of function (82, 83), but no loss-of-function 
mutations have been reported for NOTCH ligands or target genes.

ONCOGeNe ADDiCTiON AND 
TReATMeNT ReSiSTANCe

In 2002, Weinstein proposed a potential Achilles heel of can-
cer which he referred to as oncogene addiction, whereby the 
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expression of oncogenes is not only required for the initiation 
of tumorigenesis but also for the maintenance of the malignant 
phenotype (84). This concept was coined based on findings from 
preclinical studies in which tumors regressed when C-MYC, 
KRAS, TP53, and other commonly mutated oncogenes that were 
used to initiate the tumors, were turned off. Unfortunately, two 
decades later, there are still no clinically approved therapeutics 
against MYC, RAS, or TP53. To date, the only pharmacological 
proof of oncogene addiction in patients is in chronic myelogenous 
leukemia were tumors regress and are cured upon targeting the 
BCR-ABL fusion gene with the small molecule inhibitor serine/
threonine kinase inhibitor gleevec. To survive, tumor cells evolve 
by either promoting the emergence of new tumor clones that are 
no longer dependent on the initial activating oncogene (primary 
resistance), or by developing mutations (of the drug target or 
downstream activating mutations) that make tumors that were 
initially responders, insensitive to monotherapy treatment (sec-
ondary resistance). For example, during anti-EGFR treatment 
(e.g., cetuximab) of metastatic colorectal cancer, KRAS-mutant 
cells can be identified in the blood of patients while tumors are 
still regressing (85). Despite the paramount clinical success of 
gleevec, resistance also develops by acquisition of mutations in 
the binding site of gleevec (86). It is evident that monotherapies 
of the currently-used targeted agents will not lead to cancer 
cure, therefore, combination of therapies is required. Given the 
important role of NOTCH signaling in CSCs and its frequent 
involvement in NSCLC, we asked ourselves whether NOTCH-
based therapy combined with systemic chemotherapy or targeted 
agents was a promising path to pursue.

NOTCH-ReLATeD ReSiSTANCe TO 
CHeMOTHeRAPY

Platinum-Based Drugs (Cisplatin, 
Carboplatin)
Platinum-based drugs bind covalently to DNA thereby interfering 
with replication, particularly in fast-growing cells, and prompt 
activation of DNA-damage recognition and repair mechanisms 
leading to cell cycle arrest or apoptosis when repair is not effec-
tive. In vitro and in  vivo studies show that cisplatin enriches a 
subpopulation of NOTCH-regulated CD133-expressing stem-
like lung cancer cells that cause cross-resistance to paclitaxel and 
doxorubicin by upregulation of ABC drug transporters: ABCG2 
and ABCB1 (also called MDR-1 or P-glycoprotein) (87). Besides 
CD133 expression, NSCLC cells expressing CD44, NANOG, 
OCT4, SOX2, and ALDHA1 were shown to be resistant to cisplatin 
through NOTCH3-mediated activation of autophagy (88). Lung 
CSCs downregulate AQP2 and CTR1 drug transporter genes, 
consequently leading to reduced drug uptake and intracellular 
accumulation, increased DNA damage, and resistance to treat-
ment. Moreover, these cells display an increased ability to repair 
cisplatin-induced DNA intrastrand cross-links via activation of 
nucleotide-excision and mismatch repair pathways (89).

Cisplatin-resistant stem-like cells also display upregulated 
epithelial-to-mesenchymal transition (EMT) markers (90).  
EMT is physiologically important during embryogenesis and 

it involves the loss of cell-to-cell junctions, loss of epithelial  
(e.g., E-cadherin/CDH1) and gain of mesenchymal markers (e.g., 
N-cadherin and Vimentin). Pathologically, it is involved in tumo-
rigenesis, metastasis and therapeutic resistance. NOTCH induces 
EMT via activation of transcription factors including TWIST, 
SNAIL, SLUG, and ZEB (91). In addition, NOTCH expression 
has been shown to be regulated by certain growth factors involved 
in EMT including fibroblast growth factor (FGF) and platelet-
derived growth factor (PDGF) (92).

Poor prognosis of NSCLC patients with activated NOTCH 
signaling (either by NOTCH receptor activating mutations or loss 
of NUMB repressor) has been associated with absence of muta-
tions in the tumor suppressor protein TP53 (74). Aberrantly high 
TP53 expression before the start of treatment is associated with 
strong histopathological responses (e.g., necrosis and fibrosis) to 
cisplatin, and it has been reported that in only 13% of the cases, 
there is an alteration of TP53 expression levels before and after cis-
platin treatment in stage IIIA NSCLC (93). Interestingly, NUMB, 
a suppressor of NOTCH, forms a tri-complex with TP53 and its 
ubiquitin ligase HDM2 to prevent ubiquitination and consequent 
TP53 degradation (94). Therefore, in cancers with loss of NUMB, 
such as some breast cancers and lung adenocarcinomas, there is 
an increase in NOTCH receptor and a decrease in TP53 protein 
expression levels thus enhancing chemoresistance. In addition, 
CSL/RBP-Jĸ, a DNA binding protein that mediates NOTCH tran-
scriptional activation, can be negatively regulated by TP53 which 
in turn can decrease CSL expression as feedback inhibition (95). 
There is evidence that NOTCH3 signaling in ovarian cancer is 
also predictive for platinum resistance (96). NOTCH3 signaling 
is active in drug-resistant CSCs and NOTCH3 inhibition induces 
chemosensitivity to platinum-based drugs. The preclinical and 
clinical data here discussed suggests that not only platinum-
sensitive but also platinum-resistant cancers may benefit from 
NOTCH targeting. However, whether NOTCH targeting induces 
platinum sensitivity or not, in NSCLC patients, is not known.

Microtubule-Targeting inhibitors  
(Taxanes, vinca Alkaloids)
Taxanes (docetaxel and paclitaxel) and vinca alkaloids (vinblas-
tine, vincristine, and vinorelbine) interfere with microtubule 
function by preventing either depolymerization (taxanes) or 
microtubule formation (vinca alkaloids), and ultimately blocking 
cell cycle progression through mitosis. Overexpression of ABC 
drug transporters (ABCB1/MDR-1/P-gp) mediates resistance 
toward taxanes and vinca alkaloids, and is a common feature of 
human cancer including NSCLC (97). The microRNA miR-451 is 
a direct regulator of the multidrug resistance 1 (MDR-1) protein. 
Overexpression of miR-451 induces chemosensitivity while miR-
451 loss induces taxane resistance in NSCLC. NOTCH1, through 
the activation of AP1, an early transcription factor necessary for 
progression through G1 phase, downregulates miR-451. NOTCH 
blockade using gamma-secretase inhibitors (GSIs) increases 
miR-451 and reduces MDR-1 thereby sensitizing tumors to 
taxane-based treatment (98). In docetaxel-resistant lung cancer 
cell lines, miR-451 is downregulated. This is turn, causes MYC/
ERK-dependent inactivation of glycogen synthase kinase 3 (GSK-
3β), Snail activation, and EMT (99). Whether the EMT-induced 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


6

Sosa Iglesias et al. NOTCH Targeting in NSCLC

Frontiers in Oncology | www.frontiersin.org July 2018 | Volume 8 | Article 267

docetaxel resistance in these models is reversible or not, by 
blocking NOTCH, is not yet known. In a recent study, a small 
molecule γ-secretase inhibitor, BMS-906024, sensitized NSCLC 
cell lines to paclitaxel, and both drugs synergized preclinically by 
targeting the paclitaxel-induced increase in NOTCH1, especially 
in cell lines with a KRAS and BRAF wild-type background versus 
their mutant counterparts, in a TP53-dependent manner (100).

Factors from the immune system, the stroma, and from cancer 
cells, secreted by paclitaxel-resistant lung adenocarcinoma cells, 
contribute to acquire drug resistance by promoting cell proliferation 
and esca ping apoptosis. However, the secretion of some of these 
cell-growth promoting factors is reduced when glucose is deprived. 
It has been shown that FOXO3a promotes cross-resistance (e.g., 
to 5-fluorouracil and cisplatin) via glycolysis-mediated ABCB1 
upregulation. Suppression of the cellular energy supply by 
targeting glycolysis may alternatively overcome acquired drug 
resistance (101). Genes encoding proteins involved in glucose 
uptake, glycolysis, lactate to pyruvate conversion, and repression 
of the tricarboxylic acid cycle are direct transcriptional targets of 
NOTCH signaling. NOTCH upregulation in breast cancer cells 
leads to increased glycolysis through activation of the PI3K/AKT 
pathway, whereas endogenous NOTCH signaling decreases mito-
chondrial activity and induces glycolysis in a TP53-dependent 
manner (102).

In addition, NOTCH signaling also cross-talks with HIF-1α,  
an important glycolysis regulator (103), through physical inter-
action with N1 ICD under hypoxia, upregulating NOTCH 
down stream targets (HES1, HEY2 mRNA) and preventing 
 differentiation in cortical neural stem cells thus maintaining 
stemness (104, 105). Hypoxia (≤2% O2) can induce multidrug 
resistance (e.g., to cisplatin, carboplatin, paclitaxel, and gem-
citabine) in NSCLC via upregulation of ABCB1 and EGF-like 
domain 7, an endothelial secreted factor that regulates vascular 
tube formation (89). Microtubule-targeting agents shift the bind-
ing of HIF-1α from actively translating polysomes to inactive 
ribosomal sub units as for HIF-1α mRNA translation requires 
active transport on interphase microtubules (106). HIF-1α can 
also be upregulated and stabilized in an oxygen-independent 
manner by oncogene signaling through the PI3K/AKT and 
MAPK/ERK/RAS pathways; both of which are found mutated 
in human NSCLC. NOTCH1 activates AKT-1 via PTEN repres-
sion and induction of the insulin-like growth factor 1 receptor 
(IGF-1R) in lung adenocarcinoma during hypoxia (107). The 
interaction between the NOTCH and hypoxia/HIF pathways 
thus connects two cancer vulnerabilities. Therefore, changes 
in the tumor microenvironment that alter energy metabolism, 
or requirements of tumor cells, could be exploited as targets to 
increase drug sensitivity using NOTCH-based therapies.

etoposide
Topoisomerase II enzymes are important in DNA unwinding, 
strand excision, and re-ligation during replication, and cell cycle 
checkpoint activation after DNA damage. Etoposide is a topoi-
somerase II inhibitor and induces cell cycle arrest and apoptosis. 
Etoposide resistance in NSCLC has been partly attributed to 
NF-κB-mediated ABCB1 drug transporter expression (108). 
Upregulation of NF-κB signaling, through loss of TP53 and KRAS 

mutations, is found in different cancers including lung adenocar-
cinoma (109). NF-κB has been shown to function downstream 
of NOTCH and facilitates NOTCH target gene expression and 
tumor formation in pancreatic and T-ALL models (110–112). 
Conversely, in breast CSCs, NF-κB upregulates JAGGED1 
expression and activates NOTCH signaling (113). Also, in glio-
blastoma multiforme, NF-κB/STAT3 signaling pathway regulates 
the activation of the NOTCH pathway (114). Etoposide resistance 
may occur via the 5′-tyrosyl DNA phosphodiesterase (TDP2), a 
transcriptional target of mutant TP53 that repairs topoisomerase-
mediated DNA damage (115). As opposed to normal lung patient 
tissue, 58.5% of cancer tissues that stained positive for TP53 were 
also positive for TDP2 (116). Although no direct link between 
TDP2 and NOTCH has yet been found in NSCLC, NUMB might 
have a role based on its involvement in TP53 degradation (94).

Pemetrexed
Pemetrexed inhibits thymidylate synthase, dihydrofolate 
reductase, and glycinamide ribonucleotide formyltransferase, 
enzymes involved in folate metabolism, purine and pyrimidine 
synthesis necessary for DNA and RNA synthesis. Pemetrexed and 
cisplatin are often administered concomitantly and have good 
OS outcomes in non-squamous NSCLC as first-line therapy (21, 
117) but treatment resistance is common. Pemetrexed treatment 
induces replicative stress in the form of single strand breaks, that 
if they are not repaired, will lead to the formation of double strand 
breaks. Cisplatin on the other hand, induces mainly intrastrand 
DNA cross-links which need nucleotide-excision repair pathways 
to be repaired, dependent on the availability of a great number 
of nucleotides. Pre-treatment with pemetrexed with sequential 
cisplatin administration results in additive/synergistic effects in 
NSCLC cells (118, 119). Interestingly, the surviving clones to 
sequential pemetrexed-cisplatin treatment frequently undergo 
EMT conversion and are enriched for CSCs (CD133, CD44, 
NANOG, and OCT4B mRNA upregulation). Blocking EMT with 
a natural flavonoid, such as kaempferol, overcomes resistance to 
anti-folate therapy in NSCLC (120). Based on its role in EMT 
induction and CSC maintenance, targeting NOTCH signaling in 
NSCLC might be an interesting option to overcome pemetrexed 
resistance.

Gemcitabine
Gemcitabine is an anti-metabolite analog of deoxycytidine that  
is incorporated into DNA and blocks DNA replication. Gemci-
tabine treatment in lung cancer cell lines induces an increase in 
Beclin-1-mediated autophagy activation (121, 122). Inhibition of 
autophagosome formation using 3-methyladenine, an inhibitor 
of PI3K, in gemcitabine-resistant lung cancer cells, increases 
the expression of apoptotic mediators (121, 122). NOTCH3 is 
upregulated in patients with gemcitabine resistance and its 
knock-down reduces autophagy (LC3-II expression), colony 
and sphere  forming ability in lung cancer cell lines (88). Since 
NOTCH signaling also regulates PI3K/Akt signaling, NOTCH 
inhibition could lead to similar effects as those obtained with 
3-methyladenine. Both in lung and pancreatic tumor models, 
NOTCH inhibition with GSI or mAbs targeting NOTCH2/3 (e.g., 
tarextumab) sensitizes tumors to gemcitabine (123, 124).
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NOTCH-ReLATeD ReSiSTANCe TO 
TARGeTeD THeRAPieS

eGFR inhibitors
Epidermal growth factor receptor mutations occur in ~10–25% of 
lung adenocarcinoma patients and these patients benefit, at least 
initially, from neutralizing treatment with mAbs (e.g., cetuximab 
and necitumumab) and from TKI (e.g., erlotinib, gefitinib, and 
afatinib) (16). Often, resistance to TKI occurs via mutation of 
EGFR (e.g., T790M or S492R), oncogenic shift (MET amplifica-
tion, HER2 upregulation, and KRAS activation), impairment of 
apoptosis (e.g., BH3 domain deletions of BIM), and EMT conver-
sion (125). Some patients could regain sensitivity to TKI after 
discontinuing TKI treatment (126). The EGFR T790M mutation 
occurs in 62% of the patients with acquired resistance and has 
fueled the development of second and third generation TKI  
(e.g., Osimertinib/AZD9291) which was FDA-approved for EGFR 
T790M positive NSCLC patients (127). However, resistance 
against AZD9291 has already been described via an alternative 
mutation: EGFR C797S (128).

Erlotinib treatment of EGFR mutated and wild-type NSCLC 
enriches ALDH-expressing (ALDH+) stem-like cells in a 
NOTCH3-dependent manner, increases cell death of ALDH− 
cells, and increases pulmosphere-forming potential (129). Con-
comitant treatment with GSI and erlotinib reduces the ALDH+ 
subpopulation of cells in EGFR-mutated cell lines (129). In 
addition, expression of NOTCH1 and HES1 were found to be 
upregulated in gefitinib-resistant lung cancer, which could be 
reversed by NOTCH inhibition thus resulting in increased apop-
tosis (130). Moreover, dual targeting of EGFR and NOTCH2/3 
with the CT16 antibody reduces EGFR–TKI-induced ALDH+ 
and RT-induced CD133+ stem cell subpopulations, the EGFR/
RT-induced EMT gene signature, and expression of DNA 
repair genes. Combination of CT16 with RT prevents tumor 
regrowth of mouse xenografts. However, CT16 was not effective 
in treating cetuximab-/erlotinib-resistant cell lines (131). Other 
studies have shown that there is a differential response to GSI 
treatment depending on the EGFR status. NSCLC cell lines with 
undetectable EGFR protein levels are more sensitive to GSI 
treatment since both autophagic and apoptotic machineries are 
activated (132). EGFR T790M TKI-resistant NSCLC frequently 
has high IGF-1R expression levels. EGFR heterodimerizes with 
IGF-1R, preventing gefitinib-induced apoptosis (133). In cells 
overexpressing IGF-1R, combination treatment of IGF-1R inhibi-
tors and EGFR TKIs (e.g., linsitinib and gefitinib, respectively) 
inhibits proliferation, increases apoptosis, and attenuates VEGF 
production in NSCLC cells (134). In addition, VEGF expression 
was found to be upregulated in EGFR-mutated lung adenocarci-
nomas which additionally increases cell survival via activation of 
AKT and STAT5 pathways (135). NOTCH1 is known to upregu-
late IGF-1R and its inhibition sensitizes cells to GSI-induced cell 
death under hypoxic conditions (107). VEGF upregulation could 
potentially be targeted through NOTCH-blockade-induced 
IGF-1R inhibition.

NOTCH activation stimulates endothelial-to-mesenchymal 
transition (EndMT) by downregulating endothelial markers (e.g., 
vascular endothelial cadherin, platelet endothelial cell adhesion 

molecule-1, endothelial NO synthase, and Tie1/2), upregulating 
mesenchymal markers [e.g., α-smooth muscle actin, fibronectin, 
and platelet-derived growth factor (PDGF) receptors] and 
migration toward PDGF-BB (136, 137). EndMT increases the 
production of cancer-associated fibroblasts (CAF), known to 
contribute to tumor progression and treatment resistance (138, 
139). Podoplanin-expressing CAF have shown to be implicated 
in the primary resistance in NSCLC to EGFR TKI (140).

ALK inhibitors
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase recep-
tor which belongs to the insulin receptor family. The ALK 
receptor can undergo various rearrangements which have been 
estimated to occur in 3–7% of NSCLC patients. Currently, there 
are three targeted agents approved for clinical use: crizotinib, 
ceritinib, and alectinib. Phase I trials with crizotinib led to 
promising results; however, most patients develop resistance 
to crizotinib within 12 months due to de novo ALK mutations  
(e.g., C1156Y, L1196M, G1269A, and L1152R), ALK gene ampli-
fication or alternative mechanisms such as EMT or upregula-
tion of P-glycoprotein (17). Although the next  generation ALK 
inhibitor alectinib (CH5424802) has shown efficacy in NSCLC 
(141), hypoxia was found to induce resistance to ALK inhibitors 
crizotinib and alectinib in lung adenocarcinoma by inducing an 
EMT phenotype (142). Resistance to ALK inhibitors in NSCLC 
is mediated by mechanisms previously described to be associ-
ated with NOTCH signaling.

Angiogenesis inhibitors
Anti-angiogenic therapy aims at normalizing vasculature in 
tumors to improve blood flow and drug delivery. This can be done 
either by targeting VEGF (e.g., bevacizumab or ramucirumab), 
by targeting the DLL4 NOTCH ligand (e.g., enoticumab, dem-
ci zumab, or MEDI0639) or simultaneously (e.g., HD105). 
Mono therapy regimens with anti-VEGF inhibitors results in 
approximately 70% reduction in vasculature density and arrests 
blood flow (143). The surviving fraction of endothelial cells are 
characterized by reduced VEGFR2 and 3 reversible expression, 
and interstitial fluid pressure due to vasculature normalization, 
enabling better drug delivery to the tumor (144). Moreover, these 
cells show intrinsic and/or acquired resistance due to upregula-
tion of alternative proangiogenic signals (e.g., FGF, PDGF, and 
TNF-α) and increase in local hypoxia (145, 146). DLL4 NOTCH 
ligand is partially dependent on VEGF signaling for its expres-
sion in lung tumor vessels (147). Blockade of DLL4 in glioma 
and breast tumors delays tumor growth even in those tumors 
that are resistant to anti-VEGF therapy (147). Dual targeting of 
DLL4 and VEGF, using the bispecific antibody HD105, inhibits 
tumor progression of lung adenocarcinomas and gastric cancers 
(148). Studies with mouse tumor cells however, have shown that 
overexpression of endothelial specific-DLL4/NOTCH signaling 
in Lewis lung carcinoma xenografts reduces primary tumor 
growth by reducing VEGF-induced endothelial proliferation, 
tumor vessel density and overall tumor blood supply. On the 
other hand, tumor vascular maturation and functionality was 
improved, and thus, drug delivery was enhanced and metastasis 
suppressed (149).

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


TABLe 1 | Outcome for preclinical trials in non-small cell lung cancer with GSIs as monotherapy or in combination with other chemotherapeutics or targeted agents.

Treatment Outcome Reference

GSi Combination

DAPT SA  ✓ Least effective clinical GSI in cleaving NOTCH receptors
 ✓ NOTCH1 gain-of function/loss of function NUMB mutations: sensitive
 ✓ ↑ G1/G0 and G2/M arrest
 ✓ ↓ ALDH+ cells with ↑ NOTCH 1/2/3, HEY1/2 and HESl
 ✓ EGFR low/wt cells: ↓ proliferation GO/G1 arrest, ↑ Beclin-1
 ✓ Reverts NOTCH-induced EMT phenotype

(74, 98, 132, 155, 156)

Cisplatin
Paclitaxel
Doxorubicin
Docetaxel  
Gefitinib
Pterostilbene

 ✓ ↑ P-c-Jun, ↑ AP-1-regulated miR-451, ↓ MDR-1
 ✓ Cisplatin-treated cells with ↑ drug transporters: sensitive
 ✓ ↓ Viability of cisplatin-resistant CD133+ cells
 ✓ Gefitinib-resistant cells: ↑ NOTCH1, HES1, and cyclin D1, ↓ P21 WAF1/CIP1
 ✓ GSI + cisplatin/docetaxel/gefitinib: in vivo chemosensitization, ↑ G2/M arrest, ↓  
proliferation, ↑ apoptosis

 ✓ GSI + Pterostilbene: ↓ tumor growth in vivo, ↓ pterostilbene-mediated ↑NICD, HES1  
and ↓ PI3K/AKT, cyclin D1, survivin, DNA-PK, P-mTOR, P-S6 ribosomal protein

(87, 98, 130, 157,  
158, 159)

MRK-003 SA  ✓ NOTCH1 gain-of function/loss of NUMB mutations: sensitive
 ✓ ↓ Tumor formation in H1299 stem-like cells expressing ↑ NOTCH 2/4, HES1, HEY1  
resistant to cisplatin/docetaxel, rescued by N1/2 ICD (not N3 ICD) in sphere formation

 ✓ ↓ NOTCH1-mediated ↑ IGFR-1-mediated AKT-1 expression by ↓ PTEN under hypoxia  
and ↑ apoptosis under hypoxia

 ✓ ↓ NOTCH3: ↓ growth and ↑ tumor apoptosis via ↓ p-ERK, p-BCL-2, BCL-Xl and ↑BIM,  
BAX, p-BAD proteins

(53, 74, 107, 160)

Docetaxel
Dominant neg. IGFR-1
Erlotinib

 ✓ GSI + docetaxel: ↓↓ tumor growth
 ✓ IGF-1R sensitizes cells to GSI-induced apoptosis
 ✓ GSI + erlotinib: ↑ ERK-regulated ↑ BIM and ↓ tumor growth

(53, 74, 107, 160)

PF-3084014 SA  ✓ Preferentially ↓ NOTCH2, but also other NOTCH receptors, SPPL2b, APPC100, and APP (155)

Erlotinib  ✓ ↓ ALDH+ NOTCH3-dependent cells in EGFR-mutated cell lines
 ✓ EGFR negatively regulates NOTCH activity via its TK activity

(129)

RO4929079 SA  ✓ Preferentially ↓ NOTCH1 followed by NOTCH2/3, SPPL2b and APPC100 (155)

Erlotinib  ✓ ↓ miR-223, CD44+ erlotinib-resistant cells
 ✓ ↑ FBXW7 and reverses erlotinib-resistance

(161)

BMS-708163 SA  ✓ ↓ NOTCH1, HES1, PI3K, and AKT (but not mTOR) and Ki67
 ✓ ↑ G1 arrest, active caspase 3 and PARP

(162)

Gefitinib  ✓ ↓ 3D colony growth, Ki67, gefitinib-resistant tumor xenograft growth
 ✓ ↑ Cytotoxicity and apoptosis

LY-685458 SA  ✓ ↓ NOTCH, DLK1-induced ↑ MMP9 expression, invasion (163)

LY-411575 DDR1 inhibitor 7rh  ✓ Additive tumor growth delay of KRAS-driven (including TP53-null) PDX NSCLC and ↑ apoptosis
 ✓ Similar therapeutic efficacy to cisplatin/paclitaxel, but displayed coagulative necrosis, ↓ p-AKT  
and p-p38

(164)

GSI XX YC-1 HIF inh
RT

 ✓ RT-induced HIF-1α ↑ NOTCH3 under hypoxia (reversed by YC-1)
 ✓ GSI XX 24 h post YC-1 + 8 Gy: strongest tumor growth delay in vivo

(165)

GSI? Cisplatin
ABT-737 (BH3-only 
mimetic)

 ✓ ↓ NOTCH3: ↓ the cisplatin-mediated ↑ in spheroid forming efficiencies, LC3 and ↓ ALDHA1, CD44
 ✓ GSI + ABT-737: synergistic ↓ proliferation, tumor growth in vivo and ↑ BIM and cleaved PARP

(88, 166)

SA, single agent; ↑, increase/upregulated; ↓, decrease/downregulated; GSI, gamma-secretase inhibitor; GSI?, unspecified GSI; RT, radiotherapy; neg., negative; EGFR, epidermal 
growth factor receptor; IGF-1R, insulin-like growth factor 1 receptor; DDR1, discoidin domain receptor 1; SPPL2b, signal peptide peptidase-like 2b; APPC100, C-terminal 100 amino 
acids of amyloid precursor protein; APP, amyloid precursor protein; PI3K, Phosphoinositide 3-kinase; PARP, poly ADP-ribose polymerase 1; DLK1, delta-like non-canonical NOTCH 
ligand 1; MMP9, matrix metallopeptidase 9.
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KRAS-Driven Tumors
KRAS mutation is the most frequent oncogenic mutation (25%) 
in non-squamous NSCLC but no targeted therapies are available 
for clinical use. Several strategies are being tested in clinical tri-
als including MEK inhibitors, focal adhesion kinase inhibitors, 
cyclin-dependent kinase inhibitors, and heat shock protein 90 
inhibitors (150). In multicentric trials, selumetinib, an inhibitor 

of MEK1/MEK2 downstream of KRAS, showed no improved 
PFS despite extensive preclinical evidence (151). A retrospective 
study suggested that patients with KRASG12C tumors, prone to 
activate the RAS-like pathway, display shorter PFS in response 
to  pemetrexed, while patients with KRASG12D tumors, prone 
to activate the PI3K pathway, show short PFS in response to 
gemcitabine (152). Given that NOTCH signaling is involved in 
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TABLe 2 | Outcome for preclinical trials in non-small cell lung cancer with mAbs or natural NOTCH inhibitors (inh) alone or in combination with other chemotherapeutics 
or targeted agents.

Treatment Outcome Reference

NOTCH-based Combination

mAb CT16 (anti-EGFR and anti-
NOTCH 2/3)

SA  ✓ ↓ Tumor-initiating capacity upon reimplantation, tumor growth 
and reversal of EMT phenotype

 ✓ Cetuximab and erlotinib-resistant cell lines: not effective

(131)

RT  ✓ ↓ RT-enriched CD133+, EGFR inh-enriched ALDH+
 ✓ ↓ The RT-induced EMT (upregulated in CD133+ but not  
in ALDH+ cells) and DNA repair genes

 ✓ Prevented tumor regrowth, delayed acquired resistance  
to EGFR inhibitors

(131)

Tarextumab (anti-NOTCH 2/3) SA  ✓ ↓ Tumor-initiating capacity upon reimplantation (131)

Erlotinib
Cetuximab

 ✓ Additive effect on NOTCH3+ NSCLC PDX

HD105 (anti-DLL4 and 
anti-VEGF)

SA  ✓ ↓ Cell proliferation, vessel sprouting and ↑ apoptosis
 ✓ ↓ Tumor progression in vivo

(148)

Murine anti-DLL4 SA  ✓ ↑ CD31+ tumor vessel density
 ✓ ↑ Thin and more branched vessels

(148)

Murine anti-VEGF antibody  ✓ ↓ Tumor vessel density and functionality

Demcizumab (anti-DLL4) Abl, Src, c-Kit, and DDR1  
inh. Dasatinib

 ✓ Durable and better therapeutic efficacy than cisplatin/paclitaxel  
in orthotopic PDX KRAS-driven lung adenocarcinomas

(164)

Natural inh Nobiletin (citrus peels) SA  ✓ ↑ miR-200b under hypoxia
 ✓ ↓ NOTCH1, JAGGED1/2, HES1 and HEY1 (but not  
NOTCH2/3, nicastrin: presenilin 1/2 and APHl) independent  
of gamma-secretase, ↓ invasion in Matrigel

 ✓ Reversal of hypoxic-induced EMT phenotype

(167)

Delta-tocotrienol (blueberries) SA  ✓ ↓ NOTCH1, colony formation and invasiveness
 ✓ ↑ miR-34a G0–G1 arrest, apoptosis via TP53 activation

(168)

Cisplatin  ✓ Potentiates antitumorigenic effect
 ✓ ↑ NF-κB DNA binding activity
 ✓ ↓ NOTCH1, HES1, Bcl-2, cleaved caspase-3 and PARP

(168)

Curcumin (ginger and other 
plants)

SA  ✓ ↓ NOTCHl by ↓ EZH2 via miR-let7c and miR-101
 ✓ Delays tumor growth and prevents metastasis

(121)

Delphinidin (berries) Bilberry anthocyanidins  ✓ ↓ Cell proliferation and migration: ↓ NF-κB, NOTCH1, β-catenin, 
c-MYC, MMP9, Cyclin D1 and B1

 ✓ ↑ G2/M arrest, apoptosis
 ✓ ↓ Tumor growth in vivo

(169)

SA, single agent; ↑, increase/upregulated; ↓: decrease/downregulated; NSCLC, non-small cell lung cancer; RT, radiotherapy; EGFR, epidermal growth factor receptor; DDR1, 
discoidin domain receptor 1; PDX, patient-derived xenograft; VEGF, vascular endothelial growth factor; EMT, epithelial–mesenchymal transition; PARP, poly ADP-ribose polymerase; 
EZH2, enhancer of zeste homolog 2; APH1, anterior pharynx-defective 1; MMP9, matrix metalloprotease 9; mAbs, monoclonal antibodies.
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GSIs prevent NOTCH receptor activation by blocking the 
rate-limiting step in NOTCH activation: the intramembranous 
cleavage by presenilin containing the γ-secretase enzyme. 
MAbs against the negative regulatory region of NOTCH, the 
ligand-binding EGF repeats in NOTCH extracellular domain, 
or the NOTCH ligand DLL4 in endothelial cells, block NOTCH 
signaling at different steps in the signaling cascade. Synthetic, 
stabilized, cell-permeable blocking peptides have been designed 
mainly to interfere with the formation of NOTCH–CSL–MAML 
activation complex. Natural, non-toxic compounds have gained 
interest since they have been shown to be associated with 
decreased cancer risk in lung cancer (154). Moreover, certain 
non-toxic agents including delta-tocotrienol (in blueberries), 
curcumin (in curcuma longa used as flavoring agent), and 

the activation of both the RAS and PI3K signaling pathways, 
therapies targeting NOTCH in KRAS-driven tumors could be a 
promising strategy. In in vitro and in in vivo preclinical NSCLC 
models, GSI can increase paclitaxel sensitivity, particularly in 
KRAS-wild-type NSCLC, suggesting that KRAS/BRAF muta-
tion status may predict combined efficacy of GSI with paclitaxel 
(100). Moreover, other studies have shown that GSI can suppress 
KRAS-driven NSCLC partly by suppressing ERK/MEK signaling 
by activating ERK phosphatase DUSP (153).

NOTCH TARGeTiNG iN NSCLC

There are several approaches to block NOTCH signaling which 
include GSIs, mAbs, blocking peptides, and natural compounds. 
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TABLe 3 | Comparison between preclinical in vivo doses of NOTCH-targeted 
agents used for non-small cell lung cancer treatment.

Treatment Preclinical dose Reference

Type Name

GSI DAPT 8 mg/kg ip 3 days/week or l0 mg/kg 
ip once every 3 days * 6 injections

(130, 159)

MRK-003 150 mg/kg 3 days/week (160)

BMS-708163 10 mg/kg po 5 days/week (162)

LY-411575 3 mg/kg po daily (164)

GSI XX 200 µg/kg ip 3 days/week * 2 cycles (165)

GSI? 200 µg/kg ip 3 days/week * 2 cycles (166)

mAb CT16 (anti-EGFR 
and anti-NOTCH 
2/3)

40 mg/kg (131)

Tarextumab (anti-
NOTCH 2/3)

40 mg/kg (131)

HD105 (anti-DLL 4 
and anti-VEGF)

3.25 mg/kg ip 1–2 days/week or 
6.5 mg/kg ip 1 day/week

(148)

Murine anti-DLL4 2.5 mg/kg ip 1–2 days/week (148)

Demcizumab 
(anti-DLL4)

10 mg/kg ip 1 day/week (164)

GSI, gamma-secretase inhibitor; mAb, monoclonal antibody; ip, intraperitoneal; po, per 
os (oral administration).
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anthocyanidins (in berries) have shown anti-NOTCH signaling 
effects in NSCLC.

Preclinical effects of NOTCH inhibitors
In preclinical studies, NOTCH signaling has been blocked 
pharmacologically by (1) GSIs: DAPT, MRK-003, PF-3084014, 
RO4929079, BMS-708163, LY-685458, LY-411575, and GSI 
XX (Table  1), (2) mAbs: CT16 (anti-EGFR and anti-NOTCH 
2/3), tarextumab (anti-NOTCH 2/3), HD105 (anti-DLL4 and 
anti-VEGF), demcizumab (anti-DLL4), and (3) naturally occur-
ing NOTCH signaling inhibitors: nobiletin, delta-tocotrienol, 
curcumin, and delphinidin (Table 2). Monotherapy usually does 
not render significant responses in terms of reduced prolifera-
tion, induction of apoptosis, or tumor growth delay, but NOTCH 
inhibition does enhance the effect of diverse chemotherapeutic 
agents.

Despite being one of the least potent GSIs in preclinical  
studies (155), DAPT has proven to be efficacious as single 
agent in treating NSCLC with altered NOTCH signaling 
pathway members (74), in inducing apoptosis and autophagy, 
 preferentially in cells expressing EGFR wild type or without 
EGFR expression (132), by inducing cell cycle arrest in G1 
and G2/M phases (98), and reducing the ALDH+ stem cell 
population (156). In addition, DAPT can enhance the effects 
of cisplatin by reducing the CD133+ stem cell subpopulation 
(157). DAPT also prevents cross-resistance to paclitaxel and 
doxorubicin (87), of docetaxel by decreasing the AP1/miR-
451-induced MDR-1 expression (98), of gefitinib by reverting 
the EMT phenotype (130, 158), and of pterostilbene by pre-
venting PI3K/AKT activation (159). Several other GSIs have 
shown to be able to attenuate EGFR–TKI resistance to erlotinib: 
MRK-003 via increase of the ERK-regulated pro-apoptotic 
BIM (160), PF-3084014 through downregulation of ALDH+ 
stem cells (129), and RO4929079 by decreasing CD44+ stem 
cells and increasing the miR-223-induced decrease in FBXW7 
expression (161). In addition, BMS-708163 can revert resist-
ance to gefitinib in NSCLC (162). MRK-003 has shown thera-
peutic enhancement of docetaxel (53) and IGF-1R inhibition 
by inducing apoptosis (107). GSI XX enhances therapeutic 
efficacy of the combination including a HIF-targeting small 
molecule inhibitor (YC-1) and radiotherapy, but only when 
added after the combination (165). GSI XX also improves the 
response of cisplatin by promoting autophagy, reducing the 
ALDHA1+ and CD44+ stem cells (88), or when combined 
with a BH3-mimetic (ABT-737) by inducing apoptosis in a 
BIM-dependent manner (166). The doses used in these studies 
have been summarized in Table 3.

Monoclonal antibodies against DLL4 used to target the tumor 
vasculature, result in an increase of branched vessels but with 
decreased functionality. Combination therapy with bevacizumab 
increases apoptosis and decreases vessel branching and tumor 
progression (148). One of the major problems with anti-VEGF 
therapy in the clinic is the increased levels of hypoxia leading to 
more aggressive treatment-resistant tumor cell populations, but 
it also leads to hemoptysis, hypertension, and arterial thrombus 
embolism due to effects on the normal vasculature in the heart, 
endocrine and nervous systems (170, 171). Because these 

anti-angiogenic inhibitors are not tumor specific, successful 
clinical implementation will most likely consist of the use of drug 
doses/scheduling aiming at vessel normalization, promoting for-
mation of functional vessels to improve drug delivery (172), or in 
their combination with other therapies, rather than those aiming 
at tumor regression. Tarextumab in combination with erlotinib, 
cetuximab, or CT16, increases therapeutic efficiency of EGFR 
targeting and delays acquired resistance by similar mechanisms 
as those with TKI therapy (131).

Natural-occurring compounds have shown remarkable anti-
NOTCH effects not only by affecting the expression of NOTCH 
pathway members (NOTCH1 and HES1) which results in rever-
sal of the hypoxic-induced EMT phenotype (167), but also by 
upregulation of miR-34a, TP53 and apoptosis (168); inhibition 
of EZH2 (121, 122); and have shown to be able to potentiate 
antitumorigenic effects in combination with cisp latin (168).

As described in this review, the NOTCH signaling pathway  
acts upon different aspects of the hallmarks of cancer described 
by Hanahan and Weinberg to promote cancer resistance, and its 
targeting can enhance the effect of chemotherapeutics or agents 
targeting oncogenic driver mutations when used in combination 
(see Figure  1 for summary). Importantly, several studies have 
shown that NOTCH inhibition in combination with radiation 
therapy also improves outcome in NSCLC (165, 173–175). 
Since most patients receive combinations of radiotherapy and 
chemotherapy, these results are significant and show there is great 
potential for combining NOTCH inhibitors with radiotherapy and 
chemotherapy to target the CSCs and reduce treatment resistance. 
Further analysis on the implications of combining NOTCH-based 
targeted therapy with radiotherapy have been recently described  
(76, 174, 175).
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FiGURe 1 | Notch and the Hallmarks of Cancer in tumor resistance to chemotherapy and targeted agents in NSCLC. NOTCH1 sustains proliferative signaling by 
upregulating PI3K/AKT pathway via PTEN repression and induction of IGF-1R under hypoxia. PI3K/AKT and MAPK/ERK/RAS then upregulate HIF-1α in an 
oxygen-dependent manner. HIF-1α binds to N1 ICD to regulate each other: HIF-1α increases gamma-secretase activity to activate NOTCH signaling whereas factor 
inhibitor HIF (FIH) hydroxylates and downregulates NICD activity. NOTCH1 upregulates IGF-1R which forms a heterodimer (∞) with EGFR and increases survivin 
(apoptosis inhibitor) to resist cell death. Cancer cells also resist cell death by upregulating the autophagosomal marker LC3 and/or drug transporters (ABCB1 and 
ABCG2) mediated by NOTCH-dependent AP1/microRNA-451 or through a glycolysis-associated mechanism via FOXO3a/AKT signaling thus promoting 
deregulation of cellular energetics. CSL binds to TP53 and they can both repress each other thus evading growth suppressors. NOTCH signaling also has a role in 
the maintenance of cancer stem cells (CSCs). Chemotherapy induces an enrichment of resistant tumor cells expressing CSC markers (CD133, ALDH, CD44). CSCs 
have downregulated the AQP2 and CTR1 drug transporters which prevent drug accumulation and reduce dsDNA damage. In addition, CSCs have increased DDR  
and repair pathways. NOTCH facilitates metastasis by increasing the epithelial–mesenchymal transition (EMT) via an increase in TWIST, SNAIL, SLuG, and ZEB. 
NOTCH activation can also stimulate endothelial-to-mesenchymal transition (EndMT) which increases the production of cancer-associated fibroblasts (CAF) which 
are known to be involved in chemotherapy resistance. DLL4 ligand is positively regulated by proangiogenic factors (e.g., VEGF-A, bFGF), IL-6 mediated by STAT3 
activation, FOXC protein, N4 ICD, and HIF-1α to induce angiogenesis. DLL4 downregulates VEGFR2 to inhibit VEGF-A and endothelial cell proliferation and 
migration. DLL4 ligand targeting inhibits tumor progression of human lung adenocarcinomas. upregulated NOTCH signaling activity has been found in cancers with 
other genetic alterations/mutations [KRAS, EGFR, HER2, MET, anaplastic lymphoma kinase (ALK), PI3K] with which it cross-talks. Abbreviations: I, inhibitor; DDR, 
DNA-damage response; miR, microRNA; GSI: gamma-secretase inhibitor; dsDNA, double stranded deoxyribonucleic acid; N4 ICD, NOTCH 4 intracellular domain.
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Clinical Trials Using NOTCH Pathway 
inhibitors
Only a few of the preclinically tested NOTCH inhibitors have 
progressed into clinical trials in NSCLC patients including 
BMS-906024, PF-3084014, RO4929079, MK-0752, LY900009, 
LY3039478, BMS-986115, enoticumab, demcizumab, and 
MEDI0639 (Tables  4 and 5). Clinical studies using NOTCH 
inhibitors as monotherapy have shown limited effect on local 
control and some have been halted (176, 177). Nevertheless, 

conclusions on GSI effects in cancer patients are debatable since 
patients are not pre-screened for NOTCH signaling upregula-
tion/mutation and different clinical GSIs have diverse potencies, 
specificities, and side effects (155).

In the clinical trials including lung cancer patients, the best 
responses using GSI were obtained with LY900009 as single 
agent (NCT01158404) with which 5/35 stable diseases were 
accomplished. GSI efficacy was confirmed by measuring on-
target undesirable effects of NOTCH inhibition. Low clinical 
activity was explained by fast drug absorption and elimination 
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TABLe 4 | Maximum tolerated dose (MTD) and recommended phase 2 doses (RP2D) for NOTCH-based therapies in clinical trials for advanced or metastatic solid 
tumors who no longer respond to or have relapsed from standard therapies.

Treatment MTD RP2D Type of cancer tested Clinical trial iD

Type Name

GSI PF-03084014 220 mg po b.i.d. 150 mg po b.i.d. Lung, colon, desmoid, breast, thyroid, 
endometrial, leiomyosarcoma, pancreas,  
and liver

(178)

RO4929097 NR (MDT: 20 mg  
3 days/week)

20 mg 3 days/week NSCLC, sarcoma, neuroendocrine, SCC,  
head and neck, pancreas, breast, 
colorectal high-grade glioma, renal, ovarian, 
gastrointestinal, stromal, melanoma, 
hepatocellular, endometrial,  
and cholangiocarcinoma

(179); PJC-004/ 
NCI 8503 (180)

LY900009 30 mg 3×/week uD (<30 mg 3×/week) NSCLC, colorectal, endometrial, ovarian, 
pancreatic, sarcoma, papillary  
adenocarcinoma, and leiomyosarcoma

NCT01158404 (181)

LY3039478 ONG (MDT: po Q12H) Advanced solid tumors NCT02836600; 
NCT02784795a

BMS-906024 ONG (MDT: 6 mg iv QW) NSCLC, triple-negative breast cancer,  
and tumors with proven active NOTCH

NCT01292655, 
NCT01653470

MK-0752 uD (MDT: 4,200 mg  
po daily)

(uD dose >1,800 mg)  
po QW

NSCLC, high-grade glioma, glioblastoma 
multiforme, anaplastic astrocytoma, 
meningioma, mesothelioma,  
oligoastrocytoma, oligodendroglioma, 
leiomyosarcoma, bladder, breast,  
colorectal, kidney, endometnal,  
gastrointestinal, head and neck, melanoma, 
ovarian, pancreas, sarcoma, thyroid, urothelial, 
and stromal

(182, 183)

BMS-986115 uD (MDT: QD) Advanced solid tumors NCT01986218

mAb 
anti-DLL4

Enoticumab NR 4 mg/kg Q3W or  
3 mg/kg Q2W

Lung, NSCLC bronchoalveolar-type,  
colorectal, ovarian, pancreatic, sarcoma,  
breast, salivary gland, head and neck,  
thyroid, prostate, cholangiocarcinoma,  
and hepatocellular

(184)

Demcizumab NR 5 mg/kg Q2W (with 
cardio-protective  
agents)

NSCLC, SCLC, colorectal, renal, pancreatic, 
salivary gland, breast, sarcoma, kidney, 
melanoma, head and neck, gastric, prostate, 
bladder, esophageal, ovarian, testicular,  
penile, and mesothelioma

(185)

MEDI0639 NR Lack of clinical activity Advanced solid tumors NCT01577745

Life expectancy ≥ 3 months.
SCC, squamous cell carcinoma,; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; po, per os (oral administration); iv, intravenous; b.i.d., bis in die (=2×/day); NR, 
not reached; MDT, max dose tested; UD, undocumented; ONG, ongoing; Q12H, every 12 h; QW, once every week; QD, quaque die (once per day); Q3W, once every 3 weeks; 
Q2W, once every 2 weeks.
aSelected patients with gene/protein alterations in NOTCH pathway.
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(181). Combination of RO4929097 with cediranib or temsiroli-
mus (PJC-004/NCI8503) only marginally improved outcome, 
 obtaining at best one partial response and 11/17–19 stable 
diseases with a median PFS of 4.2 months (179, 180). In the latter 
studies, there was no association between NOTCH biomarkers 
and time to progression at the recommended phase II dose.

Monoclonal antibodies against DLL4 have shown better 
outcomes compared with GSI treatment. DLL4 has been shown 
to be both important for tumor vasculature as well as for 
maintaining tumor-initiating capacity of tumor stem cells in 
various tumor models (186). As single agents (NCT01577745), 
enoticumab, demcizumab, and MEDI0639 may have up to two 

partial responses (enoticumab, MEDI0639) and between 36 
and 44% of stable diseases lasting for an average of 6 months 
(184, 185). Blood of demcizumab-treated patients presented 
a decrease in NOTCH and WNT pathway members, and an 
increase of their negative regulators, whereas the hair follicles 
had a downregulation of stem cell genes, and an upregulation 
of vascular genes. In enoticumab-treated patients however, 
there was no association between NOTCH biomarkers and 
time to disease progression. Clinical trials combining demci-
zumab with pemetrexed and carboplatin for non-squamous 
NSCLC (NCT01189968) obtained objective responses in 50% 
of patients, demcizumab-target efficacy was observed in the 
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TABLe 5 | Outcome and on-target effects of NOTCH-targeted therapies in clinical trials where lung cancer patients have been included.

Treatment Outcome On-target effects Clinical trial iD

NOTCH-based Combination

GSI PF-03084014 SA ORR 13%: 46 patients
1 CR (adv. thyroid cancer)
5/7 PR (desmoid tumor)
Duration: 1.74–24 months

↓ HES4 in peripheral blood at  
RP2D

(178)

RO4929097 SA 5/5 DP IC NCT01193868

VEGFR inh cediranib or 
mTOR inh Temsirolimus

1 PR at best
11/17–19 SD
7/19 DP
PFS: 4.2 months

No ∞ NOTCH biomarkers and  
time to progression at RP2D

(179); PJC-004/ 
NCI 8503 (180)

LY900009 SA No OR  
5/35 SD (NSCLC; papillary 
adenocarcinoma, leiomyosarcoma, 
ureter, and rectal carcinoma)

↓ Aβ in plasma  
1/35 ↑ glandular mucin

NCT01158404 (181)

MK-0752 SA 1 CR ≥ 1 year (anaplastic  
astrocytoma)
12 SD ≥ 4 months (high-grade  
glioma)
No clinical activity for extracranial  
tumors

↓ NOTCH in hair follicles (l,800–
4,200 mg po 1×/week)

(182)

Dalotuzumab anti-IGFR1 12/12 DP uD (183)

mAb 
anti-DLL4

Enoticumab SA 2/44 PR (NSCLC bronchoalveolar- 
type and ovarian cancer)
16/44 SD (3 patients ≥ 6 months)
1 DP (low titer anti-enoticumab antibo-
dies)

In 39/40 tumors
 ▪ DLL4+ and CD31+
 ▪ 30% VEGFR2+ vessels ∞ N1  
and N3 ICD in tumor, NOTCH3 
and DLL4 in vessels

 ▪ No ∞ NOTCH biomarkers and  
time to progression

(184)

Demcizumab SA 21/48 SD (NSCLC, renal and  
colorectal carcinomas)
16/25 (10 mg/kg): SD or PR
6/55 anti-demcizumab antibodies.  
No impact on biological activity

In blood:
 ▪ ↓ NOTCH and WNT pathway  
genes (HEY1/2, SPON2,  
CCNA2)

 ▪ ↑ Negative regulators (AP2A1, 
AP2B1, SFRP2: FOXO3, CDH1 
ANK1, BCL2L1) angiogenesis 
genes

In hair follicles:
 ▪ ↓ Stem cell genes
 ▪ ↑ vascular genes

(185)

MEDI0639 SA 1 PR for 1.3 months  
9/25 SD for 5.9 months 
12/25 DP  
PFS ≤ 7.1 months  
OS ≤ 23.9 months

IC NCT01577745

GSI, gamma-secretase inhibitor; mAb, monoclonal antibody; inh, inhibitor; SA, single agent; ↑, increase/upregulated; ↓, decrease/downregulated; ORR, objective response rate; 
OR, objective response; CR, complete response; PR, partial response; DP, disease progression; adv., advanced; RP2D, recommended phase 2 dose; IC, inconclusive; SD, stable 
disease; PFS, progression-free survival; OS, overall survival; ∞, association; Aβ, amyloid-β peptide; NSCLC, non-small cell lung cancer; po, per os (oral administration); UD, 
undocumented; N1/3 ICD, NOTCH 1/3 intracellular domain; SPON2, spondin 2 extracellular matrix protein; CCNA2, Cyclin A2; AP2A1, adaptor related protein complex 2 subunit 
alpha 1; AP2B1, adaptor related protein complex 2 subunit beta 1;  SFRP2, secreted frizzled related protein 2; FOXO3, forkhead box protein O3; CDH1, cadherin 1; ANK1, ankyrin 
1; BCL2L1, B-cell CLL/Lymphoma 2 like 1.
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blood, and a demcizumab dose was recommended for phase 
II trials (187). Phase II trials (YOSEMITE) of demcizumab in 
combination with paclitaxel and gemcitabine to treat metastatic 
pancreatic cancer however, were recently discontinued because 
primary efficacy endpoints (PFS) were not significantly better 
than placebo (chemotherapy alone) however, results on other 
trials (PINNACLE, DENALI) are yet to be evaluated. It remains 

to be assessed how combination therapy with demcizumab 
would influence survival in NSCLC patients.

Side effects of NOTCH Therapeutics
Gastrointestinal toxicity is an undesired on-target effect of 
γ-secretase inhibitors due to simultaneous inhibition of NOTCH1 
and 2, which have redundant roles in regulating homeostasis in 
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TABLe 6 | Associated toxicities of NOTCH-based therapies used preclinically for non-small cell lung cancer.

Treatment Dose Toxicity Reference

Type Name

GSI MRK-003 100 mg/kg po 3 days  ✓ Diarrhea, dehydration, severe weight loss (193)

PF-3084014 150 mg/kg po 7 days  ✓ Goblet cell hyperplasia
 ✓ ↓ Total whole blood count, lymphocytes, basophils, eosinophils, 
leukocytes

 ✓ Mild jejunal eosinophilic inflammation

(194)

100 mg/kg GSI, 3 weeks 
* 2 cycles; 1.0 mg/kg 
dexamethasone on weeks  
1 and 3

 ✓ Dexamethasone ameliorates gastrointestinal effects (DLT)

LY-411575 1–10 mg/kg po 5 or 15 days  ✓ Altered lymphocyte development, thymus atrophy, ↓ body  
weight

 ✓ ↑ Goblet cell number, secretion of mucin into the inte stinal lumen, 
epithelial erosion, infiltration of inflammatory cells in the lamina propria 
and necrosis

 ✓ Skin: epidermal/epithelial hyperplasia, follicular/epidermal inclusion 
cysts

(192, 195)

GSI 10 µmol/kg 1 day  ✓ Gastrointestinal mucous metaplasia, conversion of cryptal  
cells into goblet cells (goblet cell hyperplasia)

(197)

DBZ  ✓ 2.5 mL/kg ip 5 days
 ✓ 3–30 µmol/kg ip 5 days
 ✓ 10 µmol/kg daily 4 weeks

 ✓ Distension of the stomach and intestine
 ✓ ↑ Mucous, goblet cell metaplasia (duodenum, jejunum)  
and hyperplasia, apoptosis (small intestinal crypt  
epithelial cells, large intestinal glands), villus atrophy, and severe 
diarrhea

 ✓ Splenic marginal zone lymphoid tissue atrophy

(188, 190, 196)

DBZ 10 µmol/kg ip
Dexamethasone 15 mg/kg ip
Daily 5 or 10 days

 ✓ DBZ: ↑ intestinal secretory metaplasia, goblet cell  
hyperplasia and ↓ proliferation small intestine crypt cells

 ✓ Combination: normal goblet cell numbers and tissue  
architecture of intestinal epithelium

(198)

mAb OMP59R5 (anti- 
NOTCH2/3)

40 mg/kg every other day  ✓ Minimal intestinal toxicity
 ✓ Rodent teeth affectance (long-term repeated high doses)

(124)

HD105 (anti-DLL4 and 
anti-VEGF)

1–3 mg/kg QW for 8 weeks
10 mg every 3 days (5 doses, 
30 mg/kg)

 ✓ ↑ Activation of endothelial cells
 ✓ Sinusoidal dilation
 ✓ Centrilobular hepatocyte atrophy

(202)

Anti-DLL4 10 mg/kg 2 weeks  ✓ No impact on intestinal goblet cell differentiation (199)

Natural  
agents

Delta-tocotrienol  
(blueberries)

200–800 mg/kg sc  
14–30 days

 ✓ Dose-dependent severity (up to moderately severe) of dermatitis  
and inflammation

 ✓ No adverse effects were observed in any tissues or  
organs

(203)

Curcumin (ginger and 
other plants)

iv 14 days:
 ✓ 250 mg/kg
 ✓ 500–1,000 mg/kg

 ✓ 250 mg/kg: piloerection and minor weight loss
 ✓ 500 mg/kg: ↓ spontaneous motility and bowel movements,  
piloerection and ↓ weight (in 3 mice)

 ✓ 1,000 mg/kg: lethal within 1 h of administration, respiratory  
distress, bradypnea, and paralytic gait

(201)

GSI, gamma-secretase inhibitor; mAb, monoclonal antibody; ip, intraperitoneal; po, per os (oral administration); sc, subcutaneous; iv, intravenous; QW, once every week; ↑, increase/
upregulated; ↓, decrease/downregulated; DLT, dose-limiting toxicity.
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the crypt epithelium, resulting in excessive secretory differentia-
tion and goblet cell metaplasia (188–192). GSIs used preclinically 
(Tables 3 and 6) result mainly in gastrointestinal toxicity, as seen 
for MRK-003 (193), PF-3084014 (194), LY-411575 (192, 195),  
DBZ (188, 190, 196), and compound E (197). These effects are 
usually found in combination with severe body weight loss but 
can be mitigated using glucocorticoids (dexamethasone) as 
shown for PF-3084014 (194) and DBZ (198). The use of mono-
clonal antibodies, such as OMP59R5, minimizes the associated 
intestinal toxicity (124) probably because NOTCH1, one of the 

major contributors of normal gastrointestinal architecture, is not 
targeted. No gastrointestinal effects were detected for anti-DLL4 
antibodies (199), which is explained by redundancy with DLL1 
(200), nor for natural agents, except for curcumin where loose 
bowel movements were reported (201). In clinical trials (Tables 4  
and 7), several studies reported severe gastrointestinal toxicities 
(grade III or higher) including diarrhea, nausea, dehydration 
and mucositis for RO4929097 (179, 180), LY900009 (181), and 
MK-0752 (183) (Table 7). However, these effects were mitigated 
with adequate intermittent scheduling (182). Oral dosing of 
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TABLe 7 | Toxicity and pharmacokinetics (PK) of NOTCH-targeted therapies in clinical trials where lung cancer patients have been included.

Treatment Toxicity PK Clinical trial iD

NOTCH-based Combination

M PF-03084014 SA Manageable gastrointestinal  
adverse eventsa

T1/2: 22–40 h after-multiple dosing. (178)

RO4929097 SA Serious adverse events in ≥1/5 
patients:
 ▪ Small intestine obstruction,  
constipation, nausea

 ▪ Lung infection/sepsis, dyspnea
 ▪ Cardiac arrest, tachycardia

uD NCT01 19386; 
NCT01217411

VEGFR inh cediranib Grade III–IV: diarrhea, headache, 
hypertension, nausea, hypothyroidism,  
hypophosphatemia

Combination did not affect PK profile (179), PJC-004/NCI 
8503

mTOR inh temsirolimus Grade III: rash, mucositis RO4929097 induces CYP3A4: ↑ 
temsirolimus CL

(180)

LY900009 SA Grade III: mucosal inflammation Absorption: 1–4 h
Elimination T1/2: 2–4 h  
LSN2831047 (GSI metabolite): appea-
rance: 2–6 h, T1/2:5–14 h

NCT01158404 (181)

SA Weekly dosing was generally well 
tolerated

Slow absorption half-life: 15 h (182)

MK-0752 Dalotuzumab  
anti-IGFR1

Grade III dehydration, rash, and 
diarrhea

 ▪ MK-0752 1.63–8 μmol/L in plasma
 ▪ Dalotuzumab 34–64 μg/mL in  
serum (at day 8), accumulated in  
time

(183)

mAb 
anti-DLL4

Enoticumab (b) SA Grade III (0.5 mg/kg Q3W):  
nausea
Grade III (1 mg/kg Q2W):  
abdominal pain
Severe effects in 4 patients: ventricular 
dysfunction and pulmonary hyper-
tension

Nonlinear PK
T1/2: 8–9 days
Dose-independent CL  
(dose > 1.5 mg/kg)  
> 2 mg/1 in plasma ∞ max.  
tumor activity

(184)

Demcizumab SA Generally well tolerated at  
doses ≤ 5 mg weekly. 
4 patients (10 mg/kg Q2W): 
congestive heart failure
Not more than one DLT per dose level

PK within linear range
CL: 4.17 mL/day/kg
T1/2:15.9 days (>10 μg/mL)

(185)

MEDI0639 SA No participants with DLT AuC: 7.4–512 μg/day/mL [Conc]Max;  
in blood: 3.2–81.6 μg/mL
CL: 1.4–0.5 L/day
T1/2: 1.5–8.25 days

NCT01577745

GSI, gamma-secretase inhibitor; mAb, monoclonal antibody; inh, inhibitor; SA, single agent; ID, identifier; T1/2, half-life; UD, undocumented; CL, clearance; ∞, association; Q3W, 
once every 3 weeks; Q2W, once every 2 weeks; DLT, dose-limiting toxicity; [Conc]Max, maximum observed concentration; AUC, area under the concentration–time curve;  
CYP3A4, cytochrome P450 3A4.
aBetter symptoms than those for RO4929097 and MK-0752.
bBetter gastrointestinal toxicity than GSI.

15

Sosa Iglesias et al. NOTCH Targeting in NSCLC

Frontiers in Oncology | www.frontiersin.org July 2018 | Volume 8 | Article 267

PF-03084014 twice a day resulted in manageable gastrointestinal 
toxicity, better than that for RO4929097 and MK-0752 (178), 
indicative that not all GSIs are equally potent nor biological 
equivalents because they target different NOTCH receptors 
and also have diverse off-target effects (155). In clinical trials 
(NCT01577745), only abdominal pain was reported for enoti-
cumab (184), and gastrointestinal toxicity was milder than for 
GSI treatment in general (185).

Skin adverse effects occur after GSI treatment due to the  
physiological function of NOTCH signaling in keratinocyte 
different iation (195). In preclinical studies (Table  6), NOTCH 

inhibition may cause epidermal and epithelial cell hyperplasia, 
and follicular and epidermal inclusion cysts (192, 195). Natural 
inhibitors of NOTCH signaling showed mild to moderate derma-
titis at the site of injection for delta-tocotrienol (203) and pilo-
erection for high doses of curcumin (201). In patients (Table 7), 
skin toxicity (grade III or higher) has been reported for GSI (but 
not for anti-DLL4 antibodies) and is attributed exclusively to skin 
rash for RO4929097 (179, 180) and MK-0752 (183).

In the immune system, NOTCH regulates megakaryocyte 
development and the myeloid and erythroid lineages (204). 
In preclinical studies (Table 6), NOTCH inhibition may lead 
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to mild eosinophilic inflammation, leukopenia, lymphocy-
topenia, altered lymphocyte development, thymus atrophy, 
and/or splenic marginal zone lymphoid tissue atrophy for 
PF-3084014 (194), LY-411575 (192, 195), and DBZ (188). In 
patients (Table 7), no severe toxicities (grade III or higher) were 
reported.

In the vasculature, there are also toxicities reported in preclini-
cal studies (Table  6), accounting for pathological activation of 
endothelial cells and sinusoidal dilation for HD105 (202). In 
patients (Table  7), there were toxicities (grade III or higher) 
reported accounting for cardiac arrest, tachycardia, ventricular 
dysfunction, congestive heart failure for the GSI RO4929097 
(NCT0119386; NCT01217411), for enoticumab (184), and for 
demcizumab (185).

In the lung, there were generally no effects reported preclini-
cally (Table 6) except for respiratory distress at very high doses 
of curcumin (201). In patients (Table  7), however, toxicities 
(grade III or higher) included lung infection/sepsis, dyspnea, 
and pulmonary hypertension for RO4929097 (NCT0119386; 
NCT01217411) and for enoticumab (184).

NOTCH inhibition in Lung Cancer 
Comorbidities
Lung cancer patients often present several comorbidities. When 
considering the potential for NOTCH/γ-secretase inhibitors, 
normal tissue effects are usually dose-limiting. The potential 
role of NOTCH inhibition has been investigated not only in lung 
cancer but also in other lung pathologies, such as pulmonary 
goblet cell metaplasia, lung fibrosis, allergic asthma, chronic 
inflammation, and pulmonary arterial hypertension (PAH). 
The pathophysiology of pulmonary goblet cell metaplasia 
is similar to that of cystic fibrosis, bronchitis, and asthma. 
NOTCH inhibition may be of potential benefit in such cases 
by reducing the number of secretory cells and altering basal 
cell differentiation in adult lung toward a ciliated phenotype 
(205). In lung fibrosis, characterized by fibroblast proliferation 
leading to excess extracellular matrix deposition (collagen 
and glycosaminoglycans) and tissue remodeling occurring 
frequently 6–9 months after radiation treatment, GSI prevents 
NOTCH/JAGGED1-induced myofibroblast differentiation in 
response to frizzled class receptor 1 (FZZ1) by decreasing the 
expression of alpha-smooth muscle actin (α-SMA) (136, 206).  
Asthma and chronic inflammation (which may occur after 
radiation treatment) are characterized by airway hyperrespon-
siveness and enhanced immune response. NOTCH receptors 
are expressed in the surface of mature lymphocytes whereas 
NOTCH ligands are present in antigen-presenting cells. Inhi-
bition of airway hyperresponsiveness and inflammation by 
repressing Th2-mediated IL-4 production can be observed with 
the inhibition of NOTCH on CD4+ T-cells and JAGGED1 on 
bone marrow dendritic cells (207). Pulmonary veno-oclusive 
disease (PVOD), an uncommon cause of PAH, may appear after 
combined therapy consisting of surgery and mitomycin with 
perioperative chemotherapy. PVOD requires upregulation of 
NOTCH3, smooth muscle cell proliferation in small pulmonary 
arteries, and increased vascular resistance to develop. PAH 
severity correlates with NOTCH3 and its downstream effector 

HES5. Thus, targeting the NOTCH3–HES5 axis with GSIs may 
improve PAH treatment (163).

CONCLUSiON AND PeRSPeCTiveS

Non-squamous NSCLC is the most common form of lung cancer 
and a deadly disease. Despite detailed knowledge on tumor driver 
mutations and multimodal treatment regimens with surgery, 
and systemic treatment using chemotherapeutics, targeted 
agents, immune therapy, and radiotherapy, tumor resistance, 
relapse and dose-limiting toxicities are common. NSCLC is a 
highly heterogeneous disease at different levels and is constantly 
 striving for survival by acquiring new favorable pro-survival 
mutations. There is mounting evidence implicating CSCs, and 
the dynamically changing tumor microenvironment, as the 
drivers of tumor heterogeneity which in turn results in tumor 
progression, metastasis, and therapeutic resistance. CSCs 
provide an  interesting therapeutic targeting opportunity to 
tackle tumor resistance. There is paramount evidence for a role 
of the NOTCH signaling pathway in driving tumor resistance 
through cancer (stem) cells and cross-talk with other pathways. 
We identified roles for NOTCH signaling in mechanisms of 
tumor resistance mediated via, mainly, ABC drug transporters, 
EMT, hypoxia, pro-survival pathways, and VEGF, among others 
(Figure 1).

Monotherapy treatment using NOTCH inhibitors, similarly 
to what happens for other therapies, is not sufficient to induce 
tumor control or cure. Because not all patients have an aber-
rantly high NOTCH expression, and NOTCH-based therapeu-
tics target a specific subpopulation which is a minority in the 
bulk of the tumor, it should not be expected that monotherapy 
NOTCH-targeting treatments will have a significant impact 
on clinical outcome. Unfortunately, many clinical trials using 
NOTCH therapeutics are terminated, on hold or have reported 
limited efficacy. Parallel to this observation, it must be noted that 
the current interventional setting to evaluate NOTCH inhibi-
tion efficiency is sub-optimal. The most important shortcoming 
of the clinical trials is the lack of robust biomarkers to select 
patients and monitor responses to treatment. While there are 
many gene expression studies investigating on- and off-target 
effects of NOTCH targeting using GSI, they reflect the combined 
effects of NOTCH1–4 receptor blockade. Since NOTCH signal-
ing in lung tissue is complex, with redundant but also opposing 
functions of specific NOTCH isoforms affecting prognosis 
and treatment sensitivity, such signatures are unlikely to yield 
predictive markers for patient stratification. It is anticipated that 
selection of patients would improve the quality and accuracy 
of the information from clinical trials. Companion biomarkers 
that are assessed dynamically over the course of cancer treatment 
are needed to monitor on-target efficacy and enable therapeutic 
redesigning.

NOTCH receptor or ligand-specific targeting agents, as 
opposed to broad spectrum small molecule γ-secretase inhibi-
tors, are more likely to induce less adverse effects, however, proper 
scheduling, reduced dosing, and combination with glucocorti-
coids can mitigate the adverse effects of GSIs. New insights into 
γ-secretase’s complex composition may yield receptor-specific 
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small molecule NOTCH inhibitors (208) that could aid in attenu-
ating the side effects of broad spectrum inhibitors. Monoclonal 
antibodies have minimal toxicity to the gastrointestinal tract but 
they generally have limited biodistribution and prolonged half-
life, a shortcoming that can be addressed using F(ab′)2 antibody 
fragments which allow more flexible control over the extent and 
duration of inhibition. Soluble decoys of the extracellular domain 
of NOTCH or its ligands block receptor-ligand interaction; how-
ever, their efficacy relies on their biodistribution and pharma-
cokinetic properties which remain to be assessed. On the other 
hand, cancers may present more than one alteration that increases 
the activity of the NOTCH signaling pathway, therefore, the  
benefits of pan-NOTCH inhibitors, which target all four NOTCH 
receptors versus selective NOTCH receptor targeting needs fur-
ther examination.

We discussed how NOTCH pathway inhibition can enhance 
chemo-/targeted agent sensitivity and even revert resistance in 
NSCLC. Although out of the scope of this review, similar oppor-
tunities exist for combining NOTCH inhibition with radiation 
therapy (174, 175), and potentially, immune therapies. Because 
NOTCH signaling impacts several features of the tumor micro-
environment such as tumor hypoxia and tumor cell metabolism, 
the prospect of altering the microenvironment using NOTCH 
inhibitors is exciting since normal cells usually do not develop 
drug resistance, but challenging because of the adverse effects 
of NOTCH inhibitors on normal tissue. Recently, there has 
been a report that T-ALL cells restore NOTCH signaling activa-
tion upon GSI withdrawal, suggesting that the persisting cells 
are reversibly resistant to GSI through epigenetic alterations. 
Combination therapies with epigenetic modulators, however, 
enhance NOTCH-inhibition therapy (209). Nevertheless, it 
remains to be established whether epigenetic modifiers can 
prolong GSI effects in lung cancer with tolerable normal tissue 
effects.

In summary, lung cancer is a complex heterogenous disease with 
interpatient, intratumor and inter-/intrametastatic heterogeneity 

at the subtype level, therefore, successful treatment options are 
likely to arise from personalized precision treatment. There is 
paramount preclinical evidence for potent antitumor activity 
of NOTCH therapeutics in NSCLC but our biological under-
standing of the tissue and context-specific roles of NOTCH is 
understudied. Biomarkers will be essential to advance into clini-
cal development to obtain meaningful and reliable answers on 
therapeutic ratios. Finally, while there is much attention into the 
development of smarter drugs to target specific drivers of pro-
gression and treatment resistance, efforts should also be directed 
toward identifying synergistic interactions of NOTCH inhibitors 
with clinically approved systemic treatments as for such combi-
nations are likely to lead to faster clinical implementation and 
hence, benefit the patients.
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