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Janus tyrosine kinase (JAK) family of proteins have been identified as crucial proteins

in signal transduction initiated by a wide range of membrane receptors. Among the

proteins in this family JAK2 has been associated with important downstream proteins,

including signal transducers and activators of transcription (STATs), which in turn regulate

the expression of a variety of proteins involved in induction or prevention of apoptosis.

Therefore, the JAK/STAT signaling axis plays a major role in the proliferation and survival

of different cancer cells, and may even be involved in resistance mechanisms against

molecularly targeted drugs. Despite extensive research focused on the protein structure

and mechanisms of activation of JAKs, and signal transduction through these proteins,

their importance in cancer initiation and progression seem to be underestimated. This

manuscript is an attempt to highlight the role of JAK proteins in cancer biology, the

most recent developments in targeting JAKs, and the central role they play in intracellular

cross-talks with other signaling cascades.

Keywords: janus tyrosine kinases (JAKs), signal transducers and activators of transcription (STATs), cancer,

signaling pathways, proliferation, survival

INTRODUCTION

The fate of our cells is mainly decided by the intracellular signaling pathways that control
mechanisms involved in phenotypical modifications. This crucial role becomes even more
significant in cancer cells that rely upon a vast, complicated, and inter-connected network of
signaling pathways for their survival and proliferation. Signaling pathways are mostly activated
through cell membrane receptors that are triggered by different ligands, which initiate the
mechanisms responsible for controlling phenotypical outcomes, e.g., proliferation, or apoptosis.
For instance, Receptor tyrosine kinases (RTKs, including epidermal growth factor receptor or
EGFR, and human epidermal growth factor receptor 2 or HER2) and cytokine receptors are
among the most important cell surface receptors that activate these signaling cascades. It is well-
established that cancer is a heterogeneous disease (1–5). In 2015, Sottoriva et al. proposed a “Big
Bang” model of tumor initiation in colorectal cancer that suggests after initial oncogenic mutation,
future generations acquire further mutations, which are present in discrete populations of cells that
then expand as the tumor grows, leading to spatial heterogeneity (6). A similar and even more
diverse pattern has been reported for other types of cancer. Amir et al. studied two human acute
lymphoblastic leukemia samples with viSNE technology, and reported a large, irregular mass of
abnormal cells that were more different than similar (7). The sub-population of a sample with
intrinsic resistance to a therapeutic assault (due to different mutations in the target protein, and/or
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reliance on an alternative mechanism) would survive and
outgrow other cells due to the selection pressure, and promotes
relapse after therapy, which results in abundance of cells that were
once minority (8). This “Darwinian clone selection” has been
well-documented in different types of cancer cells in respond to
a variety of molecularly targeted drugs (9). This inter- and intra-
tumor heterogeneity means that each cancer cell potentially has
access to a wide variety of mechanisms to arrive at the same
phenotypical outcome.

In addition to the diversity of the signaling pathways,
which provides ample opportunities for cancer cells to “switch”
pathways as a response to molecularly targeted drugs, and
to make the matters even more complicated, these pathways
are also not completely independent, and are engaged in
signaling cascade “cross-talk.” Recent findings have revealed
extensive interactions between traditionally categorized cascades,
which has blurred the line between parallel pathways. Many
of the effector proteins seem to multi-task and be involved in
different mechanisms. Activation of HER2, a tyrosine kinase
membrane receptor specifically expressed in breast cancer
cell membrane, triggers phosphorylation of RAF and Ras,
which results in over-expression of Bcl-2 family proteins (10).
Another widely inter-connected protein is MUC1, which is over-
expressed in different types of carcinomas and is correlated
with higher risk of metastasis and poor survival rate (10).
MUC1 interacts with several cytoplasmic proteins and Ras-
Raf-MEK-ERK signaling pathway (11), STAT3 (mediated by
Src) (12), and proteins known to be activated by EGFR (13).
Studies also indicate that crosstalk among signaling pathways
contributes to a deregulation of PI3K–PTEN signaling that can
lead to tumorigenesis (14). This could at least partially explain
the growing number of preclinical data that indicate a failure
to induce apoptosis despite effective inhibition of PI3K-Akt
components (15, 16).

Janus tyrosine kinase (JAK) and signal transducers and
activators of transcription (STATs) are among the major proteins
involved in this inter-pathway crosstalk, and latest reports have
led to the elucidation of a key role of JAK/STAT signaling
pathway in development, proliferation, differentiation, and
survival of cancer cell, and in fact, Vogelstein et al. have
included JAK/STAT pathway among 12 core cancer pathways
(17). The effect of STAT3 activation on Ras and PI3K/Akt
pathways (18), and the connections of JAK2 to PI3K and ERK
pathways (19, 20) are examples of these inter-pathway cross-
talks. JAKs are a family of proteins that belong to a category
of intracellular non-receptor tyrosine kinases. In mammals, the
JAK family contains four members: JAK1, JAK2, JAK3, and
TYK2. STAT family is composed of seven members STAT1,
STAT2, STAT3, STAT4, STAT5a, STAT5b, STAT6, which mainly
act as transcription factors (21, 22). Compared to other major
cell signaling pathways, JAK/STAT pathway seems relatively
simple, with few components. Multiple review articles have
focused on this important pathway and its role in cancer
cells; however, this manuscript will try to take a closer look
at the versatile mechanisms involved in this seemingly simple
and straightworward cascade, and to analyze the efforts that
have been made in altering its activity as a therapeutic

strategy. Figure 1 summarizes the intracellular signaling cascades
involving activation of JAK proteins.

A BRIEF HISTORY

JAK/STAT signaling cascade is among the highly conserved
metazoan pathways observed in a wide range of species (23),
which is involved in an array of cytokines and growth factors
(22). The “story” of this silencing pathway has been previously
reviewed in detail (24), where the authors track the origins
of the discovery to 1950s and interferons. Our knowledge of
existence of JAK/STAT pathway, however, is <3 decades old.
JAK1and JAK2 were identified in 1989, and the first member
off JAK family of proteins was cloned and synthesized in 1990
(25). The gene was named Tyk2, and attracted attention due to
a “kinase-like” domain next to the well-known and conserved
protein tyrosine kinase domain (26). JAK name was taken from
two-faced Roman God of doorways, Janus because the way
that JAK possesses two near-identical phosphate-transferring
domains: One domain exhibits the kinase activity while the other
negatively regulates the kinase activity of the first (24, 27). Wilks
et al. cloned and published the complementary DNA sequence
for JAK2 in 1992, and demonstrated the same kinase/“pseudo-
kinase” sections in the protein structure (28). In 1992 Shuai et
al reported sequencing cDNA clones that were later called signal
transducer and activator of transcription (STAT1; a and b) and
STAT2 (29, 30). Later on, graduate students in Darnell lab cloned
STAT3 and 4 from a lymphocyte cDNA library, establishing their
membership in STATs family, and demonstrating that IL6 and
EGF triggered phosphorylation of STAT3 (31, 32). The gene
encoding STAT5 (initially named mammary gland factor; MGF)
was cloned and sequenced in Groner’s lab in 1994 (33). It was
not until twenty first century that initial reports were published
to link mutations in JAKs and STATs (resulting in persistent
activation of the pathway) to several disorders (24).

MUTATIONS

Predictably, mutations that affect JAK/STAT pathway activity
impact multiple cellular events (34, 35). The first report on
mutation in this pathway surfaced in 1997, which explains the
role of E695K mutation in the JH2 domain of JAK2 in murine
cells that results in increased autophosphrylation and increased
activation of STAT5 (36). First patient with confirmed mutation
in the JAK/STAT pathway was reported in 2003 (37). Classical
cases of growth hormone insensitivity (GHI) are usually due
to mutations in GH receptor (GHR), which is a member of
cytokine-hematopoietin family of receptors that do not show
any intrinsic kinase activity (38). Dimerization of GHR leads
to activation of JAK2, and in turn, activation of STATs. In
2003, a 16-years old Argentinian girl was diagnosed with severe
growth retardation and immunodeficiency, which suggested
involvement a pathway affecting both GH and cytokines (37).
Immunoblotting showed absence of STAT5b (despite normal
levels of total STAT5), and RT-PCR confirmed homozygous
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FIGURE 1 | A schematic presentation of JAK/STAT pathway in cancer cells. For the full list of proteins regulated by the pathway via different STAT proteins, see

Table 3.

missense mutation in codon 630, resulting in substituting alanine
with proline (39).

In 2005, four separate groups working on tyrosine kinase
signal transduction reported a valine-to-phenylalanine mutation
at position 617 in the JH2 domain of JAK2 that causes “gain-of-
function” (40–43). To this day, V617F remains the most studied
mutation in JAK family of proteins, and seems to be present
in the majority of patient with Polycythemia Vera. This type of
mutation is also frequently observed in other myeloproliferative
neoplasms (44), and has been previously reviewed, extensively
(45–48). Table 1 summarizes selected mutations (based on
the significance and frequency of reports) in components of
JAK/STAT signaling pathway. The list of all mutations reported
in literature is out of the scope of this manuscript.

TRIGGERING THE SIGNAL: RECEPTORS

JAK/STAT signaling begins with the activation of JAK by binding
of a ligand such as growth factors, interferons, or interleukins

to specific transmembrane receptors. A wide array of receptors
has been associated with JAK/STAT pathway activation, which
are summarized in Table 2. The cytokine receptors are probably
the most commonly known family of transmembrane receptors
associated with JAK activation. Generation of knockout mice for
JAK family members, and evaluation of response to cytokine
stimuli has contributed significantly to our understanding of
the relationships between JAKs and cytokine receptors, which
has led to the belief that cytokine receptors each prefer
specific member(s) of JAK family for the signal transduction
effector (109, 110). However, homozygous deletion of JAK1
and JAK2 causes lethality in mice due to disruption of
neuronal development (111) and definitive hematopoiesis (110),
respectively.

Cytokine receptors activate JAK/STAT pathway through a
variety of combinations of different JAK and STAT family
members, which highlights the versatile nature of this pathway.
The receptors in this family that are linked to JAK activation
could be categorized as interleukin (IL) receptors, interferon
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TABLE 1 | Selected JAK/STAT mutations and resulting disorders.

JAK/STATs Mutation Disease References

JAK1 G871E Uterine leiomyosarcomas (49)

S703I Inflammatory Adenoma and Leukemia (50)

JAK2 V617F Proliferative Neoplasms (41)

K539L Polycythemia Vera (51)

T875N

V625F

Myeloproliferative neoplasms (52)

(53)

JAK21/REED Acute lymphoblastic leukemia (54)

JAK3 A572V

V722I

P132T

Acute megakaryoblastic myeloid

leukemia

(55)

M511I Prolymphocytic leukemia (56)

STAT1 L706S Impairment of mycobacterial immunity (57)

STAT3 Y640F Large granular lymphocytic leukemia (58)

D661Y

D661V

N647I

STAT5b N642H T-cell acute lymphoblastic leukemia (59)

STAT6 P419D/G Follicular Lymphoma (60)

(IFN) receptors, and colony stimulating factor receptors (CSFRs).
Among IL receptors, gp130 subunit and receptors for IL-2, IL-
3, IL-4, IL-6, IL-7, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, IL-
20, IL-21, IL-22, IL-23, IL-27, IL-31, and Leptin have been
reported to trigger activation of specific members of JAK family
of proteins; however, while JAK1 seems to be a common factor
among them (except for IL-12 and IL-23 receptors), a wide
range of combinations of downstream effectors are observed. For
example, heterodimerization of the IL-2Rβ and γc cytoplasmic
domains has been reported to activate JAK1 and JAK3, with
JAK1 associating with IL-2Rβ and JAK3 with γc (70). Interaction
of IL-2 and the receptor, mostly results in activation of STAT5;
however, STAT3 and STAT1 are also activated to lower degrees
(112). Crucial role of IL-2 and its receptor in development of
breast tumors, and a correlation between the malignancy of the
tumor and expression of these receptors has been reported (113).
The erythropoietin receptor (EPOR) is a hormone receptor that
shares extra-cytoplasmic structural characteristics with cytokine
receptor family [EPOR and IL-2Rβ share 45% amino acid identity
in box 1 and box 2 cytoplasmic regions (114)]. In 1994, D’Andrea
and Barber reported that EPOR stimulation results in rapid
and dose-dependent JAK2 phosphorylation (71). On the other
hand, simulation of IL-3 receptor via treatment with proteasome
inhibitor, N-acetyl-L-leucinyl-L-leucinyl-norleucinal (LLnL) has
resulted in prolonged activation of JAK 1 and 2, and stable
phosphorylation of STAT5 (72).

It has been suggested that different cytokine receptors
preferentially use one of the members of JAK family of proteins,
or a specific combination (115). However, the mechanism of this

selectivity is unclear. Interestingly, IL-4R (73) and IL-13R (84) are
the only cytokine receptors that transduce the signal to STAT6.
STAT6 has different functions in different cell types, and activates
the transcription of a different set of proteins in T cells compared
to non-lymphocyte cells (116). IL-13R is expressed in different
tumor types, and although breast cancer cells are not among
those, in a recent study Kawakami et al. reported targeting breast
cancer cells by IL-13, after transfecting the cells with IL-13Rα2
plasmids (117). The receptor for IL-5 is a crucial factor in the
physiology of eosinophils, multifunctional granulocytes that play
a role in immune system, and are associated with the pathology of
asthma and inflammation (118). STAT1 and STAT5 are activated
through the signaling triggered by this receptor (Table 2).

IL-6 and IL-10 predominantly activate STAT3 with sometimes
diverse outcomes (73, 76). Both STAT1 and STAT3 have been
reported to be activated via IL-6R signal; however, different cell
types show strong preference toward one STAT. SOCS3 is a
protein that is induced via STAT signaling from different cytokine
receptors, and acts as a feedback inhibitor on the expression
of IL-6R (among other receptors). In the absence of SOCS3,
STAT3 activation is significantly increased (119). However,
STAT1 activation is not affected similarly, and therefore, in
presence of SOCS3 the path activated by IL-6R switches from
STAT3 to STAT1 to some extent (120). Even though IL-10R
signaling resembles IL-6R pathway closely, the STAT3 activation
of IL-10 induces transcription of a different set of proteins that
are mostly involved in inhibition of inflammatory responses
(121). IL-12R and IL-23R are structurally related, use the same
signaling pathway, and are among the cytokine receptors that
require TYK2 for their signal transduction (73). In T-cells, IL-12R
activation results in STAT4 stimulation, which induces IFN-γ
expression. IL-11 and its receptor have been indicated in breast
cancer development and progression, and in 2006 IL-11 was
reported as a predictor of poor prognosis in this type of cancer
(122). IL-31,mainly produced by CD4(+) T cells and is amember
of the gp130/IL-6 cytokine family. IL-31R activates JAK/STAT,
PI3K/AKT, and MAPK pathways and acts on a broad range of
cells (91). While other IL receptors [e.g., IL-19 (123) and IL-
35 receptors (124)] have been reported to activate JAK/STAT
pathway, their role in cancer cells is unclear.

TYK2 is the main difference between the pathways activated
by type I (IFNα and β) and type II (IFNγ) IFN receptors. It
has been reported that IFNαR1 and R2 (β) are associated with
TYK2 and JAK2, respectively, while IFNγR1 and R2 activate
JAK1 and JAK2 respectively (92). Briscoe et al. reported that
JAK1 negative U4A cells demonstrate a partial response to
IFNγ; however, the JAK2 negative γ2A cells did not response
to IFNγ at all (125). IFNγ predominantly triggers activation
of STAT1. There is evidence that IFN receptor activation
triggers other intracellular proteins involved in other signaling
pathways, including MAP kinase, PI3-K, CaMKII and NF-κB
(126). Granulocyte Colony Stimulating Factor (G-CSF) and
Granulocyte/Macrophage Colony Stimulating Factor (GM-CSF)
are among other cytokines that have been linked to JAK/STAT
pathway activation. G-CSFR is reported to mainly activate JAK2
and STAT3, and is expressed in several normal and malignant
tissue (95). GM-CSF receptors have been identified on most
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TABLE 2 | A summary of the receptors involved in activating JAK/STAT pathway in cancer.

Receptors Cancer type* Activated JAK Activated STAT References

G protein-coupled receptors (GPCR) 5-HT2AR Breast JAK2 STAT3 (61)

CCR 2 Squamous cell JAK2 STAT3 (62)

CCR 5 Breast JAK1 STAT5 (62)

CXCR4 GI; Breast JAK2,3 STAT1,2,3,5 (63)

PAFR Breast; Hepatocellular JAK2; TYK2 STAT1,2,3,5 (64, 65)

PAR 1 Breast JAK2 STAT1,3 (66)

BDKRB2 (B2R) Ovarian; Pancreatic TYK2 STAT3 (67)

AT1 R breast JAK2; TYK2 STAT1,2,3,5 (68, 69)

Cytokine receptors IL-2 R Glioma; Breast JAK1,2,3 STAT1,3,4,5 (70, 71)

IL-3 R Hematologic JAK1,2 STAT5 (72)

IL-4 R Cervical; Ovarian; Liver JAK1,3 STAT6 (73)

IL-5 R Leukemia JAK1,2 STAT1,5 (74, 75)

IL-6 R Breast JAK1,2; TYK2 STAT1,3 (73, 76)

IL-7 R Multiple Types JAK1,3 STAT1,3,5 (77, 78)

IL-9 R Ovarian; Pancreatic JAK1,3 STAT1,3,5 (79, 80)

IL-10 R (α & β) Multiple Types JAK1; TYK2 STAT1,3 (73, 81)

IL-11 R Breast; Prostate JAK1,2 STAT1,3 (82)

IL-12 R Ovarian; Melanoma JAK2; TYK2 STAT1,3,4,5 (83)

IL-13 R Multiple Types JAK1,2; TYK2 STAT1,3,5,6 (84)

IL-15 R Colorectal JAK1,3 STAT3,5 (76)

IL-20 R Multiple Types JAK1 STAT1,3 (85)

IL-21 R Multiple Types JAK1,3 STAT1,3,5 (86)

IL-22 R Colorectal JAK1; TYK2 STAT3 (87)

IL-23 R Squamous cell carcinoma; Breast JAK2; TYK2 STAT1,3,4,5 (83, 88)

IL-24 R Multiple Types JAK1 STAT3 (89)

IL-27 R Multiple Types JAK1,2; TYK2 STAT1,2,3,4,5 (90)

IL-31 R Lymphoma JAK1,2 STAT1,3,5 (91)

IFN α & β Multiple Types JAK1; TYK2 STAT1,2,3,4,5 (92)

IFN γ Multiple Types JAK1,2 STAT1,3,5 (92)

IFNλ (IL28/29) Multiple Types JAK1; TYK2 STAT1,2 (93)

GM-CSFR Melanoma JAK2 STAT5 (94)

G-CSFR Cervical; Thyroid JAK1,2 STAT1,3,5 (95)

Leptin R Breast JAK2 STAT3 (96)

Receptor tyrosine kinases EGFR Multiple Types JAK1,2 STAT1,3 (97)

Insulin R Multiple Types JAK2 STAT1 (98)

FGFR Multiple Types JAK2 STAT1,3 (99, 100)

PDGFR Glioma; Breast JAK2 STAT1,3,5,6 (101, 102)

VEGFR All solid tumors JAK2 STAT1,3,5 (103)

TrkR Breast Cancer JAK2 STAT3 (104)

TieR Multiple types – STAT1 (105)

Homodimeric hormone receptors EPOR Breast JAK2 STAT3,5 (71)

PRLR Breast JAK2 STAT1,3,5 (106)

GHR Multiple Types JAK2 STAT1,3,5 (107)

TpoR Myeloproliferative JAK2; TYK2 STAT1,3,5 (108)

*While the receptors included in the table are obviously expressed in multiple types of cancer, the specified type is related to the reference cited, and the link to the JAK/STAT pathway.

types of myeloid progenitors, mature monocytes, neutrophils,
eosinophils, basophils, and dendritic cells and mainly contribute
to defense mechanisms against bacterial infections (127). GM-
CSFR is also reported to activate JAK2; however, STAT5 is

reported to be the main member of STAT family of protein to
be activated via this pathway (94). Leptin is a cytokine normally
secreted from adipose tissue, and is involved in regulating energy
consumption and appetite (128). Interaction of leptin with the
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leptin receptor (which is categorized as a type I cytokine receptor)
initiates the signaling cascade by phosphorylating associated
JAK2. This, in turn activates STAT3, and MAPK extracellular
signal-activated kinase 1/2 (ERK1/2) (128). Leptin signaling
pathway has been reported to play a role in the proliferation of
breast cancer cells via JAK/STAT, ERK1/2, PI3K-Akt pathways,
and by enhancing angiogenesis through up-regulating vascular
endothelial growth factor (VEGF) (96).

While JAK/STAT pathway was originally identified as a
pathway activated by IFN signaling cascades, it has been recently
reported that JAK proteins can be activated by other types of
receptors to widen the array of the signals that could trigger
this signaling pathway. G protein-coupled receptors (GPCR) are
one of the categories of receptors that have shown capability to
activate JAK (129). Among GPCRs, CXCR4 has been indicated
to play a role in breast cancer cell growth. This receptor, activated
by chemokine stromal cell-derived factor (SDF-1alpha), becomes
tyrosine phosphorylated through activation and association with
the receptor of JAK2 and JAK3 kinases, which in turn recruit
and tyrosine phosphorylate multiple STAT family members
(63). In this category of receptors, platelet-activating factor
receptor (PAFR), bradykinin B2 receptor (B2R), and angiotensin
II receptor type 1 (AT1R) all activate TYK2 (along with JAK2
for PAFR and AT1R) to trigger the JAK/STAT pathway. Among
GPCRs, 5-HT2A receptor (5-HT2AR) has been identified as
the main receptor to mediate the cell growth enhancing
effect of serotonin (5-hydroxytryp-tamine; 5-HT) in different
tissue, including MCF-7 breast cancer cells (130). The signal
transduced through this membrane is known to activate both
Ras/Raf and JAK/STAT pathways, and a recent study confirmed
activation of JAK2/STAT3 combination by this receptor in JEG-
3 human trophoblast choriocarcinoma cells (61). Receptors to
both families of chemokines (CC and CXC) are also known
to activate JAK/STAT signaling pathway. In a 2001 manuscript,
Mellado et al. identified JAK1 (but not JAK2 or 3) to be associated
with CCR5, while CCR2 promoted JAK2 activation in HEK-
293 cells transfected with CCR5 and CCR2, respectively (62).
On the other hand, CXCR4 has been found to be a prognostic
marker in a variety of cancers, including breast cancer (131).
Activation of CXCR4 receptor by chemokine stromal cell-derived
factor (SDF-1α) has been reported to activate JAK2 and JAK3
independent of Gαi-1, and in turn recruit several members
of STAT family (63). Angiotensin II also activates JAK/STAT
pathway via AT1 receptor (AT1R) (68). In 2000, Ali et al. reported
activation of JAK2/STAT1 combination that was independent of
the tyrosine residues of the receptor, but completely dependent
on the catalytic activity of JAK2 (69).

Activation of STAT family of proteins by RTKs have been
long speculated; however, involvement of JAK proteins in the
process has been a topic of debate. A possible link between
signals transduced by epithelial growth factor receptor (EGFR)
and STAT family activation has long been identified (132).
However, the exact mechanism was not clear. In 2004, Andl
et al. reported a JAK-dependent activation of STAT1 and 3,
using a specific JAK inhibitor (AG-490), and suggested that
EGFR induces the phosphorylation of STAT1, which triggers
complex formation of STAT1 and 3 with JAK1 and 2 (97). Other

reports since then have confirmed this link, and indicated the
regulation of PD-L1 expression, among other intracellular roles,
via this link (133–135). Among other growth factor receptors,
fibroblast growth factor receptor (FGFR), platelet-derived growth
factor receptor (PDGFR), and vascular endothelial growth factor
receptor (VEGFR) have also been linked to this cascade. FGFR
has been reported to stimulate STAT1 and 3 through JAK2
(among other downstream proteins) (100). It has been reported
that tyrosine phosphorylation of STAT3 via this receptor is JAK-
dependent, relying on formation of a complex by JAK2 and Src
with FGFR1 (99). On the other hand, a recent study has indicated
VEGFR-2 to activate the JAK2/STAT3 signaling axis by recruiting
JAK2 and STAT3, which results in over-expression of MYC and
SOX2 (136).

There are a few reports that claim toll-like receptors (TLRs)
could also activate STAT3, which is one of the pathways for
this family of receptors to play a role in tumor development
(137); however, their involvement is contentious. TLR4 and TLR9
are among the receptors that have shown the most significant
correlation with STAT3 activation. It has been reported that
TLR4 overexpression could lead to STAT3 activation in intestinal
epithelial cells, which also correlates with the clinical outcomes
of colon adenocarcinoma (138). Upregulation of IL-6 by TLR4
is also reported in lymphoma (139), as a possible mechanism
in the carcinogenesis. TLR9 is overexpressed in glioma stem
cells, and a correlation between the expression level of TLR9 and
survival rate in glioblastoma has been reported (140). It has been
speculated that TLR9 activates JAK2 via Frizzled 4, which results
in phosphorylation of STAT3 (141).

Hormone receptors are another family of receptors that
have been associated with JAK/STAT pathway. In addition to
EPOR, prolactin receptor (PRLR) has also been indicated in
the activation of this signaling cascade. In 1997, Pezet et al.
reported that binding of prolactin to its receptor results in
dimerization of JAK2, which is “constitutively” associated with
this receptor (142). It has been speculated that JAK/STAT is the
principal signaling cascade activated by PRLR (106). Although
considered an “archetypal” cytokine receptor, growth hormone
receptor (GHR) is also associated with JAK2 activation and
triggers JAK/STAT pathway (107).

JAK ACTIVATION

Unlike RTKs, cytokine receptors do not possess intrinsic kinase
domain, and therefore, rely on JAK family to transfer the signal
to the cytoplasmic components of the cascade (143). JAK is
associated with cytoplasmic domains of cytokine receptors via
JAK binding sites that are located close to the membrane and
forms a complex that is equivalent in function to RTKs (144).
However, the where and when of this association has been a
topic of discussion (73). Members of JAK family consist of seven
different JAK homology (JH) domains that include a four-point-
one, ezrin, radixin, moesin (FERM) domain (JH5, 6, and 7) and
a Src homology 2 (SH2) domain (JH3, and 4). JH1 and JH2
form the kinase and pseudokinase domains, respectively (145).
The N-terminus half of all four members comprises FERM and
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SH2 domains that associate JAK with the cytoplasmic tail of
the cytokine receptors (146). Binding of the ligand to cytokine
receptor reorients the receptor/JAK dimers, which brings the
JAKs close enough to transphosphorylate the partner JAK in the
dimer at JH1. The activity of JH2 domain has only been reported
for JAK2, as 10% catalytic activity compared to JH1 (133), and
had been speculated to play an auto-inhibitory role, since the loss
of JH2 leads to constant activity (147). Activated JAKs in turn,
phosphorylate the residues on the cytoplasmic tail of the cytokine
receptor to create “docking sites” for recruitment of downstream
proteins with SH2 domains, e.g., STAT family of proteins (145).
It is evident that different receptors have specific preferences
for the JAK family protein they use as signaling effector, which
means there is an obligate relationship between the receptor and
the specific JAK protein(s) activated (143). However, in many
cases, it has been shown that in the absence of the specific
JAK family member, other proteins in the family have taken the
responsibility and transferred the signal.

RECRUITEMENT OF STATS AND
TRANSPORT TO NUCLEUS

The next step in this signaling cascade is the recruitment
of members of STAT family of proteins. Inactivated (or
“latent”) STATs are found in cytoplasm [although, non-
canonical mechanism of activation indicates presence of non-
phosphorylated STATs in nucleus (148)]. As their name indicates,
STATs act both as signal transducer and transcription factor;
however, two structural components make them unique among
transcription factors: an SH2 domain and a highly conserved
C-terminal tyrosine residue (149). It is this tyrosine residue
that is phosphorylated by activated JAKs. After phosphorylation,
STATs form stable homodimers or heterodimers with other STAT
proteins via SH2 domain interactions (150). A similar specificity
observed with JAKs is seen here as well, where specific members
of STAT family respond to a defined set of stimuli and receptors.
Among STATs, STAT3 has been shown to be activated through
other pathways, most importantly via EGFR and SRC (31, 151).
The JAK/STAT activation could also be inactivated by negative
regulators, e.g., SH2-containing protein tyrosine phosphatase
(SHP) and suppressor of cytokine signaling (SOCS) proteins
(152).

After activation by tyrosine phosphorylation, STATs become
dimerized and translocate into the nucleus, where they
act as transcription factors. Most STATs form homodimers;
however, heterodimer formations (including STAT1/2, STAT1/3,
and STAT5a/b) have also been reported (153). STAT1 has
been reported to exist as pre-formed homodimers, and
phosphorylation induces reorientation (anti-parallel to parallel
conformation), which presumably could be true for other STATs
as well (154).While translocation between cytoplasm and nucleus
is a regular occurrence, the nuclear envelope provides a barrier
that prevents free diffusion of large molecules (more than 40–
60 kilo Dalton in molecular weight). These large molecules,
including STATs usually require a specific transport receptor for
facilitated transport (155). The receptors involved in importing

molecules into nucleus are commonly known as importins,
which consist of α and β subunits, known as importin α and
β, respectively (156). The protein to be imported into the
nucleus binds to the importin α via a specific motif on the
protein called nuclear localization sequence (NLS) (157). After
binding to the protein, importin α interacts with importin
β, which docks the protein/importin complex at nuclear core
complexes (NPCs). The translocation process is an active
transport that requires energy, which is provided by NPC-
associated GTPase, known as Ran (156). The translocation of
STATs into nucleus via importins is a subject of discussion.
For example, there are six human importin αs reported in
literature, which show some similar structural characteristics,
but binding specificity as well. While it seems accepted that
STAT1 and STAT5 are transported into nucleus by importin
α5 and α3, respectively, the same certainty does not seem
to exist for STAT3. Different reports indicate involvement of
importin α5 and α7 (158), importin α3 and α6 (limited to testis)
(159), or a variety of importin αs (160). On the other hand,
there are speculations that STATs do not contain functional
NLS altogether, and therefore, NLS-containing chaperons are
required to associate with STATs to facilitated binding to
importins (153). Other reports indicate a binding site on
STAT1 and STAT3 slightly different than the NLS binding site
observed on other proteins (161). STAT3, 5, and 6 could be
translocated into nucleus in the un-phosphorylated form as
well (162).

STATS AS TRANSCRIPTION FACTORS

STATs have demonstrated the capability to activate the
transcription of non-active genes in a few minutes (163). STAT
family of proteins play multiple roles in cancer cells, and
specifically, STAT3 has been shown to enhance cancer cell
proliferation, migration, and survival, in addition to suppression
of antitumor immune response (137). JAK activation is not the
only mechanism of the activation of STATs and their migration
into nucleus. For instance, a link between STAT activation and
Src family of kinases has been proposed by researchers, which
will promote the transcription of proteins such as VEGF and
IL-8 (164). This ability of STATs to integrate the signal from
a wide variety of signaling cascades indicates the possibility
of regulation of a variety of genes through this family of
transcription factors that serve different mechanisms involved in
growth, differentiation, and survival. Among STATs, STAT1 and
STAT2 are known as the targets of interferon activation (165).
However, activation of STAT1 via PDGF has also been reported
(166). STAT1 forms a heterodimer with phosphorylated STAT2,
and IFN-regulatory factor 9, and is transported into nucleus to
bind to IFN-stimulated response element (ISRE) in promoters
of the responsive genes (167, 168). STAT1 homodimers are also
formed. Both dimers seem to promote the expression of genes
that enhance growth arrest and apoptosis (Table 3). For instance,
STAT1 is involved in expression of several caspases, as executives
of apoptosis (169). Based on the downregulation and activation
pattern of downstream proteins, STAT1 seems to be involved
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in controlling the cell growth, enhancing vascularization, and
inducing cell death, which are all characteristics that inhibit
tumor growth.

STAT2 was also initially identified as a component of the
STAT1/STAT2 heterodimer and IFN-regulatory factor 9, and is
the largest molecule among the proteins in this family. It has been
reported that tyrosine phosphorylation and heterodimerization
with STAT1 are necessary for STAT2 transportation into nucleus
(167). However, non-phosphorylated STAT2 is also translocated
into nucleus without interferon receptor signaling, as a result
of interaction with a non-STAT transcription factor called IRF9
(222). There is little information available about the formation of
STAT2 homodimers, and the role of STAT2 as an independent
transcription factor is largely unknown and controversial (175).
STAT2 activation has been linked to increased expression level
of Cluster of differentiation (CD) 40 and CD80 (150), receptors
involved in a multiple-step T-cell activation model (223). Similar
to STAT1, impaired response to interferons observed subsequent
to STAT2 knockdown in animal models has resulted in viral
infections (224).

STAT3 is by far the most studied and best-known member
of STAT family of proteins, and along with STAT5 have been
extensively investigated in cancer biology. The outcome of STAT3
activation, however, is almost the exact opposite of STAT1
(despite almost 70% sequence homology, and similar crystal
structure as tyrosine phosphorylated dimers) and contributes
to carcinogenic processes and cancer progression (150, 225).
It has been interconnected with nuclear factor-κB (NF-κB)
signaling, and they seem to co-regulate a variety of oncogenic
and inflammatory genes (226). It also seems to play a crucial
role in development, as knocking down STAT3 in mice has
been proven to be lethal to the embryo (227). STAT3 could
be transported into nucleus both as tyrosine phosphorylated
and non-phosphorylated, which is mediated by importin α3
(159) (silencing importin α3 using RNA interference approaches
has shown to induce STAT3 accumulation in cytoplasm), while
the main transporter for STAT1 is importin α5 (162). It
has been reported that non-phosphorylated STAT3 present in
nucleus could also affect the expression of many oncogenic
proteins, independently, or after forming complexes with other
transcription factors, e.g., JUN (228). Among well-known
proteins that are overexpressed by STAT3 activation, Mcl-1,
Bcl-2, Bcl-XL, and survivin are anti-apoptotic proteins that
play a crucial role in cancer cell survival (186, 187, 189),
cyclin D1 and c-Myc enhance proliferation (189), and VEGF
promotes angiogenesis, which is required for tumor growth
(229). On the other hand, STAT3 is reported to downregulate
expression of important proteins involved in apoptosis induction
or mechanism, including P53 (203), interferon β (206), Fas and
its ligand, and BAX [(207, 208); Table 3].

STAT1/STAT2, STAT1/STAT3, (163), and STAT1/STAT4 (230)
are the only heterodimers reported. Therefore, STAT4 is known
to form homodimers, and the activation of this member of
STAT family is triggered by IL-12 receptor, and is only linked
directly to enhanced expression of interferon γ as a result (209),
which is crucial in differentiation of T-helper cells 1 (231).
On the other hand, STAT5 is the other member of the family

usually associated with cancer. Two versions of this protein,
known as STAT5A and 5B, are identified, which share a similar
protein structure (more than 95% identical), and are reportedly
involved in development and hematopoiesis, since impaired T-
cell proliferation and severe anemia are reported in STAT5A/5B
double-knockdownmice (232). STAT5B transport into nucleus is
similar to STAT3, and can be transported in and out of nucleus in
non-phosphorylated form as well (233). Also, similar to STAT3,
STAT5 is also overactive in many invasive human cancers (163).
STAT5 is involved in expression of many proteins that are linked
to STAT3 as well, and therefore seems to contribute to similar
outcomes (cell survival and enhanced proliferation). However,
the expression of inhibitor of DNA binding 1 (Id-1) seems to
be exclusively linked to activation of STAT5 (214). Id-1 is a
protein involved in cancer progression, angiogenesis, and cell
survival (234). STAT5 and STAT6 are both reportedly overactive
in hematopoietic malignancies (226, 235). STAT6 activation
seems to be triggered mainly by IL-4 and IL-13, and the loss
of these cascades has been reported to impaired T-helper 2
cell differentiation (236) and development of certain types of
leukemias and lymphomas (235), respectively. Majoros et al. have
reviewed reports on “non-canonical” mechanisms of activation
(including kinase-independent JAK functions and activity of
non-phosphorylated STATs) recently (237).

MicroRNAs (miRNAs) are part of cellular gene expression
regulators that can significantly change the phenotypic
characteristics of the cell. They are expressed as hairpin
structures, transformed in a multi-step process to a single
strand RNA, and are incorporated into the RNA-induced
silencing complex (RISC) to identify and bind to a partial
or perfect complementary match on targeted mRNAs (238).
Not only are miRNAs involved in the regulation of proteins
involved in JAK/STAT pathway (similar to the majority of other
cellular proteins), STAT family of proteins are also reported
to regulate miRNA expression levels. For instance, it has been
shown that STAT3 directly activates miRNA-21, which in
turn, downregulate PTEN, among other proteins, which is a
well-known tumor suppressor gene (239, 240). The interactions
between STAT proteins and miRNAs have been previously
reviewed (241).

TARGETING JAK/STAT PATHWAY

Targeting members of JAK and STAT families of proteins
with molecularly targeted drugs, and/or RNA interference
(RNAi) approaches has been extensively studied, with many
of them already in clinics or clinical trials. It has been
hypothesized that blocking this signaling pathway could inhibit
cancer progression as a single therapy, or in combination
with other anticancer agents. The small molecule drugs
targeting these proteins in clinical trials or used in clinics are
summarized in Table 4. A quick look at the table reveals a few
facts:

a. Members of JAK family have been a more popular target of
molecularly targeted drugs than STATs. JAK is an upstream
protein to STAT, which means it has to be activated in order to
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TABLE 3 | Selected survival-related genes regulated by members of STAT family of proteins.

STAT Downstream target Change in expression Function (Outcome) References

STAT1 Caspase 2,3,7 ↑ Induces Apoptosis (169)

Fas ↑ Death receptor (Apoptosis) (170)

Fas-L ↑ Ligand for Fas (Apoptosis) (171)

TRAIL ↑ Ligand for TNF (Apoptosis) (170)

XAF1 ↑ Antagonizes XIAP (Apoptosis) (172)

IRF1 ↑ Transcription Factor (Apoptosis) (173)

P21 (CDKN1A) ↑ Inhibitor of cyclin D (cell cycle arrest) (174)

P27 (CDKN1B) ↑ Inhibitor of cyclin D (cell cycle arrest) (175)

Socs1/3 ↑ Negative feedback/pro-inflammatory (176)

IL-12 ↑ Negative feedback/pro-inflammatory (175)

IFITM1 ↑ Antiproliferative (177)

CXCL10 ↑ Angiogenesis (Tumor growth) (178)

Bcl-2 ↓ Anti-apoptotic (Survival) (179)

Bcl-XL ↓ Anti-apoptotic (Survival) (170)

Cox2 ↓ Enzyme (Inflammation; Survival) (180)

c-Myc ↓ Transcription Factor (Survival) (181)

HER-2/neu ↓ Receptor (Proliferation) (182)

CDKs ↓ Cell-cycle progression (Proliferation) (173)

VEGF ↓ Angiogenesis (Tumor growth) (183)

MMP9 ↓ Angiogenesis and metastasis (184)

MMP2 ↓ Angiogenesis and metastasis

bFGF ↓ Angiogenesis (Tumor growth)

STAT2* CD40 ↑ TNF receptor (Apoptosis) (150)

CD80 ↑ Ligand for CD28 (Apoptosis)

STAT3 Mcl-1 ↑ Anti-apoptosis (Survival) (185)

Bcl-2 ↑ Anti-apoptosis (Survival) (186)

Bcl-XL ↑ Anti-apoptosis (Survival) (187)

Survivin ↑ Anti-apoptosis (Survival) (188)

Cyclin D1 ↑ Cell-cycle progression (Proliferation) (189)

c-Myc ↑ Cell-cycle progression (Proliferation)

Pim1/2 ↑ Cell-cycle progression (Proliferation)

P21 ↑ Cell cycle arrest (190)

P27 ↑ Cell cycle arrest

VEGF ↑ Angiogenesis (Tumor growth) (191)

bFGF ↑ Angiogenesis (Tumor growth) (192)

IL-17 ↑ Angiogenesis (Tumor growth) (193)

IL-23 ↑ Angiogenesis (Tumor growth) (194)

CXCL12 ↑ Myeloid cell proliferation, survival (195)

MMP2 ↑ Myeloid cell proliferation, survival (189)

Cox2 ↑ Myeloid cell proliferation, survival (196)

HIF 1α ↑ Proliferation, angiogenesis (188)

IL-6 ↑ Proliferation (197)

IL-10 ↑ Anti-inflammatory Stimulation (198)

IL-21 ↑ Proliferation, differentiation (199)

Notch1 ↑ Proliferation, differentiation (200)

Rac1 ↑ Cell Cycle Progression (201)

Socs1 ↑ Pro-inflammatory (202)

Socs3 ↑ Pro-inflammatory

P53 ↓ Apoptosis Induction (203)

(Continued)

Frontiers in Oncology | www.frontiersin.org 9 July 2018 | Volume 8 | Article 287

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Bousoik and Montazeri Aliabadi JAK/STAT Signaling Pathway

TABLE 3 | Continued

STAT Downstream target Change in expression Function (Outcome) References

CD80 ↓ Ligand for CD28 (Apoptosis) (204)

CXCL10 ↓ Immuno-surveillance (205)

CCL5/RANTES ↓ Inflammatory Mediator (206)

CCL2/MCP1 ↓ Inflammatory Mediator (188)

IFN gamma ↓ Immuno-regulatory, Anti-proliferation (198)

IFN betta ↓ Apoptosis Induction (206)

Fas ↓ Apoptosis Induction (207)

Fas-L ↓ Apoptosis Induction

BAX ↓ Apoptosis Induction (208)

STAT4 IFN gamma ↑ Immuno-regulatory, Anti-proliferation (209)

STAT5 Bcl-XL ↑ Anti-apoptosis (Survival) (210)

Bcl-2 ↑ Anti-apoptosis (Survival) (211, 212)

Mcl-1 ↑ Anti-apoptosis (Survival)

Survivin ↑ Anti-apoptosis (Survival)

Pim-1 ↑ Cell-cycle progression (Proliferation)

c-Myc ↑ Cell-cycle progression (Proliferation)

Cyclin D1 ↑ Cell-cycle progression (Proliferation) (210)

P21 ↑ Cell-cycle progression (Proliferation) (213)

Id-1 ↑ Cell growth, differentiation, survival (214)

Socs1 ↑ Pro-inflammatory (215)

Socs3 ↑ Pro-inflammatory (216)

OSM ↑ Pro-inflammatory (217)

P53 ↓ Apoptosis Induction (218)

STAT6 Bcl-2 ↑ Anti-apoptosis (Survival) (219)

Bcl-XL ↑ Anti-apoptosis (Survival) (220)

GATA3 ↑ Differentiation (221)

BAX, Bcl-2-associated X protein; bFGF, basic fibroblast growth factor; Bcl-2, B-cell lymphoma 2; Bcl-XL, B-cell lymphoma extra-large; CD40 and 80, cluster of differentiation 40 and 80;

CCL, chemokine ligand; CDKs, cyclin-dependent kinases; CDKN1, cyclin-dependent kinase inhibitor 1; Cox-2, cyclooxygenase 2; IFITM1, interferon-induced transmembrane protein 1;

IFN, interferon; HER2/neu, human epidermal growth factor receptor 2; HIF1α, hypoxia-inducible factor 1-alpha; Id-1, inhibitor of DNA binding 1; IL, interleukin; IRF1, interferon regulatory

factor 1; Mcl-1, Myeloid Cell Leukemia Sequence 1; MMP, matrix metallopeptidase; OSM, oncostatin M; Rac1, ras-related C3 botulinum toxin substrate 1, Socs, suppressor of cytokine

signaling; TRAIL, TNF (tumor necrosis factor)-related apoptosis-inducing ligand; VEGF, vascular endothelial growth factor; XAF1, XIAP (X-linked inhibitor of apoptosis protein)-associated

factor 1. *STAT2 does not induce transcription alone, and is incorporated into ISGF3—(STAT1/STAT2/IRF9) complex. Upward arrows indicate up-regulation, while downward arrows

indicate down-regulation.

activate STATs, and this might be a hypothetical explanation
for this exaggerated focus. However, STATs have been reported
to be activated by other signaling mechanisms, independent of
JAKs. The other explanation could be based on the hypothesis
that upstream proteins might be involved in cross-talk with
other signaling cascades, and therefore, by targeting JAKs
we could also interfere with other mechanism involved in
cancer progression. The emphasis on JAKs is also apparent
in number of drugs in clinics and clinical trials compared to
drugs targeting STATs (which are mostly still in pre-clinical
stages);

b. While there is a variety of JAK proteins that have been targeted
by small molecule drugs (including TYK2), the only member
of STAT family that has been the focus of therapeutic attempts
is STAT3 (with the exception of fludarabine that targets
STAT1). This is mostly due to the fact that STAT3 has been one
of most promising targets for molecularly targeted treatment.

This also indicates less specificity seen in JAK inhibitors
(especially pan-JAK inhibitors, e.g. ruxolitinib), rather than
intentional targeting more than one JAK at a time;

c. JAK2/STAT3 seem to be the most popular targets in cancer
treatment. In fact, cancer seems to be the dominant target
for these therapeutic approaches. Autoimmune diseases (e.g.,
rheumatoid arthritis and psoriasis) are the second focus of
attention.

Ruxolitinib, tofacitinib, and fludarabine are the only molecularly

targeted drugs against JAK/STAT pathway used in clinics.
Fedratinib reached Phase III clinical trials; however, a report

published in 2015 indicates that the clinical development has

been discontinued due to toxic effects in some patients (most
importantly encephalopathy), despite significant reduction of

splenomegaly and symptom of myelofibrosis (245). Another
interrupted development was recently reported for Pacritinib
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TABLE 4 | Selected small molecule drugs targeting JAK or STAT proteins used in clinical setting or in different stages of clinical trials.

Drug Target protein Stage Application Outcome References

JAKs Ruxolitinib JAK1/2 Clinic P. Vera, Myelofibrosis Effective with mild toxicity (242)

Tofacitinib JAK3 > JAK1/2 Clinic RA – (243)

Phase III Chronic Plaque Psoriasis Efficient and Safe (244)

Fedratinib JAK2 Phase III Myelofibrosis Reduced splenomegaly,

encephalopathy (toxicity)

(245)

Decernotinib JAK1/2/3, TYK2 Phase II RA Improved symptoms (246)

Peficitinib JAK1/2/3 Phase III RA Safe and efficient (247)

WHI-P154 JAK3 Mice Glioblastoma multiforme Delayed tumor progress (248)

CEP-33779 JAK2 Mice Colorectal cancer Suppressed tumor growth (249)

AG 490 JAK2 Mice RA Improved symptoms (250)

Rats CLI Enhanced blood flow (251)

WP1066 JAK2 Phase I Brain tumors/melanoma Underway (NCT01904123) –

Momelotinib JAK1/2 Phase I/II Myelofibrosis Effective and tolerable (252)

Cerdulatinib JAK1/2/3, TYK2 Phase I CLL/B-cell NHL Recruiting (NCT01994382) –

Filgotinib (GLPG0634) JAK1 > JAK2/3, TYK2 Phase II RA Effective, well-tolerated (253)

CD Clinical remission (254)

Pacritinib JAK2 Phase III Myelofibrosis Terminated due to FDA concerns

(NCT01773187)

–

Baricitinib* JAK1/2 > JAK3, TYK2 Phase III RA Improved symptoms (255)

Gandotinib (LY2784544) JAK2 Phase II Myeloproliferative Neoplasms Ongoing (NCT01594723) –

TG101209 JAK2 Mice Lung Cancer Enhanced radiation effect (256)

XL019 JAK2 > JAK1/3, TYK2 Phase I Myelofibrosis Well-tolerated (257)

AT9283 JAK2/3 Phase II Multiple Myeloma No objective response (258)

AZ 960 JAK2 In vitro Leukemia/Lymphoma Growth arrest and apoptosis (259)

AZD1480 JAK1/2 Phase I Solid Tumors DLTs and lack of activity (260)

NVP-BSK805 JAK2 > JAK1/3, TYK2 Mice P. Vera Efficacious (261)

INCB018424 JAK1/2 Phase I/II Myelofibrosis Durable clinical benefits (262)

CEP-701 JAK2 Phase II Myelofibrosis Modest efficacy, but frequent GI

toxicity

(263)

STATs Fludarabine† STAT1 Clinic B-cell chronic lymphocytic leukemia – (264)

S3I-201 STAT3 > STAT1/5 Mice Breast cancer Breast tumor regression (265)

STA-21 STAT3 Phase I/II Psoriasis Improvement of lesions with topical

treatment

(266)

OPB-51602 STAT3 Phase I Hematologic and solid malignancies Promising antitumor activity in NSCLS (267)

OPB-31121 STAT3 Phase I Advanced solid tumors Antitumor activity (268)

HO-3867 STAT3 Mice Ovarian Cancer Inhibition of tumor growth (269)

SH-4-54 STAT3 > STAT5 Mice Glioma/Breast cancer Inhibition of tumor growth (270)

SH5-07 STAT3 Mice Glioma/Breast cancer Inhibition of tumor growth

Niclosamide‡ STAT3 Mice Head and neck cancer Inhibition of tumor growth (271)

Cryptotanshinone STAT3 Mice Liver cancer Effective STAT3 inhibition (272)

Stattic STAT3 Mice ESC Carcinoma Radio-sensitization (273)

CD, Crohn’s disease; CLI, critical limb ischemia; CLL, chronic lymphocytic leukemia; DLT, dose-limiting toxicity; ESC, esophageal squamous cell; GI, gastrointestinal; NHL, non-Hodgkin

lymphoma; NSCLS, non-small-cell lung cancer; P. Vera, Polycythemia Vera; RA, rheumatoid arthritis. *Baricitinib was approved for treatment of RA by European Commission in 2017.
†
Fludarabine is a chemotherapeutic agent (purine analog) that primarily targets ribonucleotide reductase and inhibits DNA synthesis. However, an inhibitory effect on STAT1 has also

been reported (274). ‡Niclosamide is a well-known anthelmintic agent (especially against tape worms) that has shown selective inhibition of STAT3.

(a specific JAK2 inhibitor) in Phase III clinical trial, due to
patient deaths, despite previous reports on its efficacy and
safety in myelofibrosis (275). However, there are still four
active Phase 1 and/or 2 trials that seem to continue on this
drug. Peficitinib is another pan-JAK inhibitor in Phase III,

which was recently reported efficacious in treatment moderate
to severe rheumatoid arthritis (RA) with “acceptable safety
profile” in a double-blind 12-wwek study in Japan (247). Recent
reports also indicate development of TYK2-specific inhibitors,
including NDI-031301 which has shown promising results in
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FIGURE 2 | The role of JAK2 protein in intracellular crosstalk.

acute lymphoblastic leukemia (276). In addition to the small
molecules included inTable 4, there are numerous new inhibitors
of JAKs and STATs. A comprehensive review on investigational
JAK inhibitors was recently published by Musumeci et al.
(277).

An alternative approach in blocking signaling pathways
involved in cancer progression is RNAi approaches that rely
on temporary or permanent “silencing” of the targeted protein
by targeting the mRNA responsible for the expression of the
targeted protein. Due to a wider range of targets for these
approaches, a larger number of effectors have been silenced via
RNAi-based attempts, which include the downstream proteins
activated by this pathway, and have been reviewed previously
(278). Antisense oligonucleotides (ASOs) have also been studied
for silencing proteins involved in this pathway. Recently, Hong et
al. reported preclinical and initial clinical evaluation of methyl-
modified ASOs (AZD9150) targeting STAT3 in patient-derived
xenograft models and highly treatment-refractory lymphoma
and non-small cell lung cancer patients (279). Another approach
to this type of expression inhibition is known as “decoys.” Decoys
targeting transcription factors, specifically, consist of nucleotide
sequence derived from conserved regulatory elements, and block
binding of transcription factor to genomic DNA by competitive
inhibition. Sen et al. reported using cyclic decoys (by linking
oligonucleotide strands using hexaethylene glycol spacers) in a
“phase 0” study to target STAT3 in head and neck cancer patients
(280). The newest strategy in silencing, the Clustered regularly
interspaced short palindromic repeats (CRISPR) and CRISPR-
associated protein (Cas)9 gene editing system, has been recently
used to silence components of JAK/STAT pathway, mostly for
investigational purposes. Quick et al. reported targeting JAK1
or STAT3 using CRISPR, which significantly reduced oncogene

ubiquitin-specific protease 6 (USP6)/TRE17 in bone and soft
tissue tumors, which indicates possibility of treatment of this type
of malignancy by inhibition of JAK/STAT pathway (281).

ROLE OF JAKS IN INTRACELLULAR
CROSSTALKS

The pivotal role of JAKs in intracellular signaling is not limited in
the JAK/STAT axis. Crosstalk between JAK and other well-known
signaling pathways has been documented in recent years. In 2007,
Levine et al. reviewed the role of JAK2 in myeloproliferative
disorders, and reported activation of two other major signaling
pathways (PI3K/Akt and Ras/Raf/MAPK/ERK) through JAK2
(282), which was later reported by Birzniece et al. (19)
as part of growth factor signaling, and Chiba et al. in
Alzheimer’s disease (20). It has been suggested that JAK2-
mediated ERK activation is conducted through Ras, and via
SH2-domain containing transforming protein (SHC), growth
factor receptor-bond protein (GRB), and son of sevenless
(SOS) (283, 284). Activation of PI3K has been proposed
to be via phosphorylation of IRS1/2 (285). In a review of
IFN-mediated signaling, Platanias has reported the activation
of the catalytic subunit (p110) of PI3K, and MAPKs via
phosphorylation of VAV or other guanine-nucleotide-exchange
factors (GEFs), as a result of activation of members of
JAK family (286). Direct activation of FAK via JAK2 has
also been reported in multiple studies (287–289). Figure 2

illustrates the central role of JAK protein in activation of these
three major pathways. Additionally, there is ample evidence
in literature for JAK-independent activation of STAT3 via
Src (290, 291).
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CONCLUSION

JAK/STAT is a major and versatile signaling pathway that has
been extensively studied in the past two decades for crucial
roles in cancer and inflammation. The variety of the receptors
triggering this pathway is unmatched among known signaling
cascades, and the wide range of downstream proteins indicate the
importance of JAK2/STAT3 axis in cancer progression. Despite
promising tumor suppression in animal studies as a result of
inhibition of this pathway, however, the safety issues have marred
the success of this therapeutic approach in clinical settings to
some extent. Also, due to the versatile nature of the pathway,

and potential crosstalks with multiple alternative pathways, a
monotherapy-based approachmight not create reliable results on
the long term. A more systematic exploration of intra- and inter-
pathway connections would be helpful in understanding the
molecular mechanisms of the signal transduction in this cascade,
as well, as identification of novel targets in cancer therapy.
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