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Mitochondria are dynamic organelles that exchange a multiplicity of signals with other

cell compartments, in order to finely adjust key biological routines to the fluctuating

metabolic needs of the cell. During neoplastic transformation, cells must provide an

adequate supply of the anabolic building blocks required to meet a relentless proliferation

pressure. This can occur in conditions of inconstant blood perfusion leading to variations

in oxygen and nutrient levels. Mitochondria afford the bioenergetic plasticity that allows

tumor cells to adapt and thrive in this ever changing and often unfavorable environment.

Here we analyse how mitochondria orchestrate the profound metabolic rewiring required

for neoplastic growth.

Keywords: mitochondria, tumor metabolism, signal transduction, oxidative phosphorylation, neoplastic growth,

oncometabolites, redox homeostasis, calcium

INTRODUCTION

Mitochondria are metabolic hubs that harbor enzymes responsible for several biochemical
circuitries, including tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), fatty
acid oxidation (FAO), biosynthesis of amino acids, lipids and nucleotides and maintenance of
homeostatic levels of Ca2+ and of reducing equivalent carriers. These bioenergetic, biosynthetic
and signaling functions render mitochondria capable of rapidly sensing and integrating stress
signals, in order to coordinate biochemical pathways required for the appropriate responses of the
cell to environmental changes (1).

Mitochondria gained center stage in molecular oncology when Otto Warburg observed that
tumor cells can ferment glucose to lactate even in the presence of oxygen, proposing that a failure
in mitochondrial respiration was the cause of this metabolic trait, called aerobic glycolysis, and
that this was in turn required for neoplastic growth (2, 3). Decades after this groundbreaking
observation, we know that aerobic glycolysis is part of a wider metabolic rewiring that characterizes
neoplastic growth. During this process, environmental conditions can rapidly fluctuate, following
local changes in oxygen, pH or nutrient gradients, and can become extremely harsh for the
transformed cell, which must become capable of tackling sudden shortages in blood supply or
exposure to anti-neoplastic treatments.

Unlike Warburg’s proposal, tumor cell mitochondria not only retain their functionality, but
are also instrumental for integrating a variety of signals and adjusting the metabolic activity of
the cell to such a demanding and stressful situation (4) (Figure 1). OXPHOS activity is down-
regulated, but not abolished, in many tumor cell types. Therefore, malignant cells start producing
a large portion of their ATP through glycolysis rather than OXPHOS. Enhanced glucose utilization
also increases the metabolic flux through pentose phosphate pathway (PPP) (5), which provides
anabolic building blocks for nucleotide synthesis and NADPH for anti-oxidant defenses, whereas
glycolytic intermediates are used for the biosynthesis of amino acids (4, 6–8). These metabolic
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changes down-regulate the TCA cycle, both because induction
of PPP and of anabolic pathways that branch from glycolysis
limit pyruvate availability, and because a low OXPHOS activity
inhibits the formation of NAD+ and FAD required for TCA cycle
dehydrogenases. Thus, mitochondria must activate anaplerotic
mechanisms in order to feed the TCA cycle, as its activity is
required for fatty acid (FA) and amino acid biosynthesis and
for the homeostatic maintenance of reducing equivalent carriers
(6, 9–14); this is mainly achieved by increasing the pace of
glutamine utilization (9, 15) (Figure 2).

Several recent lines of evidence suggest that mitochondria
indeed play a key promoter role in tumor growth and progression
(16). All along this process, mitochondrial biogenesis and quality
control are often upregulated, and mitochondria can even
retain a high level of OXPHOS in some tumor cell types.
Rare human neoplasms with defective respiration caused by
mutations in mitochondrial genome, such as oncocytomas (17,
18), are relatively benign, and mitochondrial DNA depletion
impairs tumorigenicity in several tumor cell models (19).
Altogether, these observations imply the existence of a negative
selection for a loss of mitochondrial function in neoplastic
transformation (20).

Mitochondrial bioenergetics is largely under the control of
extra-mitochondrial biochemical pathways, whose activity is
often altered by oncogenic mutations (21). Moreover, some
metabolic alterations that directly originate from mitochondria
are oncogenic per se (22). In certain tumor settings, mitochondria
can act as neoplastic drivers by generating high levels of
oncometabolites, i.e., metabolites that are able to change the
genomic and epigenomic landscape of the cell, hence prompting
the tumorigenic process (23, 24). Thus, the crosstalk between
mitochondria and rest of the cell can amplify the metabolic drift
of tumor cells away from their non-transformed counterparts
during neoplastic progression.

In the present review, we analyse how the metabolic plasticity
of tumor cell mitochondria contributes to the neoplastic process.
However, any general consideration must be confronted with
the real scenario of a tumor mass, where a myriad of factors
influence metabolism. These include the tissue of origin of
the neoplastic cell, its mutational and epigenomic profile and
the local environmental conditions, which can dictate confined
changes in the bioenergetic features of the cells, prompting
metabolic heterogeneity even in different portions of the same
tumor, or in different moments of its growth (25).

ONCOGENIC SIGNALLING PATHWAYS
AND MITOCHONDRIA

A complex network of signals moves back and forth between
nucleus and mitochondria (Figure 3). This crosstalk constantly
keeps under strict nuclear control any mitochondrial function,
ensuring its proper harmonization with the metabolic status
of the cell. Several major transduction pathways have a
strong impact on mitochondrial function, including the
transcriptional programs coordinated by HIF1, c-Myc and
p53, as well as Ras and mTOR/AMPK signaling (4, 21, 26, 27).

Consequently, pro-neoplastic dysregulation of any of these
signaling axes strongly affects the mitochondrial metabolic
machinery.

Hypoxia-Inducible Factors (HIFs) and
Mitochondrial Metabolism
HIFs induce transcription under low oxygen conditions and
are active when their two subunits, aryl hydrocarbon receptor
nuclear translocator (ARNT, or HIF-1β) and either HIF-1α
or HIF-2α, bind hypoxia-responsive elements (HREs) in gene
promoters. While ARNT is constitutively expressed, HIF-1α/2α
undergo proteasomal degradation triggered by hydroxylation
of specific proline residues. The prolyl-hydroxylases (PHDs)
targeting HIF-1α/2α are dioxygenases inhibited in hypoxic or
anoxic conditions, which leads to stabilization of HIF-1α and/or
HIF-2α. HIF stabilization orchestrates a transcriptional program
that equips tumor cells to sustain hypoxic stress by affecting
several aspects of cancer biology, including angiogenesis,
epithelial-to-mesenchymal transition, metastasis, resistance to
anticancer therapies as well as metabolic reprogramming
(28–30).

HIF-dependent metabolic rewiring embraces induction of
glycolysis and FA synthesis together with OXPHOS down-
regulation, a key adaptation to low oxygen (31), and has profound
effects on mitochondrial activity (Figure 3). One of the glycolytic
enzymes induced by hypoxia is hexokinase type II (HK II), the
most active hexokinase isoform whose expression is upregulated
inmany cancer types and contributes to their efficiency in glucose
utilization (32, 33). In tumor cells, HK II is mainly anchored
to the outer mitochondrial membrane, and its detachment
from mitochondria rapidly induces cell death (34–36). Thus,
mitochondrial binding of HK II has an important tumorigenic
function (37) and displays a protective role for mitochondrial
function and cell viability through mechanisms yet poorly
defined, but involving autophagy regulation in conditions of
glucose paucity (38).

The transcriptional program mastered by HIFs creates a
bottleneck in funneling glycolysis toward the TCA cycle by
slowing-down the conversion of pyruvate to acetyl-CoA (31).
This is achieved both through induction of the M2 isoform
of pyruvate kinase (PKM2), which is less active than the M1
counterpart in generating pyruvate from phosphoenolpyruvate,
and by eliciting the expression of pyruvate dehydrogenase kinase
1 (PDK1), an inhibitor of the pyruvate dehydrogenase complex
(PDC) (39, 40). In addition, HIFs promote lactate dehydrogenase
(LDHA) expression, again pushing pyruvate away from the
TCA cycle toward its conversion into lactate, using reducing
equivalents provided by glycolysis-derived NADH and thus
keeping the NAD+ levels required for a sustained glycolytic
activity (41). The parallel induction of monocarboxylic acid
transporters (MCTs) causes lactate extrusion from the cell and
contributes to acidification of the surrounding environment.
As a combined result of these modulations, OXPHOS activity
is down-modulated, and glycolytic intermediates upstream
to pyruvate accumulate and can be diverted to anabolic
routines (42).
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FIGURE 1 | Schematic representation of pro-tumoral biological processes regulated by mitochondria. Mitochondrial physiology (green) acquires advantageous

alterations in cancer (red) adjusting its metabolic activity to support the requirements for neoplastic cell growth and proliferation.

In these conditions, tumor cells must use lipids and
amino acids as main metabolic fuels (43), finding glucose-
independent sources for acetyl-CoA generation required for de
novo FA synthesis and for acetylation reactions (see section
Post Translational Regulation In Cancer Metabolism). In
general, tumor cells increase FA synthesis and the intracellular
levels of total FAs for membrane synthesis, lipid signaling
or as energy source (when oxidized) (44, 45). HIF signaling
increases lipid uptake and the induction of lipid kinases
and oxidases, resulting in an overall dysregulation of lipid
metabolism in cancer (46). To obtain high levels of acetyl-
CoA, mitochondria of cells undergoing hypoxia boost reductive
carboxylation of glutamine (47), which generates citrate via
the TCA cycle enzymes isocitrate dehydrogenase (IDH) and
aconitase. Citrate then moves to cytosol, where it can be cleaved
into oxaloacetate and acetyl-CoA by ATP citrate lyase (ACLY),
thus starting FA synthesis (Figure 3). HIF1α causes proteasomal
degradation of a subunit of the α-ketoglutarate dehydrogenase
(αKGDH) complex, a TCA component that is responsible for
oxidative glutamine metabolism, by inducing the E3 ubiquitin-
ligase SIAH2 (48). Thus, HIF-dependent transcription enhances
reductive carboxylation of glutamine by inhibiting its oxidation.

In parallel with induction of FA synthesis, HIF signaling down-
modulates FAO both directly, by inhibiting the expression of
the mitochondrial enzymes medium- and long-chain acetyl-
CoA dehydrogenase (MCAD and LCAD) (49) and indirectly,
by inducing PHD3, which activates acetyl-CoA carboxylase
2 (ACC2), thus prompting generation of the FAO repressor
malonyl-CoA (50).

Mitochondria can also directly regulate HIF stability
in a process termed pseudohypoxia that is independent of
environmental oxygen levels and further adds flexibility to the
metabolic responses of tumor cells (see section Mutations Of
Mitochondrial Enzymes In Cancer Metabolism). Furthermore,
at least in a model of renal carcinoma, HIF1α can repress
the expression of PGC-1α (peroxisome proliferator-activated
receptor gamma, coactivator-1α), a central regulator of
mitochondrial biogenesis, which in turn stabilizes HIF1α
(51). These observations highlight the existence of regulatory
loops between mitochondria and the transcriptional program
mastered by HIFs (52). Hypoxia also creates a redox stress
in mitochondria, as oxygen is the final electron acceptor in
OXPHOS and inadequate oxygen levels increase the leakage
of electrons out of respiratory complexes, forming reactive
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FIGURE 2 | Metabolic remodeling of cancer cells. In normal cells (left), a large fraction of glucose is metabolized to pyruvate that is almost completely oxidized to

CO2 through TCA (Krebs) cycle and OXPHOS in mitochondria, producing a large amount of ATP. Pyruvate is metabolized to lactate only in conditions of limiting O2.

Instead, most cancer cells (right) convert most glucose to lactate regardless of O2 availability (Warburg effect). The increased glucose utilization through glycolysis,

associated to an increase in glutamine utilization, generates metabolic intermediates used for the synthesis of nucleic acids through pentose phosphate pathway

(PPP), serine biosynthesis pathway (SER) and lipid biosynthesis, providing the building blocks for the anabolic needs of cancer cells. In addition, neoplastic cells

undergo an increase in ROS generation, and therefore increase their antioxidant defenses to avoid oxidative damage and maintain ROS homeostasis. GLUTs, Glucose

Transporters; MCTs, Lactate Transporters; SLCs, Solute Carriers.

oxygen species (ROS). Therefore, HIF signaling is also involved
in the maintenance of redox homeostasis, another complex
bioenergetic adaptation required for neoplastic progression
in which mitochondrial play a central role (see section Redox
Homeostasis And Mitochondrial Metabolism In Tumors).

c-Myc and Mitochondrial Metabolism
c-Myc is one of the most frequently induced oncogenes in human
cancers, where its transcriptional function becomes constitutively
activated following deregulation of oncogenic pathways, gene
amplification or chromosomal translocation (53). The effect
of c-Myc activation is the orchestration of nutrient uptake
and cell growth and proliferation, making its dysregulation
a key oncogenic driver. These biological routines require a
robust anabolic induction, and this is crucially supported by
mitochondria. There are several ways by which c-Myc affects
mitochondrial metabolism, thus sustaining growth of neoplastic
cells in the unfavorable environment they must deal with. The
transcriptional program mastered by c-Myc partially overlaps
the metabolic effects of HIF-dependent signaling. Indeed, c-Myc
upregulates the same set of glycolytic genes that are targeted
by HIFs, including GLUT1, LDHA, MCTs, PKM2, and HK
II, thus increasing glucose uptake and its utilization both in
glycolysis and PPP (Figure 3). As discussed for HIFs, these
changes cause a metabolic rewiring toward aerobic glycolysis,
lowering in parallel pyruvate availability for the TCA cycle and
OXPHOS (54).

At variance from HIFs, however, c-Myc is active under non-
hypoxic conditions, and can stimulate mitochondrial biogenesis
and respiration. c-Myc activates mitochondrial transcription
factor A (TFAM), PGC1β and mitochondrial DNA polymerase
gamma, which elicit the expression of hundreds of genes
encoding for mitochondrial proteins (55). This could be
relevant for the local adaptations of tumor cells to the
microenvironmental heterogeneity they find in the tumor mass.
It is possible to envision that c-Myc can prompt both glycolysis
and OXPHOS in neoplastic cells located in the proximity of
blood vessels, where high levels of oxygen are available. Instead,
when cells encounter more hypoxic conditions, c-Myc could
cooperate with HIFs in increasing glycolysis and attenuating
mitochondrial OXPHOS, without inhibiting other mitochondrial
metabolic activities (56).

Induction of mitochondrial serine hydroxymethyltransferase
(SHMT2) by c-Myc provides an elegant example of this
conditional cooperation between c-Myc and HIFs in regulating
metabolic circuitries of tumor cell mitochondria. SHMT2
is the major source of the one-carbon unit required for
folate metabolism and for the biosynthesis of nucleotides
and amino acids (Figure 3). It utilizes serine, obtained
from the glycolytic intermediate 3-phosphoglycerate, and
tetrahydrofolate (THF) to catalyze the synthesis of glycine
and 5,10-methylenetetrahydrofolate (5,10-CH2-THF).
In turn, 5,10-CH2-THF can generate formate and the
reducing equivalent donor NADPH in a reaction catalyzed
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FIGURE 3 | Mitochondria at the crossroad of metabolic networks and signaling cascades. Several proteins with pro-neoplastic activity (in light blue boxes) alter the

expression and/or the activity of metabolic enzymes and transporters, thus rewiring the metabolic status of cancer cells. Similarly, the possible loss of the tumor

suppressor p53 (in light red boxes) impacts on cancer metabolism at several levels. Enzymes that catalyze metabolic reactions are shown in ovals. Yellow ovals

indicate enzymes that are preferentially inhibited in tumors, while purple ovals indicate those that are mostly induced. G6P, glucose-6-phosphate; F6P,

fructose-6-phosphate; F1,6BP, fructose-1,6-bisphosphate; G3P, glyceraldehyde-3-phosphate; 1,3BPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG,

2-phosphoglycerate; PEP, phospho-enolpyruvate; R-5-P, ribose-5-phosphate; MCT, monocarboxylate transporter; GLUT, glucose transporter; PC, pyruvate carrier;

ASCT2, alanine, serine, cysteine-preferring transporter 2; 5,10-CH2-THF, 5,10-methylenetetrahydrofolate; 10-CHO-THF, 10-formyl-THF; 5,10-CH-THF, 5,10

methenyl-THF; HIF, hypoxia-inducible factor; HK, hexokinase; PFK1, phosphofructokinase 1; PGAM1, phosphoglycerate mutase 1; PKM2, pyruvate kinase M2

isoform; LDHA, lactate dehydrogenase A; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PDH, pyruvate dehydrogenase complex; PDK, pyruvate

dehydrogenase kinase; αKGDH, α-ketoglutarate dehydrogenase; CS, citrate synthase; SDH, succinate dehydrogenase; FH, fumarate hydratase; IDH, isocitrate

dehydrogenase; GLS, glutaminase; ACLY, ATP-citrate synthase; ACSS2, Acyl-coenzyme A synthetase short-chain family member 2; ACC, acetyl-CoA carboxylase;

FASN, fatty acid synthase; SCD1, stearoyl-CoA desaturase 1; SHMT, serine hydroxymethyltransferase; MTHFD, methylenetetrahydrofolate dehydrogenase; CPT,

carnitine O-palmitoyltransferase; MCAD, medium-chain acetyl-CoA dehydrogenase; LCAD, long-chain acetyl-CoA dehydrogenase; PGC1, peroxisome

proliferator-activated receptor gamma, coactivator-1; TFAM, mitochondrial transcription factor A; PPP, pentose phosphate pathway; TCA, tricarboxylic acid; OXPHOS,

oxidative phosphorylation.
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by methylenetetrahydrofolate dehydrogenase 2 (MTHFD2).
c-Myc-dependent induction of SHMT2 under normoxic
conditions has important biosynthetic consequences: formate is
released in the cytosol where it is involved in purine synthesis;
glycine and 5,10-CH2-THF contribute to nucleotide synthesis,
and NADPH is required for reductive biosynthesis of amino
acids, deoxyribonucleotides and lipids (54, 55). When a tumor
cell faces hypoxia, HIF stabilization further induces SHMT2.
This is counterintuitive, as in low-oxygen conditions cells
inhibit proliferation, thus reducing demand for anabolic
fluxes. Nevertheless, under hypoxia SHMT2 is essential for
survival of c-Myc-transformed cells as it protects them from
oxidative stress. Indeed, MTHFD2 activity maintains a high
NADPH:NADP+ ratio, and NADPH is required for regeneration
of the antioxidant tripeptide glutathione and hence for protection
from ROS damage (57). Notably, SHMT2 is required for
survival and proliferation of neoplastic cells in ischemic tumor
zones (58).

c-Myc also promotes the glutamine addiction that
characterizes several cancer cell types (54, 55) (Figure 3).
Glutamine is both a nitrogen and carbon source essential for
biomass accumulation, and a substrate used for bioenergetic
purposes, and it is avidly consumed by neoplastic cells for
proliferation and survival (Figures 2, 3). c-Myc increases the
expression of the plasma membrane glutamine transporter,
ASCT2/SLC1A5, and of glutaminases (GLS) that convert
glutamine to glutamate in cytosol (GLS1) or mitochondria
(GLS2) as a first step of its oxidation (15, 59). Glutamate generates
α-ketoglutarate (α-KG) either via glutamate dehydrogenase
(GDH), in a reaction that releases ammonia, or via several
aminotransferases that transfer glutamate nitrogen to α-keto
acids, such as pyruvate, for producing other amino acids and
α-KG. In turn, α-KG feeds the TCA cycle, which is therefore
accelerated by c-Myc via glutaminolysis induction. c-Myc
also increases the TCA cycle flux up to four-folds by eliciting
the expression of most of its enzymes (55). When the TCA
cycle flux is impaired, e.g., in low glucose conditions or by
mutations in some of its components, α-KG can act as an
anaplerotic substrate that provides carbon units to yield citrate
by moving backwards through the TCA cycle through reductive
carboxylation (9). In cytosol, citrate starts lipid synthesis.
c-Myc induces the string of enzymes responsible for the first
steps of lipidogenesis, whose upregulation occurs across most
tumors (45). These enzymes include ACLY, which uses citrate to
synthesize acetyl-CoA, Acetyl-CoA carboxylase, which generates
malonyl-CoA, fatty acid synthase and stearoyl-CoA desaturase
(55). Malonyl-CoA inhibits carnitine acyl transferase I (aka
carnitine palmitoyltransferase I, CPT I), the carrier responsible
for the uptake of fatty acids in mitochondria, thus acting in a
feedback loop on mitochondrial metabolism to inhibit FAO (60).

Taken together, these observations demonstrate how tumor
cell mitochondria can control the homeostatic balance of
reducing equivalent donors, OXPHOS activity, lipid synthesis
and oxidation in response to c-Myc and/or HIF activation, with
crucial implications for chromatin remodeling, tuning of all
major anabolic pathways and handling of oxidative insults.

p53 and Mitochondrial Metabolism
The transcription factor p53 is a key tumor suppressor activated
by a set of stress signals, such as genotoxic damage, oncogene
activation, nutrient or oxygen scarcity and loss of cell-to-cell
contacts, all of which characterize malignant transformation (61,
62). A functional inactivation of p53 occurs in the majority of
tumor types (63). p53 mainly exerts its activity in the nucleus
by regulating the expression of genes or microRNAs (miRNAs),
even though it can also act in cytosol and mitochondria to inhibit
autophagy (64) or to promote cell death (65). p53 activation
induces death or senescence when a sustained or intense stress
causes irreversible cell damage. Conversely, mild stresses result
in p53-dependent adaptive responses, consistent with its role in
repairing or avoiding damage. During fluctuations in oxygen or
nutrient availability, the effect of p53 is a global promotion of
cell catabolism, associated with an inhibition of proliferation and
growth (Figure 3). p53 interacts with mTOR (mammalian target
of rapamycin) and AMPK (AMP-activated protein kinase), two
master regulators of cellular metabolism. The mTORC1 complex
is active in the presence of both adequate growth conditions
and mitogens and coordinates the anabolic responses of the
cell (66), whereas AMPK inhibits mTORC1 and allows cells
to adapt to energetic stresses by utilizing glucose and FA for
increasing ATP levels (see below) (67). A complex interplay
exists between p53 and the mTORC1/AMPK circuitry: p53 both
activates AMPK and elicits the expression of several negative
regulators of mTORC1, whereas AMPK activates p53 through
several means, including its phosphorylation and acetylation (62,
68). In this way, cells can respond in a balanced and flexible way
to metabolic variations, different types of stress signals, growth
and proliferation inputs (69).

p53 can also exert a more direct action on several metabolic
effectors (Figure 3). In general, it dampens the glycolytic rate
through a concerted downregulation of glucose transporters
(GLUTs) (70) and of the glycolytic enzyme phosphoglycerate
mutase (PGAM) (71). p53 also prompts the expression of
TIGAR (TP53-induced glycolysis and apoptosis regulator),
which indirectly inhibits phosphofructose kinase 1 (PFK1)
(72), thus leading to a p53-dependent diversion of glycolytic
intermediates into the PPP (62). However, the effect of p53
on glucose metabolism is highly context-dependent, as p53
can also negatively modulate PPP activity (73). In parallel to
inhibiting glycolysis, p53 enhances mitochondrial bioenergetic
activity in several ways (Figure 3). It promotes mitochondrial
quality control by inducing mitophagy to substitute damaged
mitochondria, and it increases mitochondrial DNA copy number
and mitochondrial mass (68). p53 boosts TCA cycle via
induction of the mitochondrial glutaminase GLS2 (74, 75),
thus fueling glutamine to glutamate conversion and in turn
α-KG generation through the TCA cycle enzyme α-KGDH.
Moreover, p53 activates the PDC as it inhibits the negative
PDC regulator pyruvate dehydrogenase kinase 2 (76), increasing
pyruvate funneling into the TCA cycle through its conversion
to acetyl-CoA. p53 also enhances OXPHOS activity by inducing
the expression of subunit I of cytochrome c oxidase (COX),
the complex IV of the electron transport chain, and of
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the COX assembly factor SCO2, as well as of apoptosis-
inducing factor (AIF), which is required for a proper OXPHOS
functioning (68).

In general, p53 lifts lipid utilization inhibiting FA synthesis
and increasingmitochondrial FAO in a coordinatedmanner (68).
This results from p53-dependent modulation of glycolysis and
PPP, as these routines supply the building blocks (acetyl-CoA and
NADPH) needed for lipid synthesis. Furthermore, p53 directly
stimulates FAO by inducing the mitochondrial membrane FA
transporters carnitine acetyltransferases (CPTs) (77, 78), the
transcriptional co-activator for FAO genes lipin 1 (79), and
pantothenate kinase 1, which is essential in β-oxidation as it
is involved in CoA biosynthesis (80). Moreover, p53 induces
malonyl-CoA decarboxylase, which lowers the levels of the
CPT allosteric inhibitor malonyl-CoA (81). Thus, p53 opposes
the metabolic shift toward the induction of FA synthesis and
glycolysis that characterizes many tumor cell types and supports
mitochondrial FAO and OXPHOS. Notably, FAO induction
further feeds OXPHOS via generation of FADH2 and NADH.
Nonetheless, under conditions of extreme stress p53 can have
an opposite effect on mitochondria, potently contributing to
their dysfunction through repression of the master regulators of
mitochondrial biogenesis PGC-1α/PGC-1β, thus leading to cell
senescence or death (82).

The AMPK/mTOR System and
Mitochondrial Metabolism
AMPK acts as a homeostatic device whose purpose is the
rapid restoration of energy balance through an orchestrated
inhibition of ATP-consuming biosynthetic pathways. It activates
following a drop in ATP levels, as it senses the AMP/ATP ratio.
Therefore, AMPK induction is promoted by down-regulation of
mitochondrial OXPHOS activity; in turn, AMPK induces glucose
uptake and glycolysis while inhibiting storage of glucose, and
it suppresses FA synthesis by phosphorylating and inhibiting
ACCs (83) (Figure 3). ACC2, the isozyme associated to the
outer mitochondrial membrane, generates malonyl-CoA that
inhibits CPT1 and therefore mitochondrial import of FAs for
their oxidation. Hence, ACC2 inhibition by AMPK induces
mitochondrial FAO (67). Moreover, AMPK inhibits de novo
lipid generation via direct phosphorylation of SREBP1 (sterol
regulatory element binding protein 1), a master transcriptional
regulator of lipid synthesis (84). AMPK also prompts mitophagy
through phosphorylation of ULK kinases (1) and mitochondrial
fragmentation through phosphorylation of mitochondrial fission
factors (85) in order to restrict energy expenditure and to
maintain cell viability in conditions of starvation or of OXPHOS
dysfunction. When the bioenergetic stress lingers on, AMPK
reprograms metabolism for allowing cells to tackle prolonged
energy crises. Therefore, a sustained AMPK activation increases
FAO as a bioenergetic source, while limiting glucose and lipid
synthesis (67) and increasing mitochondrial biogenesis via PGC-
1α, thus allowing a high degree of metabolic plasticity to cells
undergoing energetic stress (1).

The protein complex mTORC1 is formed by the
serine/threonine protein kinase mTOR, by the regulatory
proteins Raptor, which facilitates substrate recruitment to
mTORC1, and mLST8, which associates with the catalytic

domain of mTORC1, and by the two inhibitory subunits PRAS40
and DEPTOR (86). mTORC1 promotes all major anabolic
pathways, including protein, lipid and nucleotide synthesis,
together with glucose metabolism and organelle biogenesis.
It is activated by the Ras/ERK and by the PI3K/Akt signaling
pathways, which are deregulated in most cancer types, whereas
it is inhibited by the tumor suppressors p53 and LKB1. Thus,
mTORC1 induction is a crucial event in the metabolic rewiring
of tumor cells (66) (Figure 3). mTORC1 promotes a shift
from OXPHOS to glycolysis, and it enhances the expression
of many glycolytic genes by increasing HIF1α translation (87);
in addition, it activates GDH, thus inducing glutaminolysis
(88), and it upregulates MTHFD2 expression and therefore the
mitochondrial folate pathway required for purine synthesis (89).
The mTORC1 complex also activates SREBP, thus opposing the
effect of AMPK on lipidmetabolism and promoting lipidogenesis
(90).

Ras and Mitochondrial Metabolism
RAS genes encode a family of GTPases whose mutations are
frequently causative of tumor development and are common in
cancer. Hyperactivation of Ras-induced transduction pathways
boost cell growth and proliferation, prompt resistance to death
signals and promote the acquisition of invasive and metastatic
properties (91, 92). Moreover, deregulated Ras signaling
orchestrates pro-neoplastic changes in several components
of the tumor microenvironment, including cancer-associated
fibroblasts, endothelial, inflammatory and immune cells (93).
Therefore, Ras mutations are among the most problematic
oncogenic events, frequently associated with a dismal prognosis
(94). Oncogenic activation of Ras signaling has a profound
impact on the metabolic changes of tumor cells (Figure 3).
It induces HIF1α both by upregulating the HIF1A gene
and by enhancing translation of its mRNA via activation of
the mTORC1 complex through the Ras downstream effectors
ERK and PI3K/Akt (91). As described above, HIF1α in turn
promotes both the transport and the glycolytic utilization of
glucose and the funneling of glycolytic intermediates into the
PPP (95).

In parallel, oncogenic Ras signaling affects mitochondrial
bioenergetics in several ways. It prompts mitochondrial
translocation of phosphoglycerate kinase I, which inhibits PDC
via activation of the PDC inhibitor PDK1; as a result, less
pyruvate is funneled in the TCA cycle, leading to a decrease in
ROS levels together with a surge in lactate extrusion (96). K-Ras-
dependent transformation inhibits OXPHOS by down-regulating
respiratory complex I content (97, 98). ERK, a crucial Ras effector
that can locate in mitochondria (35, 99), decreases the activity
of respiratory complex II, aka succinate dehydrogenase (SDH;
see also section Post Translational Regulation In Cancer
Metabolism) (100). Nonetheless, transformation by Ras does not
abrogate OXPHOS activity, which still generates a large fraction
of cellular ATP (101–103).

Several evidences underline the importance of mitochondrial
activity in Ras-driven tumor cells. Together with loss of p53,
hyperactive Ras elicits autophagy in a non-small-cell lung cancer
setting, thus preserving a proper mitochondrial function that
is required for lipid homeostasis and tumor growth (104).
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Inhibition of the mitochondrial transcription factor Tfam leads
to mitochondrial depletion and impedes growth of K-Ras-
dependent lung tumors (105). Similarly to Myc-transformed
cells, Ras-driven cancers strongly rely on glutamine for growth
and survival (106, 107), and glutamine is the major carbon source
for the TCA cycle when Ras is activated (95). In pancreatic
cancer, which is characterized by activating mutations in K-Ras
inmore than 90% of cases, mitochondrial glutamate-oxaloacetate
transaminase 2 (GOT2) utilizes glutamine-derived glutamate and
oxaloacetate (OAA) to generate aspartate that is then exported to
cytosol. Here, GOT isoform 1 converts back aspartate to OAA,
which provides malate and finally pyruvate by malic enzyme
(ME). This reaction produces NADPH, a key factor to reduce
glutathione in order to avoid oxidative stress (108). Anchorage-
independent growth of K-Ras-transformed cells requires α-
KG generation by glutamine through glutaminase and alanine
aminotransferase activity (105). Lung cancer cells exhibit a high
channeling of glycolytic metabolites into the TCA cycle and
glutathione biosynthesis, leading to protection from oxidative
insults. This metabolic rewiring occurs when neoplastic cells are
homozygous for K-RasG12D, but not in heterozygous K-RasG12D

cells, which characterize early tumor stages, thus highlighting the
importance of oncogenic Ras in shaping metabolic heterogeneity
and adaptions of cancer cells (109).

MUTATIONS OF MITOCHONDRIAL
ENZYMES IN CANCER METABOLISM

The oncogenic role played by changes in mitochondrial
metabolism was first spotted by finding that mutations
in subunits of SDH, an enzyme placed at the crossroad
between OXPHOS and TCA cycle, as well as in the TCA
cycle enzyme fumarate hydratase (FH), are causative of
some human tumor types (110–113). These were paradigm-
shifting findings, as they demonstrated for the first time that
mitochondria, and in particular core bioenergetic enzymes,
could play an active role in the complex alterations of
biochemical circuitries that lead to tumor onset (114).
SDH and FH act as classical tumor suppressors (Figure 4).
Inactivating mutations in SDH subunits have been identified
in both genetic and sporadic cancer types, including familial
paraganglioma/pheochromocytoma (PGL/PCC) (115), renal
carcinoma, thyroid cancer, neuroblastoma, gastrointestinal
stromal tumor, ovarian cancer and testicular seminoma
(116), whereas FH loss-of-function hallmarks hereditary
leiomyomatosis and renal cell cancer (HLRCC) and skin and
uterine leiomyomas (22).

Research in the last few years allowed understanding that the
metabolic origin of this peculiar subset of neoplasms illustrates
concepts of general importance. Indeed, it emerged that there is
a tight intertwining between metabolism and gene expression,
as cells and tissues (and neoplasms make no exception) must
strictly coordinate genome expression and metabolic state for the
proper unfolding of their biological routines (117). Components
of intermediary metabolism affect the activity of chromatin-
modifying enzyme (Figure 4). This leads to epigenomic changes

mastering pro-neoplastic molecular rewiring via gene expression
regulation (118). Inactivating mutations of SDH and FH drive
such mechanisms by causing accumulation of their substrates
succinate and fumarate, respectively, which leads to inhibition
of a class of enzymes called α-KG–dependent dioxygenases.
To hydroxylate their substrates, these enzymes take up one
oxygen atom by α-KG, which therefore acts as a co-substrate
that is decarboxylated and releases carbon dioxide and succinate.
Both succinate and fumarate competitively inhibit α-KG–
dependent dioxygenases, including the JmjC domain-containing
demethylases (KDMs), which hydroxylate lysine residue on
histones, the TET (ten-eleven translocation) family of 5-
methylcytosine hydroxylases, which induce DNA demethylation
of CpG islands near gene promoters, and prolyl hydroxylases
(PHDs), which prompt proteasomal degradation of HIF1α
(119). These enzymes play central roles in epigenetic and
transcriptional regulation, and their inhibition by high levels of
succinate and fumarate suppresses differentiation and promotes
proliferation and further metabolic changes (20), thus inducing
tumorigenesis. As a consequences of these pro-neoplastic effects,
both succinate and fumarate have been dubbed oncometabolites
(23, 24) and similar patterns of epigenomic changes can be
observed both in FH- and in SDH-deficient tumors (120).
Oncometabolites also favor tumor cell motility by affecting
extracellular matrix composition via inhibition of collagen
prolyl-4-hydroxylases (119) and elicit angiogenesis through
succinate-dependent transcriptional induction of VEGF (116).

Fumarate inactivates aconitase 2 (Figure 4), a TCA cycle
enzyme containing an iron-sulfur group (121) and proteins
involved in the biogenesis of iron-sulfur clusters (122),
and it inhibits the enzymatic activity of SDH through a
product inhibition effect, leading to down-modulation of both
OXPHOS and TCA cycle function. In order to cope with
the absence of a functional TCA cycle, FH-deficient cells
utilize fumarate in a linear pathway starting with glutamine
and ending with the biosynthesis and degradation of haem
and eventually with bilirubin excretion. This pathway is
crucial for mitochondrial NADH production, and makes FH-
deficient cells dependent on heme oxygenase activity, thus
creating a metabolic vulnerability (123). In addition, TET
inhibition by fumarate causes inactivating hypermethylation of
the anti-metastatic miRNA cluster miR-200, thus promoting the
transcriptional program mastered by the miR-200 target ZEB1.
ZEB1 induces epithelial-to-mesenchymal transition (EMT), a
complex biological rearrangement by which tumor cells acquire
invasive properties (124). Thus, fumarate-dependent inhibition
of miR-200 boosts EMT (125) (Figure 4). Fumarate can also
tune cell redox equilibrium via protein succination, i.e., the
interaction between fumarate and cysteine residues to produce
S-(2-succino)-cysteine, which hampers protein function (24).
Fumarate both inactivates by succination Kelch-like ECH-
associated protein 1 (KEAP1), which promotes proteasomal
degradation of NRF2, the master transcriptional regulator of
the cell response to oxidative stress (23, 126), and generates
succinated glutathione, an alternative substrate to glutathione
reductase that leads to an increase in mitochondrial ROS levels
and to HIF-1 activation (127) (Figure 4).
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FIGURE 4 | Biochemical mechanisms of oncometabolite accumulation. Inactivating mutations in genes encoding succinate dehydrogenase (SDH) and fumarate

hydratase (FH), as well as oncogenic mutations in isocytrate dehydrogenase (IDH), lead to the accumulation of succinate, fumarate and D-2-hydroxyglutarate

(D-2-HG). These oncometabolites inhibit α-KG-dependent dioxygenases, including prolyl hydroxylases (PHDs), the ten-eleven translocation (TET) family of

methylcytosine hydroxylases and histone lysine demethylases (KDMs), leading to HIF1α stabilization and alterations in gene expression through epigenetic

modifications. Separately, fumarate inactivates by succination both aconitase 2 (ACO2) and Kelch-like ECH associated protein 1 (KEAP1), which results in the

activation of the antioxidant pathway mediated by NRF2, and also generates succinated glutathione (GSF), an alternative substrate to glutathione reductase (GSR).

Additionally, tumor cells can use alternative ways to increase oncometabolite concentration, such as the upregulation of the mitochondrial chaperone TRAP1, which

inhibits the activity of SDH, leading to the intracellular accumulation of succinate. 2SC, succination of cysteine residues; EMT, epithelial-to-mesenchymal transition;

GSH, reduced glutathione; HO-1, heme oxygenase-1; IMS, intermembrane space, M, methylation; OAA, oxaloacetate; P, phosphorylation, Succ-CoA, succinyl-CoA;

U, ubiquitination.

More recently a third oncometabolite was identified, D-2-
hydroxyglutarate (D-2-HG). D-2-HG accumulates to millimolar
concentrations in tumors with monoallelic mutations in
IDH1 and IDH2, NADP+-dependent homodimers localized in
cytoplasm and mitochondria, respectively, that convert isocitrate
to α-KG (Figure 4). Mutant IDH1/2 dimerize with the wild-type

protein and the heterodimeric enzyme acquires a neomorphic
activity: the reduction of α-KG to D-2-HG in the presence of
NADPH (128). As for fumarate and succinate, D-2-HG has a
molecular structure that is similar to α-KG. Thus, D-2-HG acts
as a competitive inhibitor of α-KG on the activity of α-KG-
dependent dioxygenases (129). This results in global remodeling
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of DNA methylome, with an increase in methylation of both
CpG islands and histones (130), and in inhibition of the PHDs
that degrade the HIFs (131). Mutant versions of cytoplasmic and
mitochondrial IDH isoforms are present in a fraction of acute
myeloid leukemias and in the majority of glioblastomas, as well
as in chondrosarcomas and cholangiocarcinomas (131). Cells
harboring high levels of D-2-HG are endowed with glutamate
depletion, probably because glutamate is utilized to produce α-
KG and subsequently converted to D-2-HG. Both low glutamate
levels and a higher NADP+/NADPH ratio caused by increased
consumption of NADPH could suppress glutathione synthesis
and regeneration, affecting the redox equilibrium of IDHmutant
cells (9, 15, 24).

In addition to genetic mutations that affect the activity of
enzymes involved in raising levels or generating oncometabolites,
it is possible that tumor cells utilize more subtle ways to rapidly
tune oncometabolite concentration, in order to afford rapid
and flexible response to environmental changes. The molecular
chaperone TRAP1 provides such an example. TRAP1 is a
component of the HSP90 chaperone family whose expression is
restricted to mitochondria and is increased inmanymalignancies
(132). TRAP1 down-regulates the activity of both SDH (133)
and respiratory complex IV (134), thus decreasing oxygen-
coupled ATP synthesis and shifting the burden of ATP
production to glycolysis (Figure 4). Inhibition of SDH by TRAP1
leads to succinate accumulation (133). Such an inhibition is
further enhanced when ERK phosphorylates TRAP1, as in
cells lacking the Ras GTPase-activating protein neurofibromin
(100) that are characterized by deregulated induction of the
Ras/ERK1/2 signaling pathway and form tumors in patients
with the genetic syndrome neurofibromatosis type I (135).
An increase in succinate levels induced by TRAP1 drives
HIF1α stabilization independently of oxygen levels (136), i.e., it
generates conditions of pseudohypoxia, an adaptive feature of
many tumors that allow them sustaining the neoplastic process
even before hypoxic conditions are encountered by the growing
malignancy. The importance of providing such a metabolic
adaptableness is highlighted by the observation that abrogating
TRAP1 expression ablates tumorigenicity when different cell
types are xenografted in mice (100, 133), even though the specific
importance of TRAP1 in neoplastic growth could be context-
dependent (132).

REDOX HOMEOSTASIS AND
MITOCHONDRIAL METABOLISM IN
TUMORS

Mitochondria are the major source of intracellular reactive
oxygen species (ROS), as about 1% of O2 consumed by
OXPHOS undergoes a one-electron reduction that forms a
superoxide anion (137, 138). In addition, other mitochondrial
metabolic enzymes, such as αKG dehydrogenase, PDH, the
mitochondrial form of glycerol-3-phosphate dehydrogenase and
acyl-CoA dehydrogenase can generate ROS (139–141). An
excessive oxidant challenge damages biomolecules and leads to
DNA mutations that eventually prompt cell senescence or death

(142), but maintenance of a physiological redox equilibrium, or
oxidative eustress (141), governs a variety of life processes and
signal transduction pathways (137) (Figure 5).

Intracellular ROS levels are in general higher in tumor cells
than in their non-transformed counterparts, and are involved in
oncogene activation, tumor suppressor loss, metabolic rewiring,
mutations in mitochondrial DNA (mtDNA) or hypoxia (142).
ROS can reversibly target cysteine residues within the enzymatic
sites of many phosphatases, such as the PI3K inhibitor PTEN,
MAPK phosphatases and Tyr phosphatases (143), causing their
inactivation. The consequent boost of kinase signaling pathways
(144) affects mitochondrial metabolism, e.g. by tyrosine kinases
that inhibit at multiple levels the PDC (145). In addition,
many mitochondrial FAO enzymes contain ROS-sensitive Cys
residues (Figure 5). Taken together these observations suggest
that oxidative stress can tune mitochondrial metabolism by
compromising both beta-oxidation of lipids and pyruvate entry
into the TCA cycle (139). mtDNA mutations deregulate redox
equilibrium by hampering respiration. Such mutations prompt
in vitro and in vivo tumorigenicity, correlate with acquisition
of metastatic potential and poor prognosis and can be used for
cancer detection and determination of the degree of malignancy
(20).

Hypoxia increases superoxide release from respiratory
complex III, leading to PHD inhibition, possibly via oxidation
of Fe2+ that is required for PHD function, and to the ensuing
stabilization of HIFα subunits (52). In turn, HIF activation
decreases ROS production by (i) down-modulating OXPHOS
activity, as it suppresses SDHB expression (146), induces
NDUFA4L2 (NADH dehydrogenase 1 subcomplex, 4-like 2),
which attenuates complex I activity (147), and prompts the
substitution of the COX subunit 4-1 with COX4-2, hence
optimizing COX activity in low oxygen conditions (148);
(ii) up-regulating miR-210, which orchestrates inhibition of
mitochondrial bioenergetics by targeting the SDHD transcript
and by repressing the iron–sulfur cluster assembly proteins that
are required for the incorporation of [4Fe-4S] and [2Fe-2S]
groups in respiratory complexes I, II and III; (iii) down-
regulating mitochondrial biogenesis via c-Myc inhibition
(147); (iv) inducing mitophagy through BNIP3, Bcl-2 and
BN67IP3L/NIX induction (149). In keeping with this last
point, absence of the mitophagy inducer Parkin enhances ROS
generation by the persistence of dysfunctional mitochondria and
increases tumorigenesis in multiple cancer models (150).

If activation of mitochondrial ROS generation remains below
what triggers manifest cellular damage, it can contribute to
the neoplastic process by causing DNA damage and genomic
instability or by prompting dysregulated activation of crucial
signaling pathways, eventually impacting on cell proliferation,
angiogenesis and invasiveness (143). As an example, anchorage-
independent growth of K-Ras-transformed cells requires an
increase in mitochondrial ROS generated by respiratory complex
III (105). Therefore, neoplastic cells must enhance their
antioxidant devices, such as the tripeptide glutathione (l-
glutamyl-l-cysteinyl-glycine), in order not to reach a threshold
of oxidative damage incompatible with their survival. Both
glutamine-derived glutamate and glucose-derived glycine are
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FIGURE 5 | Crosstalk between metabolism and redox homeostasis in cancer cell mitochondria. Neoplastic cells are characterized by high levels of mitochondrial

ROS. Under a certain threshold, ROS facilitate tumor growth, but their excessive rise elicits oxidative damage and cell death. In cancer cell mitochondria, ROS levels

are increased by respiratory chain complexes, αKGDH, mGPDH and ACADs and inhibit key enzymes of lipid metabolism and TCA cycle. In turn, ROS stimulate

antioxidant defenses through stabilization of the transcription factors NRF2 and HIF1α. Proteins overexpressed or activated in cancer cells are indicated in purple,

whereas proteins whose activity is down-regulated are shown in yellow. GSH, reduced glutathione; PDC, pyruvate dehydrogenase complex; PDH, pyruvate

dehydrogenase; αKGDH, alpha-ketoglutarate dehydrogenase; SDH, succinate dehydrogenase; SDHB, succinate dehydrogenase subunit B; SDHD, succinate

dehydrogenase subunit D; MDH, malate dehydrogenase; TRAP1, TNF receptor-associated protein 1; FAO, fatty acid oxidation; ACAD, acyl-CoA dehydrogenase;

mGPDH, mitochondrial glycerol-3-phosphate dehydrogenase; NRF2, nuclear factor-E2-related factor 2; PHD prolyl hydroxilase; Keap1, Kelch-like ECH-associated

protein 1; NDUFA4L2, NADH dehydrogenase 1 alpha subcomplex, 4-like 2; COX4-2, Cytochrome c OXidase subunit 4 isoform 2; ISCU, Iron–Sulfur cluster assembly

proteins.
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substrates for glutathione biosynthesis. NADPH, which is
essential for the regeneration of reduced glutathione, is similarly
obtained either by glucose through PPP and serine metabolism,
or by glutamine via ME. Other anti-oxidant systems such as
peroxiredoxins, which are induced by MYC, are also highly
expressed in many cancer types (139).

The transcription factor Nrf2 (nuclear factor-E2-related factor
2) is amaster regulator of cell response to oxidants that undergoes
proteasomal degradation following ubiquitination by KEAP1.
Under oxidative stress KEAP1 is inactivated, thus allowing
nuclear accumulation and activation of Nrf2 (141) (Figure 5).
Nrf2 induces enzymes that enhance carbon flux from glutamine
toward GSH biosynthesis, utilization and regeneration, and
stimulates NADPH production, e.g., by controlling ME, which
boosts the oxidative decarboxylation of malate to pyruvate in
order to feed the TCA cycle (142). Activation of Nrf2 increases
mitochondrial membrane potential, FAO, ATP levels, rate of
respiration and efficiency of oxidative phosphorylation (151).
These protective functions against oxidative insults suggest that
Nrf2 acts as a tumor suppressor, and indeed Nrf2 activation is
beneficial in cancer chemoprevention and Nrf2-deficient mice
are more sensitive to chemical carcinogenesis; in addition, the
absence of Nrf2 has been related to a high metastatic potential
(152). Nonetheless, the role of Nrf2 on tumorigenesis is highly
contingent, as Nrf2 knockout mice are protected against tumor
formation in the stomach, bladder, and skin (153) and activation
of the Nrf2/KEAP1 system by somatic mutations is associated
with a poor prognosis in patients (152) and has been observed in
several cancer types. For instance, induction of the Nrf2/KEAP1
pathway occurs in the very early steps of hepatocarcinogenesis
in the resistant hepatocyte rat model, where it associates with
a metabolic rewiring toward increased glucose utilization, PPP
activation and OXPHOS inhibition (154). In this model also the
mitochondrial chaperone TRAP1 is highly expressed from the
initial, pre-neoplastic lesions (154), and it probably contributes
to the anti-oxidant mechanisms of tumor cells by decreasing
SDH-generated ROS (155). TRAP1 has an oncogenic activity and
its expression is induced in a variety of tumor types; however,
TRAP1 levels decrease in the advanced stages of a small set of
epithelial cancers (132). These contrasting observations on the
role of Nrf2 and TRAP1 in neoplastic progression suggest that
changes in cell redox equilibrium might have different effects on
tumorigenesis, probably depending on tumor type and stage.

MITOCHONDRIAL Ca2+ AND METABOLIC
PLASTICITY

Calcium ions are intracellular second messengers that tune
a variety of fundamental cell processes (156). Mitochondria
can accumulate high amounts of Ca2+, thus acting both as
Ca2+ stores that control the spatial and temporal shape of
Ca2+-mediated cellular signals, and as effectors that utilize
Ca2+ to regulate cell survival, proliferation, redox state and
metabolic changes. Mitochondrial Ca2+ homeostasis requires
an efficient interplay between endoplasmic reticulum (ER),
where most intracellular Ca2+ is stocked, and mitochondria

in specialized microdomains called MAMs (Mitochondria-
Associated Membranes) (157). In MAMs, Ca2+ is released from
ER through IP3Rs (Inositol 1,4,5-triPhosphate Receptors) and is
taken up by Mitochondrial Calcium Uniporter (MCU) complex,
thus increasing Ca2+ concentration in mitochondrial matrix
(158) (Figure 6).

Mitochondrial Ca2+ homeostasis is dysregulated in most
neoplastic cells and contributes to their adaptations to stressful
conditions in a fast and flexible way. Transduction pathways
deregulated in cancer, such as PI3K/Akt or Ras signaling, can
limit Ca2+ flux to mitochondria inhibiting IP3Rs, whereas
tumor suppressors such as PTEN, BRCA1 or PML favor Ca2+

release from IP3Rs and the subsequent increase in mitochondrial
Ca2+ levels (159, 160). Oncogenic mutations in p53 decrease
the activity of SERCA (sarco/endoplasmic reticulum Ca2+-
ATPase), which takes Ca2+ up in ER, thus enhancing Ca2+

transfer to mitochondria in MAMs (160). Rapid spikes of
Ca2+ levels in mitochondrial matrix induce the permeability
transition pore (PTP), a mega-channel formed by ATP synthase
whose prolonged opening elicits a sudden cell death (161).
Thus, by slowing-down mitochondrial Ca2+ entry through
MAMs, tumor cells can avoid to succumb to several noxious
stimuli (162, 163). Hence, a fine tuning of IP3Rs activity is
crucial in preventing lethal matrix Ca2+ overload. A complex
interplay exists between IP3R regulation and Ca2+ homeostasis
in mitochondria in tumors. Indeed, inhibition of Ca2+ transfer
from ER to mitochondria decreases the viability of tumor cells
compromising their bioenergetics. Notably, in these conditions
neoplastic cells activate autophagy as a salvage mechanism, but
this turns out to be insufficient for their survival (164).

More controlled raises in matrix Ca2+ concentration have
important metabolic effects, as Ca2+ enhances the activity of
mitochondrial dehydrogenases of the TCA cycle, IDH and
αKGDH, and of PDH (165). These dehydrogenase reactions lead
to formation of NADH that carries the reducing equivalents
required for OXPHOS activity (158). Therefore, mitochondrial
Ca2+ stimulates respiration and increases ROS generation (166).
Moreover, Ca2+ stimulates the aspartate/glutamate exchanger
in the inner mitochondrial membrane (167), further boosting
TCA cycle activity by increasing matrix glutamate levels.
Taken together, these observations suggest that lowering
mitochondrial Ca2+ concentration could play a key role
in maintaining a “Warburg-like” phenotype in neoplastic
cells, while protecting them from PTP opening. However,
the few studies that have directly assessed the role of
mitochondrial Ca2+ in the tumorigenic process sketch elements
of a more complex picture. For instance, the expression of
MCU, whose activity can sharply increase mitochondrial Ca2+

concentration (158), is unexpectedly increased and associated
to poor prognosis, invasiveness and metastasis in models
of breast cancer and hepatocellular carcinoma (168, 169).
Indeed, these observations directly link MCU activity to the
maintenance of redox homeostasis. MCU silencing in triple
negative breast cancer models decreases ROS levels by lowering
ATP production and NADH cellular content. This hampers
HIF-1α stability and transcriptional activity, decreasing cell
motility and invasiveness, tumor growth, lymph node infiltration
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FIGURE 6 | Mitochondrial Ca2+ in the regulation of tumor cell metabolism. Ca2+ released from (ER) is taken up by mitochondria, where it increases the activity of

TCA cycle and OXPHOS. In cancer cells, a rise in matrix Ca2+ can stimulate production of metabolic intermediates, glutamate transport and NADH formation for

antioxidants defenses. NADH formation can also influence the pro-neoplastic stabilization of HIF1α. Several proteins with pro- or anti-neoplastic activity regulate IP3R

Ca2+ channels in MAMs in order to prevent matrix Ca2+ overload, mPTP opening and the consequent cell death. Proteins overexpressed or activated in cancer cells

are indicated in purple, whereas proteins whose activity is down-regulated are shown in yellow. ER, endoplasmic reticulum; IP3R, inositol 1,4,5-triphospate receptor;

MCU, mitochondrial calcium uniporter; mPTP, mitochondrial permeability transition pore; PDH, pyruvate dehydrogenase; SDH, succinate dehydrogenase; αKGDH,

alpha-ketoglutarate dehydrogenase; IDH, isocitrate dehydrogenase; HIF, hypoxia-inducible factor; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase.

and lung metastasis (169). In HCC cells, a MCU-dependent
increase in matrix Ca2+ concentration stimulates TCA cycle
activity and augments NADH/NAD+ ratio. This inhibits a
Sirtuin3/superoxide dismutase 2 axis that boosts mitochondrial
ROS levels, which in turn sustain invasion and metastasis of
hepatocellular carcinoma cells in an in vivo xenograft model
(168).

Further studies are clearly needed to dissect how frequencies
and amplitudes of mitochondrial Ca2+ oscillations influence the
metabolic changes that characterize tumorigenesis.

POST TRANSLATIONAL REGULATION IN
CANCER METABOLISM

Mitochondria can utilize post-translational modifications
(PTMs) of their proteins in order to harmonize their activity
to environmental conditions. A wide assortment of PTMs can
lead to conformational changes in the tertiary structure of
mitochondrial proteins, tuning their activity in response to
changes in nutrient availability or redox conditions (170, 171)
and furnishing cancer cells with a broad array of accurate and
rapid metabolic adaptations (171). The investigation of these

regulatory networks, and the functional connection with the
metabolic changes that characterize neoplastic cells is complex
and still in its infancy, and we will provide here only some
general information.

The most prevalent mitochondrial PTM is acetylation of
lysine residues, presumably because it requires acetyl-CoA that
is highly compartmentalized in mitochondria (172). About 30%
of mitochondrial proteins can undergo reversible acetylation.
In general, this is an inhibitory mark for metabolic enzymes,
as it would serve to sense the overproduction of acetyl-CoA,
thus providing a negative feedback to mitochondrial metabolic
circuitries that operate in an oxidative mode (173). Notably,
hyperacetylation of mitochondrial proteins is observed in many
diseases, including cancer (170). Acetylation is determined
by the balance between the activity of acetyltransferases and
deacetylases. Little is known on mitochondrial acetyltransferases.
The only candidate is GCN5L1, which does not contain
an acetyltransferase catalytic domain but promotes protein
acetylation in the presence of acetyl-CoA, and its genetic
disruption down-regulates acetylation of mitochondrial proteins.
GCN5L1 is involved in lipid metabolism, as its induction
promotes FAO, even if no data on tumor models are at present
available (174).
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Deacetylation is carried out by a class of enzymes called
sirtuins, a protein family composed by 7 members, three of
which (SIRT3–5) have a mitochondrial localization. Recent work
has demonstrated that sirtuins are indeed deacylases, as they
are able to transfer a variety of long acyl moieties including
succinyl, malonyl, ADP-ribosyl and lipoyl groups, in addition to
perform deacetylase reactions. All these reactions require NAD+,
thus linking sirtuin enzymatic activity to the metabolic state
of the cell and poising them as metabolic stress sensors (175).
Mitochondrial sirtuins orchestrate the coordinated regulation
of substrate clusters, in order to efficiently tackle conditions of
metabolic stress. SIRT3 is the major mitochondrial deacetylase
and is activated upon starvation and by increased NAD+

levels. In these conditions, SIRT3 enhances oxidative metabolism
of fatty acids, by activating LCAD, and of amino acids, by
increasing the activity of GDH and GLS2 (176, 177). SIRT3
also activates the PDH complex (PDC), thus promoting the
conversion of pyruvate to acetyl-CoA (178). In parallel, SIRT3
stimulates ROS-mitigating systems such as IDH2, a TCA cycle
enzyme that generates NADPH required to reduce glutathione
(175), and superoxide dismutase 2, which converts superoxide
to hydrogen peroxide that is then neutralized by glutathione
(173). In addition, SIRT3 activates by deacetylation all OXPHOS
complexes, in particular complex I and SDHA, the entry point of
electrons from NADH and FADH2, respectively, thus promoting
an efficient respiration (175). Taken together, these observations
indicate that SIRT3 opposes a Warburg-like metabolism, and
cells lacking SIRT3 exhibit genomic instability and are prone
to tumorigenesis in xenografts. Accordingly, Sirt3-knockout
mice develop mammary tumors, and in many human cancer
types SIRT3 is deleted or expressed at a very low level (178).
Nonetheless, the functional connections between mitochondrial
sirtuin activity and tumor growth are multifaceted and far from
being fully understood. Indeed, SIRT4 seems to have a tumor-
suppressor role similar to that of SIRT3, as SIRT4-null mice
develop lung tumors, loss of SIRT4 accelerates tumor progression
in a mouse Burkitt lymphoma model and SIRT4 expression is
reduced in several types of human cancers. However, SIRT4
plays opposing roles to SIRT3 in the regulation of several
metabolic pathways: it promotes lipogenesis and represses fatty
acid oxidation by inhibiting malonyl-CoA decarboxylase (170),
negatively regulates PDC and represses GDH (177, 178). SIRT5,
the last mitochondrial sirtuin, primarily demalonylates and
desuccinylates lysine residues in a NAD+-dependent way. Its
functions in the metabolic rewiring of tumor cells are poorly
understood, but it might be involved in glutamine metabolism
as it inhibits GLS (177) and in OXPHOS and TCA regulation, as
it decreases SDH activity by targeting both SDHA and SDHB and
it inhibits PDC (170). Notably, SIRT5 could act as an oncogene,
as it is overexpressed and associated with poor prognosis in
human lung cancer (178). Finally, a further layer of metabolic
regulation could be provided by sirtuin-directed PTMs such as
phosphorylations (176).

Reversible phosphorylation at serine, threonine or tyrosine
residues is emerging as an important mechanism regulating
several aspects of mitochondrial metabolism. For instance, the
inhibitory phosphorylation of PDC via enhanced expression

of pyruvate dehydrogenase kinase-1 contributes to aerobic
glycolysis and malignant phenotype, whereas PDH phosphatase
exerts the opposite effect (145).

Adaptations to changes in nutrients and oxygen supply
require a rapid OXPHOS regulation that can be achieved
via reversible phosphorylations. The mitochondrial fraction of
protein kinase A (PKA) activates in response to CO2 generated in
the TCA cycle. PKA increases the activity of respiratory complex
I through phosphorylation of its NDUFS4 subunit (179). PKA
also phosphorylates a subunit of cytochrome oxidase, preventing
its allosteric inhibition by ATP and acting as a metabolic sensor
to match OXPHOS activity with substrate availability and energy
consumption requirements (180). Several phosphorylation sites
are present on ATP synthase, but how they modulate the
enzyme is still largely obscure. Preliminary data indicate that
they could affect not only its activity, but also its assembly and
dimerization (181). Activation of the tyrosine kinase Src increases
the enzymatic activity of respiratory complex IV in isolated
rat brain mitochondria (182); accordingly, the Src inhibitor
dasatinib down-regulates the activity of respiratory complex IV
in some tumor cell models, inhibiting their ROS-dependent
invasiveness (134).

Tyrosine phosphorylation of SDH subunit A by the Src-
like tyrosine kinase Fgr increases SDH activity, contributing
to the capacity of mitochondria to modulate metabolism in
conditions of nutrient restriction or hypoxia (183). Conversely,
the kinase ERK1/2 decreases SDH activity. ERK1/2, SDH
and the chaperone TRAP1 form a multimeric complex in
mitochondria of neurofibromin-deficient cells. Mitochondrial
ERK1/2 phosphorylates TRAP1, thus enhancing its inhibition
of SDH. TRAP1 ablation or mutagenesis at the Ser residues
targeted by ERK1/2 abrogates the tumorigenicity of cells lacking
neurofibromin (100).

The mitochondrial fraction of the Ser/Thr kinase GSK-3
down-modulates the activity of PDH and of respiratory complex
I (184). Moreover, GSK-3 phosphorylates the mitochondrial
chaperone cyclophilin D (CyP-D), the best characterized
proteinaceous regulator of the PTP, enhancing CyP-D-dependent
PTP induction. In tumor cells, mitochondrial ERK1/2 inhibits
by phosphorylation GSK-3, thus antagonizing PTP opening and
cell death (99). A complex array of PTMs, including acetylations
and nitrosylations in addition to phosphorylation, affects CyP-
D activity (162). These PTMs could subtly tune the bioenergetic
status of neoplastic cells, as CyP-D binds and down-regulates the
enzymatic activity of ATP synthase (161).

MITOCHONDRIAL DYNAMICS AND
CANCER METABOLISM

Mitochondria are extremely dynamic organelles, undergoing the
opposite processes of fusion and fission in a coordinated and
balanced way. A comprehension of howmitochondrial dynamics
contribute to the metabolic rewiring of cancer cells is still in its
infancy, but several evidences are emerging that link decreased
fusion and enhanced fission to neoplastic transformation,
invasion and metastasis (185, 186). Signaling via oncogenic
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MAPK and PI3K promotes fission (187), and in certain tumor
settings high levels of the fission protein DRP1, whose activity
is increased by ERK-dependent phosphorylation, negatively
correlate with survival of patients. Conversely, overexpression
of the fusion proteins mitofusins decreases tumor growth, and
their levels are directly related to OXPHOS activity and ATP
production in several cell models (188).

However, the assumption that glycolytic cells have fragmented
mitochondria, whereas OXPHOS is increased in cells with
elongated mitochondria, appears as an oversimplification
(188). Indeed, a prolonged DRP1 downregulation can inhibit
respiration, suggesting that a proper OXPHOS modulation
requires a balanced interplay between mitochondrial fission and
fusion (189). Thus, it is difficult at present to make mechanistic
correlations between mitochondrial dynamics and metabolism
and to understand whether changes in the mitochondrial
network of cancer cells are priming events or consequences
of their metabolic rewiring. For instance, even if activation of
several oncogenes increases fission, some others, such as Myc,
promote mitochondrial fusion (187). Moreover, mitochondrial
shape can impact on intramitochondrial Ca2+ waves (185) and
on Ca2+ fluxes at MAMs (189), thus playing a complex and
probably context-dependent role on the metabolic adaptations
of tumor cells (see section Mitochondrial Ca2+ And Metabolic
Plasticity).

Mitochondrial fission is strictly connected to mitophagy, a
quality control process that maintains mitochondrial integrity
and function through removal of damaged organelles, which
must be isolated from the healthy network via DRP1-dependent
sequestration (189, 190). Mitophagy is activated by a variety
of stresses usually encountered by neoplastic cells, including
hypoxia, nutrient deprivation, DNA damage and inflammation,
which eventually cause mitochondrial membrane depolarization
and decline in respiratory capability (149). Therefore, any
impairment in the mitophagy process leads to accumulation of
dysfunctional mitochondria, hence decreasing respiration and
ATP production and increasing ROS levels. In general, defects
in mitophagy affect the metabolic plasticity of mitochondria
in response to environmental stresses such as altered Ca2+

signaling, ROS generation and changes in nutrient availability,
further amplifying their noxious effects on the cell. In cancer, a
disruption of the homeostatic equilibrium between mitophagy
and mitogenesis occurs (191, 192). It has been proposed that
impairment of a correct mitophagy could be advantageous for
the early phases of neoplastic growth, contributing to set a novel
redox equilibrium, whereas later stages of tumor progression
would be favored by mitophagy, as it would protect tumor
cells from excessive mitochondrial damage, surge in ROS levels
and apoptosis (189). Further work is certainly needed to draw
a more complete picture of the functional interplay between
mitochondrial fusion and fission, mitophagy and metabolic
rewiring of cancer cells.

CONCLUDING REMARKS

Metabolism is amultilevel process, encompassing and integrating
a myriad of factors both at the organismal scale, such as

age or lifestyle, and at the local level, including cellular
composition of the microenvironment, nutrient supply and
stiffness of the extracellular matrix. Accordingly, aberrant
metabolic reprogramming in cancer is both the cause and the
effect of alterations at multiple levels that reverberate on each
other.

The (epi)genomic landscape of neoplastic cells, the
intertwined molecular signaling between immune, stromal
and other non-transformed cells with the malignant ones in
tumor microenvironment (193, 194), as well as increases in
hydrostatic forces and in the stiffness of the tumor milieu (195),
are all factors that constantly tune cancer cell metabolism to
fluctuating environmental conditions, leading to metabolic
heterogeneity also across different areas of the same tumor. In
neoplastic cells, mitochondria constitute a point of integration
for many of these metabolic circuitries. For instance, reciprocal
feedbacks exist between mechanosignaling, the process by which
cells convert extracellular mechanical forces into biochemical
outputs, and glutamine metabolism, as glutamine partly controls
focal adhesions and actin stress fiber assembly, and in turn
stiffness changes glutamine fluxes (196).

Moreover, mitochondria are at the heart of mechanisms
that balance a variety of intracellular metabolic circuitries.
For instance, NADPH homeostasis is maintained by several
mitochondrial metabolic circuitries via TCA cycle intermediates
and ATP generated by OXPHOS. These pathways include one
carbon metabolism, PPP, whose oxidative branch is enhanced
by citrate- or ATP-dependent inhibition of late glycolytic steps
(5, 11), glutamine-derived carbons diverted out of the TCA cycle
to convert malate into pyruvate via ME, and IDH (6, 197, 198).
p53 represses the transcription of ME genes, thus inhibiting
the usage of TCA cycle intermediates for NADPH production
(68). Conversely, citrate inhibits PFK, pyruvate kinase and PDH,
blocking pyruvate generation from glycolysis and leading to an
increase in ME activity to maintain pyruvate levels, but also to
provide NADPH (11). Another important source of NADPH is
lipid β-oxidation, which becomes a major fuel for ATP synthesis
during invasion and metastasis (199), further highlighting the
tight connection between metabolic adaptations and biological
conditions in cancer cells.

Citrate and acetyl-CoA provide other examples of multiple
metabolic intersections. Mitochondrial citrate is a TCA cycle
metabolite that originates by the condensation of OAA and
acetyl-CoA, but it also forms via glutamine-fueled reductive
carboxylation (47, 200), which is particularly important under
hypoxic conditions and supports anchorage-independent growth
of neoplastic cells by mitigating oxidative stress through a
coordinated regulation of NADH/NADPH dependent IDH1
and 2 in cytosol and mitochondria (201). In mitochondria,
citrate down-regulates SDH (11), i.e., the point of integration
between TCA cycle and OXPHOS, contributing to raise the
levels of the oncometabolite succinate. Alternatively, citrate
can move to cytosol, where it both favors glucose usage in
PPP and serine synthesis by inhibiting the late glycolytic steps
and is converted into acetyl-CoA (11). In turn, acetyl-CoA
starts lipid synthesis and sustains acetylation reactions (see
section Post Translational Regulation In Cancer Metabolism)
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and influences a variety of biochemical circuitries involved in the
neoplastic process, including histone acetylation and chromatin
remodeling as well as redox homeostasis via acetylation of
superoxide dismutase and IDH (1). Regulation of histone
acetylation showcases the fundamental role played by metabolic
enzymes and metabolites in gene expression control (117). One
interesting example is provided by the PDC, which locates
both in mitochondria and nucleus of prostate cancer cells.
This compartmentalization is instrumental to orchestrate lipid
biosynthesis both by providing cytosolic citrate and by inducing
the transcription of genes for lipid synthesis by regulating histone
acetylation (202).

As described in section Mutations Of Mitochondrial Enzymes
In Cancer Metabolism, tumors with mutations in enzymes of
the TCA cycle constitute an excellent model to study how
mitochondrial metabolism causes pro-neoplastic (epi)genomic
changes (203), and they also provide clues to identify molecular
vulnerabilities that can be exploited for anti-tumor strategies. For
instance, pyruvate carboxylase (PC) enables aspartate synthesis
in SDH-deficient tumor cells, creating a metabolic vulnerability.
lack of SDH activity commits cells to consume extracellular
pyruvate, which sustains Warburg-like bioenergetic features.
Pyruvate carboxylation diverts glucose-derived carbons into
aspartate biosynthesis, thus sustaining cell growth (204, 205).

Further layers of complexity are provided by the heterogeneity
of cellular components of the tumor mass. For instance, cancer
stem cells (CSC) constitute a small population of self-renewal
neoplastic cells that are per se capable of promoting tumor
growth. The metabolic features of CSC differ from those of the
bulky neoplasm, and recent evidences point toward an OXPHOS
phenotype in CSC. In a sort of reverse Warburg metabolism,
OXPHOS CSC might be fed by glycolytic tumor cells or by
cells of the tumor microenvironment, such as cancer associated
fibroblasts, and could switch to a glycolytic metabolism under
hypoxia (206). Examples of symbiotic nutrient sharing between
neoplastic cells and tumor microenvironment are observed in
metastatic ovarian cancer cells, breast cancer cells or leukemic
stem cells, which oxidize fatty acids supplied from surrounding
adipocytes to sustain proliferation, survival and invasiveness and
possibly to preserve cell redox balance (207, 208). Moreover,
horizontal transfer of mitochondria from stromal to cancer cells

can lead to an increase in OXPHOS metabolism of the latter
(19, 209).

Metabolic plasticity of tumor cell mitochondria offers a
high window of opportunity for efficient anti-cancer therapy,
since transformed cells have metabolic needs that differ from
their non-transformed counterparts, and molecules such PDH,
IDH1/2 or glutaminase inhibitors are already in clinical trials.
Nonetheless, such a plasticity can also be a hurdle when trying to
develop selective therapeutic strategies. As an example, ovarian
cancer cells gain resistance to antiangiogenic therapy by shifting
their metabolic phenotype toward a highly glycolytic one (210).
Importantly, tumor cell dependency on specific bioenergetic
features in vitro can be extremely different from the in vivo
situation, due to off-target effects, suboptimal pharmacokinetic
properties of the compound or metabolic heterogeneity of the
neoplastic mass.

A profound comprehension of the biochemical mechanisms
that govern the bioenergetic flexibility of tumor cell
mitochondria and its interplay with a multitude of extra-
mitochondrial signals constitutes a central dowel to build an
integrate model of the metabolic features that hallmark cancer.
Incorporation of data obtained at different scales of analysis,
from the organism to the organelle, remains a tremendous task.
Nonetheless, huge advances have been recently made unveiling
biochemical processes and therapeutic opportunities that were
unimaginable even few years ago.
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