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Improved prognosis of breast cancer outcome could prolong patient survival by reliable

identification of patients at high risk of metastasis occurrence which could benefit

from more aggressive treatments. Based on such clinical need, we prognostically

evaluated the malignant cells in breast tumors, as the obvious potential source of

unexploited prognostic information. The patient group was homogeneous, without any

systemic treatments or lymph node spread, with smaller tumor size (pT1/2) and a

long follow-up. Epithelial cells were labeled with AE1/AE3 pan-cytokeratin antibody

cocktail and comprehensively analyzed. Monofractal and multifractal analyses were

applied for quantification of distribution, shape, complexity and texture of malignant

cell clusters, while mean pixel intensity and total area were measures of the pan-

cytokeratin immunostaining intensity. The results surprisingly indicate that simple binary

images and monofractal analysis provided better prognostic information then grayscale

images and multifractal analysis. The key findings were that shapes and distribution

of malignant cell clusters (by binary fractal dimension; AUC = 0.29), their contour

shapes (by outline fractal dimension; AUC = 0.31) and intensity of the pan-cytokeratin

immunostaining (by mean pixel intensity; AUC = 0.30) offered significant performance

in metastasis risk prognostication. The results reveal an association between the lower

pan-cytokeratin staining intensity and the high metastasis risk. Another interesting result

was that multivariate analysis could confirm the prognostic independence only for fractal

but not for immunostaining intensity features. The obtained results reveal several novel

and unexpected findings highlighting the independent prognostic efficacy of malignant

cell cluster distribution and contour shapes in breast tumors.
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INTRODUCTION

The primary breast tumor is not life-threatening until the
disease turns into a systemic condition by distant tissue invasion.
Such distant recurrence or metastasis has an overall rate of
up to 50% during 20 years after surgery (1). Besides local
surgery and radiation, patients are therefore also treated with
systemic cytotoxic therapy in an attempt to eliminate any distant
micrometastatic malignant spread. Taken together, the goal to
achieve personalized therapeutic protocols based on reliably
prognosticated individual risk is the main clinical applicability of
metastasis risk prognosis improvement. The benefit to the patient
is to maximize a therapeutic response and minimize toxicity.

The current breast cancer prognosis is based on the
clinicopathological evaluation (TNM classification, histological
features, age, menopause), receptor status (hormone receptors
and HER2) (2) and molecular signatures such as Mammaprint
and OncotypeDX (3). Unfortunately, the mentioned current
prognostic classifications including the costly molecular
signature tools are still not sufficiently reliable with 65%, accuracy
and AUC of 0.69 (4). For this reason, computational tumor
histomorphology analysis is developing as another approach
aimed to achieve prognostic improvement in breast cancer (5–8).
This methodology exploits information from histopathology
images that cannot be quantified by the conventional
microscopic examination, such as distribution, texture and
shape. Furthermore, the main advantages of this approach
include its high speed, cost-efficiency and convenience based
on the widespread availability of histopathology specimens in
digital form. Algorithms exploited for analysis of medical images
comprise statistical (co-occurrence), geometrical/structural
(Voronoi tessellation, fractal), model-based (Markov random
fields) and spectral/signal processing (Gabor filters, wavelet
transform and curvelets).

The histomorphological diversity of tumors has been
exploited for prognostic purposes since the mid-nineteenth
century (9). It was later confirmed that primary tumor
is indeed the site of metastatic cell dissemination which
further supported its importance as the source of prognostic
information (10). Therefore, this study focuses primarily on
the analysis of malignant cell growth patterns of primary
breast tumors. Such structures can be observed on pan-tissue
hematoxylin and eosin (H&E) stained tumor sections but
are easier to investigate upon pan-cytokeratin immunostaining
because breast tumors mostly arise by neoplastic transformation
of epithelial cells. The pan-cytokeratin antibody has been
mainly exploited in prognostic studies of circulating and
disseminated epithelial tumor cells, particularly in assessing
sentinel lymph node biopsies in breast cancer (11). Other
approaches comprised prognostic investigations of tumor
immunostaining by cytokeratin panels (12) or single keratins
(13).

Abbreviations: TNM, tumor size, lymph node and metastasis status; FD, fractal

dimension; binFD, binary fractal dimension; grayFD, grayscale fractal dimension;

Λ, lacunarity; AUC, area under the rate of change curve; HR, hazard ratio; H&E,

hematoxylin and eosin.

Epithelial cells within breast tumors immunostained for
pan-cytokeratins have been previously prognostically evaluated
using GLCM and binary monofractal algorithms (14–16). This
study extends the previous reports by undertaking a much
wider investigation by utilizing the monofractal, multifractal
and intensity analysis of binary and grayscale images of pan-
cytokeratin stained malignant cell clusters. Fractal geometry is
well-suited for quantification of the distribution, shape, texture
and complexity of chaotic malignant cell growth (17).

Taken together, we set out to perform the first intensity
evaluation of malignant epithelial cell immunostaining in
combination with their exhaustive distribution, shape, texture
and complexity assessment.

MATERIALS AND METHODS

Writing of this report was done to include all relevant
experimental detail according to recommendations for tumor
marker prognostic studies (18).

Ethics Approval Statement
The study was approved by the Institutional Review Board
(Belgrade University, School of Medicine, approval #29/VI-4)
and conforms with The Code of Ethics of the World Medical
Association (Declaration of Helsinki), printed in the British
Medical Journal (July 18, 1964) and its 7th revision in 2013.

Patient Group
Selection of breast cancer patients was retrospective, based on
the absence of hormonal, cytotoxic or other systemic treatments
(natural course of the disease) according to recommendations
valid in the year 1993 for the primary operable breast carcinoma
with pT1/2, grade 1/2, without lymph node involvement or
metastasis (N0M0). All patients were treated locally by surgery
and radiation. Patient data were received in a de-identified
form without direct or indirect identifiers that could enable re-
identification (Safe-Harbour methodology of the 2012 Health
Insurance Portability and Accountability Act). All patients were
female Caucasian from the Republic of Serbia, treated in the same
year (1993) and in the single institution (Institute of Oncology
and Radiology of Serbia). Based on the 10 fmol/mg and 20
fmol/mg respective cutpoints, 76% of patients were positive
for estrogen receptor (ER, median of 32 fmol/ml) and 24%
were positive for the progesterone receptor with a median of
6 fmol/ml. The dextran-coated charcoal method was used for
estrogen and progesterone receptor assay as previously described
in detail (19). HER2 status was available for 52 of the 73 patients
used in this study and was positive in 21% of the patients. The
prospective sample size was calculated by taking into account
the event rate, a median standard deviation between high- and
low-risk groups and effect size (hazard ratio). These parameters
were estimated by a pilot study on 35 samples, prior to the
full experiment. For a target power of 0.8, the distance between
means of feature values for the high- and low-risk groups of 0.52
standard deviations, minimal effect size of 0.14>HR> 7.0, alpha
0.05 and an event rate of 25%, the required numbers were 31
patients with 10 events (Stata/MP 13 package, StataCorp, College
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Station, TX). The final sample size was 73 patients with 17 events.
The sample size reflects a rarity of the systemically untreated
breast cancer patients and the strict avoidance of missing data.
The actual event rate was 23%, the median standard deviation of
texture variables was 0.54 and the average effect size 25.4. The
post-hoc power analysis revealed the actual power of 1.0. The
median age at diagnosis was 57 years (range 41–80). The median
follow-up time to metastasis was 38 months, ranging between 16
and 145 months, while the median follow-up time for patients
without metastasis was 147 months by a reverse Kaplan-Meier
method, ranging between 77 and 165 months. The Adjuvant!
Online score (Adjuvant group Inc., NJ, USA) for Breast Cancer
(Version 8.0) was calculated at the Adjuvant! Online site as a
10-years risk of relapse with no additional therapy based on age,
tumor grade, estrogen receptor status and tumor size (20).

Image Analysis Workflow
The methodological process included immunostaining, selection
of tissue sections, image acquisition, stain decomposition, image
analysis, data categorization and prognostic evaluation with
validation. These steps are respectively described under the
subheadings below.

Immunostaining
Tissue of invasive primary breast tumors was obtained during
surgery. The tissue was formalin-fixed, paraffin-embedded and
cut to produce 4µm whole sections which were bonded
on clean glass slides. Freshly cut whole tissue sections were
immunostained without counterstain in order to highlight
only epithelial cells. A heat-mediated antigen retrieval step
was performed in EDTA pH 8 buffer with a water bath set
at 95◦C for 40min. Endogenous peroxidase was quenched
with 3% H2O2 in methanol for 30min. Five percent goat
serum was used for the 1 h pre-incubation step. The whole
tissue sections were incubated with the CD8 rabbit monoclonal
primary antibody (ThermoFisher Scientific, Waltham, MA;
#RM-9116-S1), followed by the monoclonal mouse anti-human
pan-cytokeratin primary antibody clones mAE1/AE3 (Dako,
Glostrup, Denmark, #M3515) in 5% goat serum for 60min.
Sections were washed in PBS and incubated with secondary
goat anti-rabbit IgG HRP conjugate (Jackson ImmunoResearch
Laboratories, West Grove, PA; # 111-035-144) followed by
polyclonal goat anti-mouse IgG alkaline phosphatase conjugate
(Southern Biotech, Birmingham, AL; #1030-04) in 5% goat
serum. Following washes in PBS, nickel-enhanced DAB (Vector
Laboratories, Burlingame, CA) and subsequently the Fast Blue
RR (Sigma-Aldrich, St. Louis, MO) were used as chromogens.
AE1/AE3 antibody cocktail mainly stains epithelial cells by
detecting cytokeratins 1–8, 10, 14–16 and 19.

Selection of Tissue Sections
For maximal reproducibility and validity, the pathologist (KK)
has selected the sections containing the most characteristic
growth patterns for each individual tumor, with the highest
content of pan-cytokeratin stained malignant cells and without
any artifacts or normal structures. Normal and malignant

cell arrangements stained with pan-cytokeratin were identified
morphologically.

Image Acquisition
Color images of the immunostained tumor histopathology
slides were acquired by use of the NanoZoomer Hamamatsu-
XRC12000 high-resolution digital slide scanner (Hamamatsu
City, Japan).

Stain Decomposition
Due to the fact that tissue sections were double stained for
pan-cytokeratin (blue) and CD8 (brown), it was necessary to
decompose images into single-stained channels, each containing
only one chemical dye as previously described in detail (21).
Specifically, the stain decomposition algorithm separates the
immunostaining images into CD8 and pan-cytokeratin channels.
All downstream image analysis in this study was performed in the
resulting pan-cytokeratin channels.

Image Analysis
Color images were transformed to grayscale format by the
run(“8-bit”) command of the Fiji/ImageJ version 1.52b, an
open platform for biomedical image analysis (22). Images
were further converted to a binary format by the run(“Make
Binary”) command of Fiji/ImageJ. The obtained grayscale and
binary image formats were analyzed for staining intensity.
Furthermore, monofractal and multifractal algorithms were
applied for extraction of numerical measures (features) for each
image based on analysis of the pixel information.

The staining intensity features are simple to calculate.
The mean pixel intensity is an average value of grayscale
pixel intensities, ranging from 0 to 255 for 8-bit images,
calculated by the “measure” function of ImageJ. The total
area of immunostaining was calculated by use of automatically
thresholded binary images and the “analyze particles” function of
ImageJ.

Calculation and interpretation of fractal features is more
complicated. Fractal dimension is the main monofractal feature.
It is primarily a measure of complexity but depending on
the type of analysis it can also be sensitive to object shapes,
texture and distribution. In the fractal analysis, complexity
refers to a change in detail (foreground pixels) with a change
in scale (magnification). Multifractal theory can be considered
an extension of the monofractal approach, particularly if an
image contains an uneven distribution of complexity with fractal
dimension varying across an image (23). Themultifractal analysis
delivers spectrums of fractal dimensions such as DQ vs. α and
f(α) vs. Q, thus providing more information about an image in
comparison to a single monofractal dimension.

Monofractal and multifractal analysis of binary images
was performed by use of the regular non-overlapping box
counting method (FracLac plugin version 2015Sep090313a9330
for Fiji/ImageJ) according to formulas previously described in full
detail (24). The box-counting method involves overlaying of the
binary image with a meshed lattice of square boxes of decreasing
size (scale) ε expressed as the box size relative to image size. The
space filling properties of the image by box counting is calculated
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by considering the relationship between the numbers of boxes
containing at least one forward pixel (non-empty boxes) and box
sizes.

Monofractal and multifractal analyses of grayscale images
were performed by use of the box counting method adjusted
for grayscale images (differential box counting, FracLac plugin
for ImageJ). While regular box counting for binary images only
considers presence or absence of foreground pixels within the
box, differential box counting for grayscale images calculates the
difference in intensity of the pixels in a box at each box size (ε) as
explained previously in full detail (24).

Monofractal features calculated for binary and grayscale
images included FD, FDoutline and Λ. Multifractal features
provided by FracLac software were: α, f(α), and DQ, for the
range of 200 Q values from −10 to +10 in 0.1 increments. By
use of Excel formulas, ten additional multifractal features were
calculated: DQmax, f(α)min, f(α)max, α corresponding to f(α)min, α
corresponding to f(α)max, slope DQ(Q), slope α(Q), slope f(α)(Q),
slope DQ(Q)(–1 to 3), f(α) summed for Q > 0. Taken together, 3
monofractal and 13multifractal features were calculated, each for
grayscale and binary images, a total of 32 fractal features.

Data Categorization and Prognostic
Evaluation
The ROC and Cox regression analyses were used as prognostic
evaluation tools for the clinicopathological, intensity and fractal
features. Discrimination is the capability of prognostic classifiers
to stratify patients with and without metastasis. The area
under the rate of change curve (AUC) was employed as a
quantitative measure of discrimination efficiency, calculated by
use of continuous feature values. AUC chance accuracy is defined
at 0.5, while perfect accuracy equals 0.0 or 1.0. The discrimination
efficiency increases farther from 0.5, whereby 0.4 or 0.6 is
considered as the fair discrimination performance, 0.3 or 0.7 as
good, 0.2 or 0.8 as excellent, and 0.1 or 0.9 as almost perfect.

Data categorization by use of a cutpoint divided patients
into low- and high-risk subgroups and was necessary for the
Cox proportional hazards regression test. The optimal cutpoint
selection was performed by X-tile 3.6.1 software (Yale University,
New Haven, CT). As the data categorization step may introduce
bias, ROC analysis and Cox regression often disagree in their
prognostic evaluation. Cox proportional hazards regression test
compares the predicted and actual metastasis outcomes. The
proportional hazards assumption was satisfied for each feature
based on the Schoenfeld residuals by phtest (Stata/MP 13
package, StataCorp, College Station, TX). The hazard ratio (HR)
is the effect size of the Cox regression reflecting the metastasis
rates in high- and low-risk groups of patients. It indicates chance
performance at HR= 1.0. Multivariate Cox proportional hazards
regression analysis tested the independence of each prognostic
factor. Variables categorized by outcome were added to a full
model using forward selection entry criterion of P < 0.20 in
univariate analysis and removed using backward elimination
according to a selection stay criterion of P < 0.05. The IBM
SPSS Statistics 23 (IBM Corp. Armonk, NY) was employed
for bootstrap-corrected Cox analysis. Spearman’s correlation

coefficients were calculated by Statistica 12 (Tibco Software Inc.
Paolo Alto, CA).

Kaplan–Meier survival analysis was completed for the
period from diagnosis to metastasis manifestation (IBM SPSS).
Spearman’s rank correlation test was used for evaluation of the
association strengths between pairs of variables (Statistica 12).

Validation
The over-optimism of the ROC (Stata/MP 13) and Cox (IBM
SPSS) analysis was corrected by the bootstrap internal validation
with 1,000 data resamples (25).

RESULTS

This study provides prognostic comparison of the simple
immunostaining intensity with the more perplexing fractal
analysis assessing staining distribution, shapes, complexity and
texture. Grayscale and binary image formats were used for
analysis of the pan-cytokeratin immunostained breast tumor
malignant cell clusters.

Calculations of the staining-intensity, fractal and multifractal
features are described in the Methods section. ROC analysis
and univariate Cox proportional hazards regression test were
the statistical tests employed for prognostic evaluation of
the calculated features (Table 1). Furthermore, the prognostic
performance was illustrated by Kaplan-Meier plots (Figure 1)
and characterized bymultivariate analysis (Table 2). Correlations
of the calculated features are presented in Table 3. Examples of
the analyzed binary images are presented in Figure 2.

By the ROC analysis criteria, binFD provided the best overall
prognostic performance with AUC of 0.29, followed by Mean
pixel intensity and binFDoutline (Table 1). The other prognostically
significant features by this criterion were Adjuvant! Online
score, tumor size and total area. Only the features which
showed prognostic significance by criteria of either ROC or Cox
regression are presented inTable 1, while the 32 calculated fractal
features are listed in the Methods section. Strikingly, none of
the fractal features obtained on grayscale images could provide
significant prognostic performance.

The prognostic performance evaluations by ROC and
Cox regression statistical tests were often in disagreement.
For instance, several features which were not prognostically
significant by the criteria of ROC analysis emerged as significant
by the Cox proportional hazards regression (Table 1). This
may be ascribed to a stricter prognostic evaluation by ROC
analysis. Furthermore, the outcome-based categorization of data
for analysis by Cox regression often introduces the prognostic
bias (26). It is also of note that Cox regression considers the time
to the event while ROC analysis does not.

Among feature groups, the most distinct AUCs were achieved
by the binary monofractal (AUC ranging between 0.29 and 0.31)
and immunostaining intensity (0.35–0.70) groups (Table 1). The
most pronounced prognostic HRs and the narrowest confidence
intervals (95% CI) were noted for binary monofractal (HR
ranging between 0.03 and 8.8) and binary multifractal groups
(0.02–24.1, Table 1).
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TABLE 1 | The prognostic significance of the clinicopathological, staining intensity,

monofractal, and multifractal features.

Parameter Hazard

ratioa
95% CIa P-valuea AUCb 95% CIb P-valueb

CLINICOPATHOLOGICAL

Adjuvant! 4.6* 1.7–14.0 0.001 0.57 0.41–0.77 0.19

Tumor size 4.6* 1.73–13.5 0.002 0.64 0.44–0.83 0.14

ER 3.2* 1.3–9.0 0.009 0.61 0.44–0.78 0.13

STAINING INTENSITYc

Mean int. O.23* 0.05–0.61 0.006 0.30* 0.17–0.45 0.01

Total area 0.19 0.03–0.78 0.07 0.37 0.22–0.52 0.15

MONOFRACTAL BINARY

binFDoutline 0.03* 0.02–0.04 0.001 0.31* 0.20–0.47 0.02

binFD 0.03* 0.02–0.03 0.001 0.29* 0.21–0.46 0.01

bin
Λ 8.8* 2.2–53.5 0.03 0.65* 0.51–0.78 0.05

MULTIFRACTAL BINARY

binf(α)max 24.1* 21.5–27.7 0.001 0.38 0.24–0.58 0.12

bin
α f(α)max 0.04* 0.03–0.05 0.001 0.36 0.20–0.53 0.09

binslope fα (Q) 0.02* 0.01–0.42 0.03 0.37 0.21–0.52 0.10

binf(α)sum Q > 0 0.24* 0.02–0.80 0.03 0.35* 0.21–0.48 0.04

Bootstrap-corrected ROC analysis and Cox proportional hazards regression were used

for evaluation of the prognostic significance.
*P ≤ 0.05.
aCox proportional hazards regression analysis was performed by use of categorized data,

bootstrap corrected.
bROC analysis was performed by use of continuous data, with bootstrap correction.
cMean intensity and total area were respectively calculated by use of grayscale and

binarized images.

CI, confidence interval; AUC, area under the ROC curve; ER, estrogen receptor, Mean

int., mean pixel intensity; binFD, binary fractal dimension; binΛ, binary lacunarity.

AUC and HR values do not only indicate the strength
of association with metastasis outcome but also its direction.
Thereby, AUC < 0.5 or HR < 1.0 indicate an association with
low-risk, while AUC > 0.5 or HR > 1.0 indicate an association
with high-risk of metastasis occurrence. binΛ and binf(α)max thus
associated with high metastasis risk (Table 1). This simply means
that patients with higher feature values are more likely to incur
metastasis than patients with lower values. On the other hand,
mean pixel intensity, binFDoutline ,

binFD, bin
α f(α)max,

binslope
fα(Q), binf(α) and binsumQ> 0, all associated with lowmetastasis
risk (Table 1).

Among the group of 55 estrogen receptor positive (ER+)
patients, based on the standard 10 fmol/mg cutpoint, prognostic
evaluation was very similar for each feature (not shown) to
that indicated for the entire patient group in Table 1. This
result indicated that prognostic performance of the examined
staining intensity and fractal features was not ER-dependent. The
prognostic evaluation could not be performed in the ER-negative
subgroup due to its small size of 18 patients, below the calculated
minimal sample size of 31 patients.

The multivariate analysis presented in Table 2 was performed
by use of all features that showed prognostic significance. binFD
thereby emerged as the prognostically most important variable,
based on its coefficient, P-value, HR and the narrowest CI 95%
(Table 2).

FIGURE 1 | Kaplan-Meier analysis of the best performing feature from each

group: (A) clinicopathological (tumor size, pT ), (B) immunostaining intensity

(mean pixel intensity), (C) fractal (binFD). Plots reveal prognostic discrimination

efficiencies of feature values categorized by indicated cutpoint values. Dotted

lines show the patient subgroup with lower feature values (below the cutpoint,

featurelow ). Featurehigh value subgroup is plotted on solid lines. (a) Ordering of

patients by the ascending continuous values of each feature. Patients with

metastasis are indicated by black tiles and patients without metastasis by

white tiles. Lane a thus illustrates the prognostic performance of each feature

to stratify the patients (a) into high and low risk groups by their continuous

values, while Kaplan-Meier plots indicate the prognostic performance after

categorization of feature values. (b) The ideal stratification of the actual

metastasis occurrence is shown for comparison. The time refers to the interval

from a primary breast tumor surgery until the occurrence of first distant

metastasis or end of follow-up. P-values were calculated by the Cox

proportional hazards regression.

Several prognostically significant individual features were
highly correlated (Table 3). The highest correlations were
surprisingly observed between the total immunostained area as
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TABLE 2 | Multivariate Cox proportional hazards regression analysis.

Coefficient P-valuea HR 95% CIa

Adjuvant! online 1.29 0.001 3.6 1.5–12.2

ER 0.85 0.04 2.3 0.89–6.9

binFD −12.43 0.001 0.00 0.00–0.00

binslope f(α)(Q) −2.28 0.02 0.10 0.00–0.47

bin
α fα(max) −11.4 0.006 0.00 0.00–1.9

Multivariate analysis was performed by inclusion of all significant predictors to capture

their predictive redundancy.
aBootstrap corrected.

HR, hazard ratio; CI, confidence interval; ER, estrogen receptor; binFD, binary fractal

dimension.

the simple feature depending on the number of black pixels
and the elaborate fractal parameters such as binFD, binf(α) Q
> 0 and bin

Λ (with Spearman’s coefficients of up to 0.89;
Table 3). This result indicated that several fractal features
to a great extent reflect the simple count of black pixels
within an image. Among feature groups, clinicopathological
parameters showed almost no correlation with the other groups
while immunostaining intensity, monofractal and multifractal
feature groups exhibited a number of highly pronounced
mutual correlations (Table 3). Spearman’s coefficients for feature
correlations between immunostaining intensity and monofractal
feature groups ranged from 0.43 to 0.80 and from 0.24 to 0.89
for immunostaining intensity and multifractal groups (Table 3).
High correlations were also observed within the feature groups,
for instance: tumor size and Adjuvant! Online score (0.90), binFD
and binFDoutline (0.93),

binFD and bin
Λ (−0.81), binslope f(α)(Q)

and binf(α) Q > 0 (0.95, Table 3). Overall, the total stained
area was the feature mostly correlated with other features as its
total sum of significant absolute Spearman’s coefficient values
amounted to 5.5, followed by binFD with a sum of 5.37, bin

Λ

(5.24) andmean pixel intensity (4.26).
Kaplan-Meier plots illustrate discrimination efficiencies of

the best-performing features from each group: pT for the
clinicopathological group (Figure 1A), Mean pixel intensity for
the immunostaining intensity group (Figure 1B) and binFD
for the fractal group (Figure 1C). These plots illustrate the
prognostic performance by the categorized feature values.
Categorization was performed by use of a cutpoint to divide
the measured continuous feature values into high- and low-
risk patient subgroups. Figure 1 also illustrates the prognostic
performance of continuous values prior to their categorization
(Figure 1, lane a). The black tiles indicate patients withmetastasis
and white tiles without metastasis. When sorted in ascending
order, these values tend to order the patients according to
their recorded actual metastasis occurrence, with black tiles pre-
dominating at one side and white tiles pre-dominating at the
opposite side (Figure 1, lane a). The ideal separation of the actual
metastasis risk is shown for comparison in Figure 1, lane b.
Examination of the Figure 1 indicates that high values of binFD
define a homogeneous low-risk group of 21 patients, with a low-
risk upper curve entirely flat (Figure 1C) and the all-white tile
region in the high-value range (Figure 1C, lane a). This indicates
a better stratification of low-risk patients for binFD and to an
extent also for the mean pixel intensity feature (Figure 1, lane a).

High-risk patients are clearly stratified at the opposite end, but
this stratification does not approach homogeneity.

Examples of the pan-cytokeratin stained tumor sections
for patients at the actual metastasis risk extremes are
presented in Figure 2. The eight patients with soonest (16–
38 months) metastasis occurrence were considered at highest
risk (Figures 2A–H). The lowest risk patients included those
which remained metastasis-free even during the longest follow-
up periods (Figurs 2I–P). The fractal dimension (or complexity)
of a line is 1 and of a filled square 2. This means that fractal
dimension values for a two-dimensional image must range
between 1 and 2. The actual range of the binFDs within the
studied group of 73 patients was 1.54–1.87 (Figure 2). The
mean pixel intensity values ranged (Figure 2) between 219.5
(darkest) and 248.3 (lightest). The respective average values for
the high- and low-risk groups were 244.5 ± 3.1, 234.4 ± 9.1
for mean intensity and 1.640 ± 0.1, 1.722 ± 0.09 for binFD. It
is important to note that lower pixel intensity values actually
indicate darker graylevels. The presented images thus illustrate
that darker immunostaining and higher binFD values indicate
lower metastasis risk.

DISCUSSION

We report the first prognostic evaluation of immunostaining by
exhaustive assessment of its intensity, distribution, shapes and
texture. This investigation was aimed at improvement of breast
cancer disease course prognostication.

Whereas the prognostic value of malignant cell distribution in
breast tumors has been previously established (14–16), this is the
first investigation of the intensity of their immunostaining
for pan-cytokeratin. We found that the mean intensity
of immunostaining significantly associated with low-risk.
Interestingly, based on this result it can be concluded that tumors
at high-risk of metastatic dissemination typically presented lower
intensity of pan-cytokeratin staining in comparison to low-risk
tumors. Such a decrease might be explained by downregulation
of cytokeratins. This study was designed to compensate for the
possible variation in the expression of individual cytokeratins by
choosing the AE1/AE3 antibody preparation with a wide range of
binding to 13 cytokeratins. The observed lower pan-cytokeratin
staining intensity in high-risk tumors was in agreement with the
previous report of complete loss of such staining for malignant
cells disseminated to lymph nodes, probably associated with cell
dedifferentiation (27). The advantage of the current study was its
assessment of the pan-cytokeratin staining intensity, however,
malignant cells not stained by pan-cytokeratin could not be
quantified. The malignant cells could have been morphologically
identified on hematoxylin-eosin counterstained sections even if
unstained by the pan-cytokeratin antibody. However, histology
sections used in this study were not counterstained in order
to avoid any interference with the analyzed pan-cytokeratin
immunostaining.

Another immunostaining intensity parameter measured in
this study was the total area of immunostaining which reflected
the number of epithelial cells. It is important to note that
none of the tumors in the studied patient group exhibited
massive immune cell infiltrations which might have interfered
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TABLE 3 | Correlations between the prognostically significant clinicopathological, intensity and fractal features.

Features Clinicopathological Intensity Monofractal Multifractal

Adj. pT ER Area Mean binFD binFDout
binFD f(α)max α f(α)max f(α) Q > 0 slope f(α)(Q)

Adjuvant! 1.00 0.90* 0.20 0.07 −0.12 −0.14 −0.20 0.09 −0.05 0.02 −0.01 0.01

pT 0.90* 1.00 0.20 0.10 −0.08 −0.12 −0.15 0.08 −0.08 0.05 −0.01 −0.01

ER 0.20 0.20 1.00 −0.20 −0.01 −0.17 −0.10 0.06 0.07 −0.23 −0.20 −0.11

Area 0.07 0.10 −0.20 1.00 −0.69* 0.77* 0.60* −0.80* 0.06 0.04 0.89* 0.89*

Mean Int. 0.12 0.08 0.01 0.69* 1.00 0.56* 0.43* −0.65* −0.05 −0.03 0.69* 0.70*

binFD −0.14 −0.12 −0.17 0.77* −0.56* 1.00 0.93* −0.81* 0.13 0.10 0.83* 0.82*

binFDoutline −0.20 −0.15 −0.10 0.60* −0.43* 0.93* 1.00 −0.71* 0.14 0.04 0.68* 0.68*

binFD 0.09 0.08 0.06 −0.80* 0.65* −0.81* −0.71* 1.00 −0.16 0.23 −0.81* −0.89*

binf(α)max −0.05 −0.08 0.07 0.06 0.05 0.13 0.14 −0.16 1.00 0.06 0.14 0.16

bin
α f(α)max 0.02 0.05 −0.23 0.04 0.03 0.10 0.04 0.23 0.06 1.00 0.02 −0.12

binf(α) Q > 0 −0.01 −0.01 −0.20 0.89* −0.69* 0.83* 0.68* −0.81* 0.14 0.02 1.00 0.95*

binSlope f(α)(Q) 0.01 −0.01 −0.11 0.89* −0.70* 0.82* 0.68* −0.89* 0.16 −0.12 0.95* 1.00

Spearman’s rank correlation coefficients are displayed.
*P ≤ 0.05.

Adj., Adjuvant! online score; pT, tumor size; ER, estrogen receptor; Area, total stained area; Mean Int., mean immunostaining intensity; binFD, binary fractal dimension; binΛ, binary

lacunarity.

FIGURE 2 | Examples of analyzed binary histological images. (A–H) The highest-risk patients with quickest metastasis appearance. (I–P) The lowest-risk patients,

without metastasis and the longest follow-up. The time to metastasis (A–H) or end of follow-up (I–P), mean pixel intensity (mean) and fractal dimension values (binFD)

are indicated for each image. It is important to note that lower pixel intensity values actually indicate darker graylevels. Furthermore, the indicated mean pixel intensity

values refer to graylevel images, not the presented binary images. All analyzed images represent areas of tumor tissue that are predominantly populated by malignant

cells. Magnification ×400. Pixel size: 145 nm. Bar 50µm, indicated on (A).
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with measurement of the immunostained areas by dilution of
pan-cytokeratin staining. As the mean immunostaining intensity
did not exert prognostic significance, it can be concluded
that the prognostic value was provided by the pan-cytokeratin
amount (mean immunostaining intensity feature) rather than
the amount/number of the malignant cells (total area of
immunostaining feature).

Fractal and intensity immunostaining features presented
similar prognostic performance. This was striking in view of
the fact that intensity quantification is the standard approach
to immunostaining evaluation, while fractal analysis is mainly
considered as a method of choice for pan-tissue staining. We
have previously conducted a fractal analysis of the pan-tissue
H&E stained tumor histopathology specimens for the prognostic
purpose (24, 28). Fractal analysis thereby performed far better on
grayscale then on binary images (28) which directly opposed the
results obtained in this study. The prognostic outperformance
of binary fractal analysis achieved here was surprising because
grayscale image binarization results in a massive loss of
information. The observed discrepancy may be due to the
difference in staining methods as our previous study examined
the pan-tissue stained while our current study investigated
immunostained tumor histology specimens. Therefore, the
prognostically beneficial effect of binarization might derive from
the clearer separation between the immunostained and unstained
areas in binary images. Based on both studies, we conclude
that grayscale information is of key importance for the pan-
tissue stained, while binary information is the optimal source
of prognostic information for the cytokeratin immunostained
tumor tissue sections.

Another surprising result was that monofractal analysis
prognostically outperformed its multifractal extension. This
result was not expected in view of the fact that multifractal
analysis was particularly designed for improved analysis of
irregular natural forms with their typically uneven distribution
of complexity. Our previous study has indicated a comparable
prognostic value of monofractal and multifractal analyses of
pan-tissue stained breast tumor tissue sections (28).

The observed association of binFD with the lower metastasis
risk was in disagreement with the previous fractal analysis studies
of pan-cytokeratin stained breast tumor tissue sections (14, 15).
This discrepancy might be explained by differences between the
used breast cancer patient groups. For instance, the current study
used a group of patients without chemotherapy or other systemic
treatments, while in the mentioned previous studies patient
treatments were not specified. Furthermore, while this study
analyzed the representative fields of view selected from whole
tissue sections by the expert pathologist, in previous studies the
selection was randomized.

While binFD is mainly considered as a measure of object
distribution and shapes, binFDoutline is sensitive mainly to shapes
as it was obtained by use of outlined images showing only
borders/contours of immunostained structures. As these two
fractal dimensions showed similar prognostic performance,
it turns out that contour shapes evaluated by binFDoutline

offered as much prognostic information as shapes together
with distribution obtained by binFD. Furthermore, differential
multifractal analysis calculates grayscale differences within boxes,

thus providing sensitivity to immunostaining texture. Yet, due to
the mentioned prognostic failure of multifractal grayscale image
analysis, it is obvious that this type of texture analysis did not
offer any prognostically useful clues. Taken together, it can be
concluded that contour shapes of the malignant cell clusters
provided the best prognostic clues.

The observed significant prognostic performance of the fractal
features might thus be simply explained by their high correlation
with standard intensity parameters. However, this explanation is
not plausible in view of the multivariate analysis results which
indicated the prognostic independence of fractal but not of
intensity features.

Advantages of this study include the first exhaustive
prognostic evaluation of the immunostaining intensity of breast
tumor malignant cells and the immunostaining distribution,
shape and texture analysis. Another major advantage was the
highly homogenous patient group without systemic therapy,
lymph node spread and with smaller tumor size (pT1/2).
To assemble such a group, we needed to go 25 years back
into archives as more recent treatment protocols prescribe
systemic cytotoxic and/or hormonal treatments to most patients.
Moreover, statistical reliability was enhanced by use of bootstrap
as the bias-correction method. Benefits of the study design
further include a 2-fold evaluation of the prognostic significance,
by ROC and Cox regression analyses, followed by the
multivariate analysis as an estimation of the potential clinical
usefulness. The advantage of ROC analysis is in its use of
continuous values which renders it independent from the bias-
introducing value categorization. The limitation of the ROC
analysis derives from its inability to take into account the
time to metastasis. Therefore, we also employed Cox regression
for prognostic evaluation. Limitations of this study included
its relatively small sample size of 73 patients. However, this
number by far exceeded the requirement estimated by the
prospective sample size analysis and the high homogeneity
of the patient group further supported the reliability of the
obtained results. The limitation of the monofractal analysis
to provide an insight into the regional variations of pixel
distribution was overcome by the inclusion of multifractal
analysis. Furthermore, the computational analysis techniques
for immunostaining evaluation used in this study are fully
objective. This is advantageous over the traditional subjective
staining intensity scoring by a pathologist. However, the overall
workflow employed in this study still included a residual
subjectivity limitation at the level of selection of representative
tumor histopathology areas for analysis. Another notable
limitation was that pan-cytokeratin AE1/AE3 antibody cocktail
immunostains both normal and malignant breast epithelial
cells. This limitation was largely overcome by selection of the
predominantly malignant tumor areas, based on morphological
criteria. Therefore, the pan-cytokeratin staining in the current
study mainly indicated the growth patterns of malignant cells.

In conclusion, we report several novel and unexpected
findings highlighting the non-redundant prognostic value of
shapes and distribution of malignant cell clusters in breast
tumors, as assessed by fractal analysis. Prognostic advancement
is clinically highly relevant based on the potential survival benefit
for the reliably identified high-risk patients. Further research is
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underway in the direction of additional enhancement of breast
tumor malignant growth analysis.
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Copyright © 2018 Rajković, Li, Plataniotis, Kanjer, Radulovic and Milošević. This
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