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Breast cancer is one of the most common malignancies. The molecular mechanisms

of its pathogenesis are still to be investigated. The aim of this study was to identify

the potential genes associated with the progression of breast cancer. Weighted gene

co-expression network analysis (WGCNA) was used to construct free-scale gene

co-expression networks to explore the associations between gene sets and clinical

features, and to identify candidate biomarkers. The gene expression profiles of GSE1561

were selected from the Gene Expression Omnibus (GEO) database. RNA-seq data

and clinical information of breast cancer from TCGA were used for validation. A total

of 18 modules were identified via the average linkage hierarchical clustering. In the

significant module (R2 = 0.48), 42 network hub genes were identified. Based on the

Cancer Genome Atlas (TCGA) data, 5 hub genes (CCNB2, FBXO5, KIF4A, MCM10,

and TPX2) were correlated with poor prognosis. Receiver operating characteristic (ROC)

curve validated that the mRNA levels of these 5 genes exhibited excellent diagnostic

efficiency for normal and tumor tissues. In addition, the protein levels of these 5 genes

were also significantly higher in tumor tissues compared with normal tissues. Among

them, CCNB2, KIF4A, and TPX2 were further upregulated in advanced tumor stage. In

conclusion, 5 candidate biomarkers were identified for further basic and clinical research

on breast cancer with co-expression network analysis.

Keywords: breast cancer, weighted gene co-expression network analysis (WGCNA), prognosis, GEO, TCGA

INTRODUCTION

Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer
death in females worldwide, accounting for 30% of cancer diagnoses and 14% of cancer death.
In 2017, it was estimated that nearly 252,710 new cases were diagnosed in the United States,
with ∼40,610 deaths (1). Therapeutic strategies of breast cancer have been markedly improved.
A number of treatments such as surgery, chemotherapy, radiotherapy, hormone therapy, and
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targeted therapy are available for breast cancer (2). However,
the patients with distant metastases were usually diagnosed with
a late stage and nearly incurable (3). Moreover, 30% patients
diagnosed with early stage were easy to recur in distant organs
even after surgery of removing the primary tumor (4). The
classification of breast cancer affects treatment decision and
prognosis: hormone-based therapy for ER+ patients; targeted
therapy for HER2+ patients; and poorly differentiated cancer
often has the worse prognosis (5–7).

Inheritance plays an important role in the development of
breast cancer. BRCA1 and BRCA2 are 2 biomarkers which are
currently used clinically to assess the familial breast cancer risk.
BRCA-associated breast cancer has relatively distinct pathologic
characteristics. Up to 20% women with triple-negative breast
cancer present BRCA mutations, while BRCA mutations occur
less common in general population (8, 9). HER2 expression was
found to be upregulated in over 30% patients with breast cancer
(10). Previous data suggested that high HER2 levels not only
indicated prognostic value, but also affected treatment decisions.
Lapatinib and trastuzumab presented dramatically therapeutic
effects in patients with HER2-positive breast cancer (11, 12).

FIGURE 1 | Flow chart of data preparation, processing, analysis, and validation.

Expression levels of hormone receptors (ER/PR) predicted the
efficacy of endocrine therapies, and their upregulation was often
associated with a favorable prognosis (13). Ki-67 was reported
to be associated with disease-free survival (14). High CXCR4
levels were associated with lymph node metastasis and distant
metastasis (15). Despite the substantial improvements in the
treatment of breast cancer, to date, the ability to treat the
advanced ones is still limited due to the lack of precise molecular
targets for breast cancer (16). Therefore, it is important to
explore the molecule mechanisms involved in the occurrence
and development of breast cancer. More novel candidate genes
are needed to improve the early diagnosis and treatment
decisions.

Co-expression analysis is a powerful technique to construct
free-scale gene co-expression networks. The weighted gene co-
expression network analysis (WGCNA) was widely used to
analyze large-scale data sets and to find modules of highly
correlated genes. WGCNA was successfully used to explore
the associations between gene sets and clinical features, and
to identify candidate biomarkers (17). Thus, we described the
correlation patterns among genes through a systematic biology
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method based on WGCNA and identified novel biomarkers
associated with breast cancer prognosis.

MATERIALS AND METHODS

Data Procession
A workflow of this study was indicated in Figure 1. The gene
expression profiles of GSE1561 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE1561) submitted by Richard Iggo et
al. was downloaded from the Gene Expression Omnibus (GEO)
database. The GSE1561 was an expression profiling based on
GPL96 platform (Affymetrix Human Genome U133A Array)
and contained 49 samples. Most patients had 2 trucut biopsies
taken, and both biopsies were analyzed from 2 tumors to test
the reproducibility of the technique. Repeat amplifications and

duplicate biopsies clustered together suggested that biological
variation was greater than technical variation in this data set.
The results of immunohistochemistry (IHC) also suggested the
high quality of this data set (18). Robust Multi-array Average
(RMA) algorithm in affy package within Bioconductor (http://
www.bioconductor.org) in R was used to preprocess the gene
expression profile data. After background correction, quantile
normalization and probe summarization, the data set with 12,413
genes was further processed, and the top 50% most variant genes
by analysis of variance (6,206 genes) were selected for WGCNA
analysis.

Co-expression Network Construction
After validation, the expression data profile of these 6,206
genes were constructed to a gene co-expression network using

FIGURE 2 | Clustering dendrogram of 49 samples.
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WGCNA package in R (Supplementary Data Sheet 1) (17). The
analysis was performed as described previously (17).

The adjacency matrix aij which calculated the connection
strength between each pair of nodes was calculated as follows:

sij = |cor(xi, xj)|aij = Sij
β

Where Xi and Xj were vectors of expression value for gene i and
j, sij represented the Pearson’s correlation coefficient of gene i
and gene j, aij encoded the network connection strength between
gene i and gene j. In the presented study, the power of β =

9 (scale free R2 = 0.95) was selected as the soft-thresholding
parameter to ensure a scale-free network. In the co-expression
network, genes with high absolute correlations were clustered
into the same module. WGCNA method not only considers
the association between the 2 connected genes, but also takes
associated genes into account. Modules were also identified via
hierarchical clustering of the weighting coefficient matrix. To
further identify functional modules in the co-expression network
with these 6,206 genes, the topological overlap measure (TOM)
representing the overlap in shared neighbors, was calculated
using the adjacency matrix.

TOMi,j =

∑N
K=1 Ai,k · Ak,j + Ai,j

min
(

Ki,Kj

)

+ 1− Ai,j

Where A is the weighted adjacency matrix given by A ij = |cor(x

i, x j)|
β and β = 9 is the soft thresholding power. According

to the TOM-based dissimilarity measure with a minimum size
(gene group) of 30 for the gene dendrogram, average linkage
hierarchical clustering was conducted, and genes with similar
expression profiles were classified into the same gene modules
using the DynamicTreeCut algorithm.

Identification of Clinical Significant
Modules
Two approaches were used to identify modules associated with
clinical information of breast cancer. First, module eigengenes
(MEs) were defined as the first principal component of each
gene module and the expression of MEs was considered as a
representative of all genes in a given module. The correlation
between MEs and clinical trait was calculated to identify the
clinical significant module. In addition, the gene significance
(GS) was defined as mediated p-value of each gene (GS =

lgP) in the linear regression between gene expression and the
clinical traits. Then, the module significance (MS) were defined
as the average GS of all the genes involved in the module.MS
was measured to incorporate clinical information into the co-
expression network. Module significance (MS) was defined as the
average absolute gene significance measured for all genes in a
given module.

Gene Ontology and Pathway Enrichment
Analysis
DAVID (http://david.abcc.ncifcrf.gov/) is a database for
annotation, visualization and integrated discovery. Gene
Ontology (GO) and KEGG pathway analysis of differentially
expressed mRNAs were carried out using DAVID (version 6.8)
online tools: functional annotation. The ontology contains three
categories: biological process (BP), molecular function (MF),
and cellular component (CC). Enriched GO terms and KEGG
pathways were identified according to the cut-off criterion of
adjusted P < 0.001.

Hub Gene Identification and Validation
The connectivity of genes was measured by absolute value
of the Pearson’s correlation. Genes with high within-module

FIGURE 3 | Determination of soft-thresholding power in the WGCNA. (A) Analysis of the scale-free fit index for various soft-thresholding powers (β). (B) Analysis of the

mean connectivity for various soft-thresholding powers. (C) Checking the scale free topology when β = 9.
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connectivity were considered as hub genes of the modules
(cor.geneModuleMembership > 0.8). Hub genes inside a given
module tended to have a strong correlation with certain clinical
trait, which was measured by absolute value of the Pearson’s
correlation (cor.geneTraitSignificance > 0.2). To validate the
hub genes, the clinical information and RNA sequencing data
of breast cancer were obtained from the Cancer Genome Atlas

Project database (TCGA, https://cancergenome.nih.gov/). The
mRNA sequencing data was normalized using edgeR package in
R language. The Human Protein Atlas (http://www.proteinatlas.
org) was also used to validate the immunohistochemistry of
candidate hub genes. The direct link to these images in the
human protein atlas are as follows: http://www.proteinatlas.
org/ENSG00000112029-FBXO5/tissue/breast#img (FBXO5 in

FIGURE 4 | Identification of modules associated with the clinical traits of breast cancer. (A) Dendrogram of all differentially expressed genes clustered based on a

dissimilarity measure (1-TOM). (B) Heatmap of the correlation between module eigengenes and clinical traits of breast cancer. (C) Distribution of average gene

significance and errors in the modules associated with tumor grades of breast cancer.
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normal tissue); http://www.proteinatlas.org/ENSG00000112029-
FBXO5/pathology/tissue/breast$+$cancer#img (FBXO5 in
tumor tissue); http://www.proteinatlas.org/ENSG00000157456-
CCNB2/tissue/breast#img (CCNB2 in normal tissue); http://
www.proteinatlas.org/ENSG00000157456-CCNB2/pathology/
tissue/breast$+$cancer#img (CCNB2 in tumor tissue); http://
www.proteinatlas.org/ENSG00000090889-KIF4A/tissue/breast#
img (CCNB2 in normal tissue); http://www.proteinatlas.org/
ENSG00000090889-KIF4A/pathology/tissue/breast$+$cancer#
img (CCNB2 in tumor tissue); http://www.proteinatlas.org/
ENSG00000065328-MCM10/tissue/breast#img (MCM10 in
normal tissue); http://www.proteinatlas.org/ENSG00000065328-
MCM10/pathology/tissue/breast$+$cancer#img (MCM10 in
tumor tissue); http://www.proteinatlas.org/ENSG00000088325-
TPX2/tissue/breast#img (TPX2 in normal tissue); http://www.
proteinatlas.org/ENSG00000088325-TPX2/pathology/tissue/
breast$+$cancer#img (TPX2 in tumor tissue). Survival analysis
of hub genes were performed using Kaplan Meier-plotter (www.
kmplot.com) (19).

RESULTS

Weighted Co-expression Network
Construction and Key Modules
Identification
The samples of GSE1561 were clustered using average linkage
method and Pearson’s correlation method (Figure 2). The co-
expression analysis was carried out to construct the co-expression

network. In this study, the power of β = 9 (scale free
R2 = 0.95) was selected as the soft-thresholding parameter
to ensure a scale-free network (Figure 3). A total of 18
modules were identified via the average linkage hierarchical
clustering. Blue module was found to have the highest
association with tumor grade (Figure 4), and this module
was selected as the clinical significant module for further
analysis.

Gene Ontology and Pathway Enrichment
Analysis
The genes in the clinical significant module were categorized
into 3 functional groups (BP, CC, and MF). Clinical significant
module genes in the BP group were mainly enriched in cell
division, DNA replication, sister chromatid cohesion, mitotic
nuclear division, and DNA replication initiation; The genes in
the MF group were mainly enriched in protein binding, poly(A)
RNA binding, RNA binding, and ATP binding; the genes in
the CC group were significantly enriched in nucleoplasm,
nucleus, nucleolus, cytosol, and cytoplasm (Figure 5).
According to Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis, our results demonstrated that these
genes were mainly involved in cell cycle, DNA replication,
spliceosome, ribosome biogenesis in eukaryotes and RNA
transport. These results indicated that the clinical significant
module genes were mainly involved in mitotic cell cycle
process.

FIGURE 5 | Gene ontology and pathway enrichment analysis of blue module genes. (A) Biological process analysis. (B) Cellular component analysis. (C) Molecular

function analysis. (D) KEGG pathway analysis.
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Identification and Validation of Hub Genes
Based the cut-off criteria (|MM| > 0.8 and |GS| > 0.2),
42 genes with high connectivity in the clinical significant
module were identified as hub genes. Among them, CCNB2,
FBXO5, KIF4A, MCM10, and TPX2 were negatively associated
with the overall survival and relapse free survival (Figures 6,
7). Moreover, based on the TCGA data, the expression
levels of these 5 genes were significantly higher in tumor
tissues, especially in the triple negative breast cancers. The

expression of CCNB2, KIF4A, and TPX2 were upregulated
in the advanced tumor stages. ROC curve indicated that
CCNB2, FBXO5, KIF4A, MCM10, and TPX2 exhibited excellent
diagnostic efficiency for normal and tumor tissues (Figures 8,
9). In addition, the protein levels of these 5 genes were
significantly higher in tumor tissues compared with normal
tissues based on the Human Protein Atlas database (Figure 10).
Since these 5 genes were all hub genes in the clinical
significant module, they might have a tendency to co-express.

FIGURE 6 | Overall survival of the five hub genes in breast cancer based on Kaplan Meier-plotter. The patients were stratified into high-level group and low-level group

according to median expression. (A) CCNB2. (B) FBXO5. (C) KIF4A. (D) MCM10. (E) TPX2.
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Our results of correlation analysis demonstrated a strong
correlation of mRNA expression levels between KIF4A and TPX2
(Supplementary Data Sheet 2).

DISCUSSION

Breast cancer seriously endangers female health, and it is easy to
recur even after combined therapy. Although the treatment of

breast cancer was improved during the last decades, the ability
to treat the advanced ones is still limited due to the lack of precise
molecular targets for breast cancer. Therefore, it is important
to explore the molecule mechanisms involved in the occurrence
and development of breast cancer. Better biomarkers for cancer
specific prognosis and progression are highly demanded. In the
presented study, we used gene expression datasets from GEO
database to screen potential biomarkers related to the progression
and prognosis of breast cancer. We also obtained the clinical

FIGURE 7 | Relapse free survival analysis of the five hub genes in breast cancer based on Kaplan Meier-plotter. The patients were stratified into high-level group and

low-level group according to median expression (A) CCNB2. (B) FBXO5. (C) KIF4A. (D) MCM10. (E) TPX2.
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information and RNA sequencing data of breast cancer from
TCGA database for validation.

WGCNA was performed to explore gene co-expression
modules associated with progression of breast cancer. A total of
6,206 most variant genes were used to construct co-expression
network and 18 modules were identified. Blue module was found
to have the highest association with tumor grades and 42 genes
with high connectivity were screened out from the module.
Among them, CCNB2, FBXO5, KIF4A, MCM10, and TPX2 were
negatively associated with the overall survival (Figure 6).

CCNB2, also known as cyclin B2, is a member of cyclin
family. CCNB2 was reported to regulate cell cycle by activating
CDC2 kinase in eukaryotes, and inhibition of CCNB2 induced
cell cycle arrest. CCNB2 was overexpressed in multiple
tumors, including bladder cancer, uterine corpus endometrial
carcinoma, prostate cancer, and gastric cancer (20–23). In
addition, compared with normal controls, the levels of serum
circulating CCNB2 are higher in digestive tract cancer and
lung cancer patients, and they are found to be significantly
associated with tumor stage and metastasis status (24). In
invasive breast carcinoma, cytoplasmic CCNB2 protein levels

were significantly correlated with a poor disease specific survival.
CCNB2 expression level was reported to be an independent
prognostic factor for the disease specific survival of breast cancer
(25). Our results indicated that CCNB2 was upregulated in
breast cancer tissues compared to normal tissues, and that its
expression was significantly associated with molecular subtypes
of breast cancer and tumor stages (Figure 8). The underlying
mechanisms of CCNB2 on tumor progression need to be further
clarified.

F-Box Protein 5 (FBXO5) is a key cell cycle regulatory gene
which regulates the progression to S phase and mitosis by
inhibiting the anaphase promoting complex (APC). FBXO5 is
overexpressed in various solid tumors. In the G0 and early
G1 phases, the expression of FBXO5 is low, while in the S
phase it is upregulated. In ovarian clear cell carcinoma, FBXO5
accumulation was related to mitotic errors with centrosome
overduplication and abnormal spindle formation. These findings
demonstrated that it might be involved in human cell cycle
disorders and genomic stability to promote tumor growth (26–
28). In breast carcinoma tissues, FBXO5 induced proliferation
through the PI3K/Akt pathway. Overexpression of FBXO5 was

FIGURE 8 | Validation of CCNB2, FBXO5, KIF4A, MCM10, and TPX2. (A) The correlation of CCNB2 (A), FBXO5 (B), KIF4A (C), MCM10 (D), and TPX2 (E)

expression with breast cancer molecular subtypes. (F) The correlation of CCNB2 expression with pathological stage. (G) The correlation of KIF4A expression with

pathological stage. (H) The correlation of TPX2 expression with pathological stage.*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. One-way analysis of variance

(ANOVA) was used to evaluate the statistical significance of differences.
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reported to correlate with poor prognosis. In addition, PI3K
inhibitor reduced FBXO5 expression (29).

The protein encoded by Kinesin family member 4A
(KIF4A) was reported to be involved in the intracellular
transport of membranous organelles and chromosome integrity
during mitosis. In patients with colorectal cancer, KIF4A
was upregulated, and downregulation of KIF4A reduced cell
proliferation in colorectal cancer cells (30). In hepatocellular
carcinoma (HCC) patients, KIF4A overexpression was associated
with poorer overall and disease-free survival. In HCC cells,

higher levels of KIF4A dramatically increased cellular clonogenic
abilities and proliferation, while KIF4A depletion caused a
significant augmentation of apoptosis (31). In breast cancer, high
KIF4A levels were associated with poor relapse-free survival of
ER-positive patients. In tamoxifen-resistant and sensitive breast
cancer cells, KIF4A knockdown significantly impeded cellular
proliferation and induced apoptosis (32).

Mini-chromosome maintenance complex component 10
(MCM10) is one of the highly conserved mini-chromosome
maintenance proteins. MCM10 is bound to chromatin through

FIGURE 9 | Gene expression levels of CCNB2, FBXO5, KIF4A, MCM10, and TPX2 between normal breast and tumor samples. The mRNA levels of CCNB2 (A),

CCNB2 (B), FBXO5 (C), KIF4A (D), and TPX2 (E). ROC curve of CCNB2 (F), FBXO5 (G), KIF4A (H), MCM10 (I), and TPX2 (J). (A–E) *P < 0.05; **P < 0.01; ***P <

0.001; ****P < 0.0001. Two-tailed Student’s t-tests was used to evaluate the statistical significance of differences.
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FIGURE 10 | Immunohistochemistry of the five hub genes based on the Human Protein Atlas. (A) Protein levels of FBXO5 in normal tissue (staining: medium;

intensity: moderate; quantity: >75%). (B) Protein levels of FBXO5 in tumor tissue (staining: high; intensity: strong; quantity: >75%). (C) Protein levels of CCNB2 in

normal tissue (staining: low; intensity: moderate; quantity: <25%). (D) Protein levels of CCNB2 in tumor tissue (staining: medium; intensity: strong; quantity: <25%).

(E) Protein levels of KIF4A in normal tissue (staining: low; intensity: weak; quantity: 25–75%). (F) Protein levels of KIF4A in tumor tissue (staining: high; intensity: strong;

quantity: >75%). (G) Proteins level of MCM10 in normal tissue (staining: not detected; intensity: weak; quantity: <25%). (H) Protein levels of MCM10 in tumor tissue

(staining: low; intensity: moderate; quantity:<25%). (I) Protein levels of TPX2 in normal tissue (staining: medium; intensity: strong; quantity: <25%). (J) Protein levels of

TPX2 in tumor tissue (staining: medium; intensity: strong; quantity: <25%).
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the interaction with MCM2-7, and plays crucial roles both in
initiation and elongation during eukaryotic genome replication
(33). For urothelial carcinoma, high MCM10 levels were
significantly correlated with advanced tumors stages, vascular
invasion, and nodal status. MCM10 overexpression also
predicted poor disease-specific survival and inferior metastasis-
free survival (34). In our analysis of GSE1561, MCM10 was one
of the hub genes in the blue module which was significantly
associated with tumor grade (Figure 3). In the validation dataset
of TCGA, our results indicated that MCM10 was significantly
upregulated in breast tumor tissues, and even higher in the triple
negative breast cancer (Figures 8, 9).

Targeting protein for Xenopus kinesin-like protein 2 (TPX2)
plays a critical role in chromosome segregation machinery
during mitosis (35). It was reported to be overexpressed in
multiple tumors: lung cancer, kidney renal clear cell carcinoma,
hepatocellular Carcinoma, prostate cancer, and breast cancer
(36). TPX2 activates PI3K/Akt pathway and upregulates matrix
metalloproteinases (MMP) family members in colon cancer.
Previous studies showed that TPX2 expression promoted
proliferation, migration, and invasion of liver cancer and breast
cancer cells via upregulating expressions of MMP2 and MMP9
(37, 38). In patients with HCC, overexpression TPX2 was
correlated with worse prognosis. In addition, knockdown TPX2
in HCC cells strongly reduced cellular proliferation, induced
apoptosis and inhibited EMT (39).

Co-expression analysis is a powerful technique for multigene
analysis of large-scale data sets. In cancer research, co-expression
analyses revealed the mRNA and microRNA expression network
in multiple cancers. In the present study, we used WGCNA
to construct a gene co-expression network, to measure the
relationships between genes and modules, and to explore the
relationships between modules and clinical traits. We also

screened out a clinical significant module which was associated
with the progression of breast cancer. KEGG pathway analysis
demonstrated that this module was mostly involved in cell cycle.
In addition, 5 hub genes, CCNB2, FBXO5, KIF4A, MCM10, and
TPX2 were identified and validated to be associated with the
progression and worse prognosis of breast cancer. Our results
provided valuable indication for basic and clinical research on
breast cancer. The underlying concept of gene co-expression
analysis is guilt-by-association. The groups of genes known as
co-expression modules were found to maintain a consistent
expression relationship independent of phenotype, and might
share a common biological role. Similar to the limitations of
most other data mining methods, our results of WGCNA can
be biased or invalid when dealing with technical artifacts or
tissue contaminations (6). To increase the credibility of WGCNA
results, TCGA RNA-seq data and IHC data from the Human
Protein Atlas database were used for validation. While due to
the limitation of the database, the related IHC of each sample
can’t be found, tumor and normal samples were from different
patients.
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