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Although the role of PD-L1 in suppressing the anti-tumor immune response is extensively
documented, recent discoveries indicate a distinct tumor-intrinsic role for PD-L1 in
modulating epithelial-to-mesenchymal transition (EMT), cancer stem cell (CSC)-like
phenotype, metastasis and resistance to therapy. In this review, we will focus on the
newly discovered functions of PD-L1 in the regulation of cancer development, describe
underlying molecular mechanisms responsible for PD-L1 upregulation and discuss
current insights into novel components of PD-L1 signaling. Furthermore, we summarize
our current understanding of the link between PD-L1 signaling and the EMT program as
well as the CSC state. Tumor cell-intrinsic PD-L1 clearly contributes to cancer stemness,
EMT, tumor invasion and chemoresistance in multiple tumor types. Conversely, activation
of OCT4 signaling and upregulation of EMT inducer ZEB1 induce PD-L1 expression
in cancer cells, thereby suggesting a possible immune evasion mechanism employed
by cancer stem cells during metastasis. Our meta-analysis demonstrated that PD-L 7 is
co-amplified along with MYC, SOX2, N-cadherin and SNAIT in the TCGA endometrial and
ovarian cancer datasets. Further identification of immune-independent PD-L1 functions
and characterization of crucial signaling events upstream or downstream of PD-L1 in
diverse cancer types and specific cancer subtypes, would provide additional targets and
new therapeutic approaches.

Keywords: PD-L1, CD274, metastasis, EMT, cancer stem cells, microRNA

INTRODUCTION

In cancer, the epithelial-to-mesenchymal transition (EMT) is a phenotypic process that promotes
the acquisition of a mesenchymal features of epithelial tumor cells, reduces cell polarity and
cell-cell adhesion, and enables them to migrate and invade more efficiently, by switching off
the expression of epithelial markers, such as E-cadherin, and turning on mesenchymal markers,
including N-cadherin and Vimentin (1, 2). Epithelial tumor cells undergoing EMT are shown to
contribute to tumorigenesis, invasion, metastasis, and resistance to chemotherapy, radiation and
small-molecule-targeted therapy (3).

Cancer stem cells (CSCs) represent a fraction of undifferentiated cancer cells that are the seeds
of tumor recurrence, have the ability to self-renew and exhibit significant resistance to conventional
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chemo- and radiotherapy (4). Emerging evidence has revealed
an association between EMT and the acquisition of CSC-like
properties (5). The induction of EMT program is a critical
regulator of the CSC phenotype (6, 7). On the other hand, tumors
cells that exhibit the CSC phenotype also express genes associated
with the EMT features and show enhanced metastatic ability,
thus representing a novel mechanism contributing to cancer
metastasis (8).

The mutual interactions between tumor cells and the
tumor microenvironment are essential for tumorigenesis, tumor
progression, metastasis and resistance to drug therapy (9). Tumor
microenvironment consists of extracellular matrix and diverse
cell populations such as T cells, NK cells, macrophages, dendritic
cells, fibroblasts, and endothelial cells (10). Progression of cancer
to an advanced or metastatic disease usually suggests a failure
or insufficiency of the ongoing immune response. Tumors not
only effectively escape immune recognition, they also actively
inhibit T-cell-mediated normal anti-tumor activity to promote
further tumor growth and metastasis by modulating immune
checkpoints, which mediate immune tolerance and inhibit
the anti-tumor immune response (11). Multiple checkpoint
molecules, such as PD-1/PD-L1, CTLA4, BTLA, B7H3, B7H4,
HHLA2, IDO1, Tim-3, CD28, CD40, CD47, CD70, CD137,
VISTA, LAG-3, and TIGIT, have been reported (11). Among
them, B7H3 has been identified as a critical promoter of tumor
cell proliferation, migration, invasion, EMT, cancer stemness,
and drug resistance (12).

PD-L1 (also known as CD274 or B7H1) is expressed in tumor
cells and plays a crucial role in tumor immune escape and the
formation of a permissive immune microenvironment, through
at least three mechanisms: (i) tolerizing or anergizing tumor-
reactive T cells by binding to its receptor PD-1; (ii) rendering
tumor cells resistant to CD8" T cell and Fas ligand-mediated
lysis; and (iii) tolerizing T cells by reverse signaling through
T cell-expressed CD80 (13, 14). In addition, PD-L1 is also
expressed by tumor-associated myeloid-derived suppressor cells
and macrophages, which are the major factors responsible for
tumor-associated immune deficiencies (15).

Although PD-L1 is widely implicated in tumor immune
evasion, the tumor-intrinsic roles of PD-L1 and the mechanisms
by which PD-L1 regulates EMT, the acquisition of tumor-
initiating potential and resistance to anti-tumor drugs, as well as
the ability to disseminate and metastasize in human cancers are
currently less well defined. As will be discussed in more detail
below, the identification of tumor-intrinsic PD-L1 signaling may
provide critical targets for the development of cancer therapies.

PD-L1 DYSREGULATION AND PROGNOSIS
IN CANCER

An increasing number of studies suggested that PD-L1 is
highly expressed in solid tumors, including colorectal cancer
(16), lung cancer (17), pancreatic carcinoma (18), hepatocellular
carcinoma (19), gastric cancer (20), ovarian cancer (21),
endometrial cancer (22, 23), and cervical cancer (24, 25).
High expression of PD-L1 was associated with significantly

worse overall survival in cervical cancer (25), non-small cell
lung cancer (26), gastric cancer (27), esophageal cancer (28),
glioma (29), ovarian cancer (30), and other cancers (31).
However, the prognostic value of PD-L1 for certain types
of cancer is still controversial. Some studies reported that
high PD-L1 could predict favorable prognosis (32, 33). In
cervical cancer, squamous cell carcinomas tended to express
more PD-LI than adenocarcinomas (34). The possible reasons
for these inconsistent results might include cancer type (or
subtypes), tumor heterogeneity, sample size, clinical stage,
different intervention, the time point of PD-L1 measurement
as well as the different methodology used in research (such as
detection methods and procedures).

MECHANISMS OF PD-L1 ACTIVATION IN
CANCER

The tumor-intrinsic PD-L1 signaling pathway is inappropriately
activated in many cancers. Mechanisms underlying aberrant
PD-L1 activation mainly include genomic alterations (including
copy number amplification and 3’-UTR disruption), constitutive
oncogenic signaling activation, extrinsic factors and epigenetic
mechanisms, such as upregulation of oncogenic microRNAs
(miRNAs), downregulation of tumor suppressor miRNAs,
aberrant DNA methylation, and histone modifications
(Figure 1).

Copy Number Gain and 3’-UTR Disruption
Small-cell lung cancer (35), squamous cell carcinoma of the
oral cavity (36), cervical cancer (37), ovarian cancer (38),
breast cancer (39), melanoma, bladder cancer, head and neck
cancer, soft tissue sarcoma and prostate cancer (40) exhibit
increased copy number of chromosome 9p24, on which CD274
resides. Here, we investigated the frequency of elevated PD-
L1 in ovarian cancer and endometrial cancer in The Cancer
Genome Atlas (TCGA) data portal. Analysis of TCGA data
by cBioPortal (41) demonstrated that overall, PD-L1 was
highly expressed in these two cancers, mainly including gene
amplification and mRNA up-regulation (Figure 2A). Moreover,
analyses of U133A and U133Plus2 datasets in the GENT (gene
expression across normal and tumor tissue) database (42)
revealed that PD-LI was highly overexpressed in many tumor
tissues (Figure 2B). Furthermore, analysis of the TCGA dataset
was performed by using the MethHC browser (43). PD-LI
mRNA expression was consistently upregulated across various
cancers (Figure 2C). In addition, disruption of the 3’ region
of the PD-LI increases mRNA stability, leading to a marked
elevation of aberrant PD-LI transcripts in multiple cancers
(44).

Constitutive Oncogenic Signaling
Activation

Loss of PTEN expression, activation of PI3K/AKT pathway,
activation of RAS/MAPK pathway, inhibition of p53 signaling,
upregulation of reprogramming factors (Oct4, Sox2, and c-Myc)
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FIGURE 1 | Mechanisms of PD-L1 activation in cancer. The diagram illustrates the diverse mechanisms of PD-L1 activation in cancer, including genetic alterations to
PD-L1 (such as gene amplification, 3’-UTR disruption, or dysregulated transcription) and a wide range of epigenetic mechanisms (including upregulation of oncogenic
microRNAs, downregulation of tumor suppressor microRNAs, aberrant DNA methylation and histone modifications).

and upregulation of ZEB1 (an inducer of EMT) are clearly linked
to the activation of PD-L1 signaling pathway (45, 46) (Figure 1).

PD-L1 expression could be regulated via the PI3K/AKT
and/or RAS/MAPK pathways in different tumor cell types (47-
49). PD-L1 expression is suppressed by the tumor suppressor
gene PTEN. Deletion of PTEN gene results in elevated PD-L1
expression at the translational level by activating the PI3K/AKT
signal pathway (50, 51). FOXOs inhibit the expression of PD-
L1 through repressing Myc or Wnt/p-catenin signaling pathways
in tumor cells (52). MUCLI elevates PD-L1 transcription by
recruitment of MYC and NF-kB (a downstream effector of
PI3K/AKT pathway (53) to the PD-LI promoter in breast
cancer (54). Also, MUCI1 was shown to increase PD-L1 levels
via downregulation of miR-34a and miR-200c, two direct
suppressors of PD-L1 (55-57).

Abnormal activation of stem cell signaling pathways
has been implicated in the regulation of PD-L1. OCT4
is a key regulatory gene that maintains the self-renewal
properties of CSC and promotes tumorigenesis of cervical
cancer cells by miR-125b/BAKl1pathway (58). We recently
reported that, OCT4 promotes cervical cancer invasion and
proliferation by enhancing PD-L1 expression through a miR-
18a-dependent mechanism, by which miR-18a upregulates
PD-L1 by targeting PTEN, WNK2 and SOX6 to activate
the PI3K/AKT, MEK/ERK and Wnt/B-catenin pathways
and inhibit the p53 pathway (25). In addition, SOX2, a
transcription factor that controls tumor initiation and
cancer stem-cell functions, can directly bind to the PD-LI
promoter and transactive its expression, contributing to
the increased proliferation of hepatocellular carcinoma cells
(59). The upstream kinases of the Hippo pathway MST1/2

and LATS1/2 suppress PD-L1 expression, while TAZ and
YAP enhance PD-L1 levels in breast and lung cancer cells
(60).

Tumor cells undergoing EMT are shown to share a variety
of capabilities with experimentally defined CSC (61). In lung
cancer, PD-L1 expression was significantly higher in patients
with EMT phenotypes (such as increased SNAII and Vimentin
expression) compared with those with epithelial phenotypes
(62). siRNA-mediated ZEB1 knockdown suppressed PD-L1
expression but promoted E-cadherin expression in esophageal
squamous cell carcinoma (63). In agreement with these reports,
cBioportal analysis of data on somatic copy number variation
and mRNA level using TCGA endometrial and ovarian cancer
dataset demonstrated that PD-L1 is indeed co-amplified along
with MYC, SOX2, N-cadherin and SNAII in both cancer types
(Figure 2A).

Another study reported that transcription factor NKX2-
1 bound to the locus of PD-LI and induced its expression
in mucinous lung cancer cells (64). In non-small cell lung
cancer cells, the ubiquitin ligases Cbl-b and c¢-Cbl inhibit PD-
L1 expression by inactivating STAT, AKT, and ERK signaling
(65), and overexpression of tumor suppressor gene TUSC2
downregulated PD-L1 expression (66). CDK4 and CDK6 kinase
destabilize PD-L1 protein via cullin 3-SPOP, leading to the
downregulation of PD-L1 in cancer cells (67).

Regulation of PD-L1 Expression by

Epigenetic Mechanisms
The expression of cancer-associated genes can occur by
epigenetic mechanisms, including DNA methylation (68),
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FIGURE 2 | Amplification and upregulation of PD-L1 and genes co-amplified with PD-L1 in TCGA data. (A) The Cancer Genome Atlas (TCGA) datasets in the

cBioPortal database (www.cbioportal.org) was used to investigate molecular alterations (RNA expression, copy number variation, and mutation). Shown are OncoPrint
outputs where each bar represents a tumor that was found to contain an alteration (ampilification, deletion, mutation, upregulation, and downregulation, as indicated)
in PD-L1, MYC, SOX2, N-cadherin (CDHZ2), and SNAIT gene in samples of endometrial cancer (upper panel) and ovarian cancer (lower panel) based on TCGA data.
(B) PD-L1 mRNA expression pattern was analyzed in a panel of cancer (red) vs. normal (green) tissues from the GENT database. (C) PD-L1 expression pattern was

determined in multiple cancer microarray datasets available in the MethHC database. N, normal; C, cancer. **P < 0.005.

histone modification (69), chromatin remodeling, and non-
coding RNAs (70). The anti-PD-1 therapy could induce PD-
L1 promoter methylation and decrease PD-L1 levels in patients
with non-small cell lung cancer (71). The class I histone
deacetylase HDACS acts as an epigenetic inhibitor of PD-
L1 expression in melanoma cells via modulating HOXA5
and STAT3 (72). Numerous miRNAs, including miR-15a/miR-
16 (73), miR-17-5p (74), miR-93/106b (75), miR-138-5p (76),
miR-140/miR-142/miR-340/miR-383 (25), miR-152 (77), miR-
155 (78), miR-193 (73), miR-195 (73), miR-324-5p/miR-
338 (79) and miR-322/miR-424 (80), have been shown to
directly target and inhibit PD-L1 expression in tumor cells.
In chemo-resistant non-small-cell lung cancer cells, miR-
197 indirectly inhibits PD-L1 expression by regulating the

CKS1B/STAT3 axis (81). On the other hand, oncogenic miR-
20b and miR-21 inhibited PTEN expression, resulting in PD-
L1 overexpression in colorectal cancer (82). Our recent data
established that an oncogenic OCT4-miR-18a pathway serves
as the key upstream activator of PD-L1 in cervical cancer
(27).

Extrinsic Factors Influencing the
Expression of PD-L1

The main regulators of PD-L1 are the interferon-y (83),
inflammatory cytokines such as IL-17 (84) and TNF-a (84),
TGF-B1 (85), and HIF-la (86). Of note, overexpressing
HPV16E7 oncoprotein increased PD-L1 protein expression,
and knockdown of HPVI16E7 resulted in a reduction in
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FIGURE 3 | Tumor-intrinsic PD-L1 signaling in cancer initiation and development. The diagram illustrates signaling events downstream of PD-L1 activation in cancer.
Although PD-L1 could serve as a tumor suppressor by inhibiting cancer stem cell properties in cholangiocarcinoma, it plays a pivotal role in promoting cancer
stemness, EMT, tumor invasion, and chemoresistance in several tumor types. Importantly, activation of OCT4 signaling induces PD-L1 expression in cancer cells,
thereby suggesting a possible immune evasion mechanism employed by cancer stem cells during metastasis.

PD-L1 protein expression in cancer cells (87). Consistent
with this data, PD-L1 protein expression was significantly
higher in the normal cervical tissues with HPV infection than
those normal cervical tissues without HPV infection (53).
Estrogen is a well-known oncogenic driver of endometrial
and breast cancer, and it upregulates PD-L1 protein
expression in ERa-positive endometrial and breast cancer cells
(88).

THE ROLE OF PD-L1 IN STIMULATING OR
INHIBITING CANCER

A tumor-intrinsic role for PD-L1 in promoting cancer initiation,
metastasis, development, and resistance to therapy is emerging
(Figure 3). For instance, knockdown of PD-L1 expression
in gastric cancer cells could significantly suppress cell
proliferation, migration and invasion (89). Also, knockout
of PD-L1 expression by CRISPR/Cas9 inhibits the spheroid
formation of osteosarcoma cells (90). PD-L1 was shown to
promote EMT in esophageal cancer (91). Knockdown of PD-L1
expression significantly suppressed tumor growth in nude mice
in gastric cancer (92) and cervical cancer model (27).
Interestingly, a link between PD-L1 expression and
EMT/CSC-like phenotypes has been reported. For example,
bladder cancer cells with surface expression of PD-L1 exhibited
signatures of immune evasion as well as increased stemness
(93). PD-L1 has been shown to be preferentially expressed on
CD44high CSCs in lung cancer cells (94). Selective expression
of PD-L1 was observed on CD44" head and neck tumor cells
compared with CD44~ tumor cells (95). CD133%/PD-L1"
colorectal CSC cells showed the characteristic of EMT (96).
Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell
generation in melanoma and ovarian cancer (97). Similarly,

PD-L1 promotes OCT4 and Nanog expression in breast CSCs
through the activation of PI3K/AKT pathway (98).

Moreover, PD-L1 overexpression promotes EMT and invasion
in glioblastoma multiforme via RAS/ERK/EMT activation (99).
RNA-sequencing analysis of glioblastoma multiforme revealed
that PD-L1 significantly altered the expression of genes, which
were enriched in cell growth/migration/invasion pathways
(99). PD-L1 induced EMT via activating SREBP-1c in renal
cell carcinoma (100). CRISPR/Cas9 system-mediated PD-LI
disruption increased drug sensitivities for doxorubicin and
paclitaxel (90). The interaction of PD-L1 with PD-1 induced
phosphorylation of AKT and ERK, resulting in the activation
of PI3K/AKT and MAPK/ERK pathways and increased MDR1
expression in breast cancer cells (101).

However, depletion of PD-L1 expression by shRNA in
cholangiocarcinoma cells enhances their tumorigenicity and
increases ALDH activity, and patients with lower PD-L1
expression shows poorer prognosis when compared with those
with higher PD-L1 expression (102), indicating that PD-L1 may
also have anti-tumor effects by inhibiting cancer stemness under
certain circumstances.

CONCLUSIONS

It is becoming clear that, although PD-L1 could serve as a
tumor suppressor by inhibiting cancer stem cell properties in
cholangiocarcinoma, tumor cell-intrinsic PD-L1 plays a pivotal
role in promoting cancer stemness, EMT, tumor invasion,
and chemoresistance in several tumor types. Importantly,
activation of OCT4 signaling and upregulation of EMT
inducer ZEB1 induce PD-L1 expression in cancer cells,
thereby suggesting a possible immune evasion mechanism
employed by cancer stem cells during metastasis. The continued
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characterization of immune-independent PD-L1 functions
and identification of crucial signaling events upstream or
downstream of PD-L1 in diverse cancer types (or specific cancer
subtypes), would provide additional targets and new therapeutic
approaches.
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